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Abstract— Synthesis of biomolecular circuits for controlling
molecular-scale processes is an important goal of synthetic
biology with a wide range of in vitro and in vivo applications,
including biomass maximization, nanoscale drug delivery, and
many others. In this paper, we present new results on how
abstract chemical reactions can be used to implement com-
monly used system theoretic operators such as the polynomial
functions, rational functions and Hill-type nonlinearity. We first
describe how idealised versions of multi-molecular reactions,
catalysis, annihilation, and degradation can be combined to
implement these operators. We then show how such chemical
reactions can be implemented using enzyme-free, entropy-
driven DNA reactions. Our results are illustrated through three
applications: (1) implementation of a Stan-Sepulchre oscillator,
(2) the computation of the ratio of two signals, and (3) a
PI+antiwindup controller for regulating the output of a static
nonlinear plant.

I. INTRODUCTION

Design of biomolecular circuits for in situ monitoring and
control is an important goal of synthetic biology, with numer-
ous potential applications ranging from metabolic production
of biomaterials to the design of ”smart” therapeutics capable
of diagnosis and treatment. So far, several synthetic devices
have been designed and implemented in vivo using protein
expression and gene regulation mechanisms: for example,
logic gates [1], memory elements [2], oscillators [3], filters
[4]-[5] and controllers of cellular differential processes [6].
However, the problem of imparting a programmable robust
dynamic behaviour to such synthetic biological circuits has
remained open, primarily because a proper understanding
of the input-output properties of genetic components is
still currently lacking, especially in the context of their
interactions with the host cell within which these circuits
operate.

Recently, the direct use of nucleic acids for perform-
ing computation has emerged as a promising approach for
addressing the above problems [7]-[10]. For these type of
systems, the sequences of nucleic acid components dic-
tate their interactions through the well-known Watson-Crick
base-pairing mechanism, which enables a precise program-
ming of molecular interactions by the choice of relevant
sequences. This approach has allowed the implementation
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Fig. 1: Synthetic biomolecular devices should ideally have a
nonlinear input-output behaviour. In this paper, we present
results on how biomolecular implementations of nonlinear
operators can be realised by first converting the ordinary
differential equations (ODEs) into their equivalent chemi-
cal reaction networks (CRNs) and then obtaining a DNA
implementation of these CRNs.

of a number of complex circuits based on DNA strand
displacement [11], DNA enzyme [12] and RNA enzyme [13],
and has been used for the modelling and implementation of
various nucleic-acids-based circuits such as feedback con-
trollers [14], predator-prey dynamics [15] and transcriptional
oscillators [16].

It is possible to approximate any abstract chemical re-
action network (CRN) by a set of suitably designed DNA
strand displacement reactions [17]. This logic extends well
to approximate a set of linear ordinary differential equa-
tions (ODEs) by a set of suitably designed DNA strand
displacement reactions [10], [18]. This has opened up the
possibility of utilising nucleic acid computations for the
design and implementation of various types of synthetic
biological circuits - the approach is illustrated conceptually
in Fig. 1.

In this paper, we build on the framework of Oishi-
Klavins, proposed in [19], to present results on how abstract
chemical reactions can be used to implement a number
of nonlinear system theoretic operators such as polynomial
functions, rational functions and Hill-type nonlinearities. It
turns out that an elegant mathematical framework on how
concentrations of abstract biochemical species should be
used to implement several complex computational functions
such as the square root, the n-th root, and division of two
numbers was already well presented in [20]. Some of the
ideas of [20] are found in [19], and hence are reflected in our
constructs as well. However, no suggestions are found in [20]
on how such operations can be implemented using real world
biomolecular species such as DNA, RNA, and enzymes. In
contrast, our approach clearly tackles this problem by using
the concepts developed in [10] and [19]. We then show



how these abstract chemical reactions can be realised using
enzyme-free, entropy-driven DNA reactions.

The class of biochemical circuits that can be implemented
by our framework is not limited to the ones covered by the
well-known theory of chemical reaction networks, developed
in [21]–[24], in that our framework facilitates the implemen-
tation of rational functions as well.

The paper is organised as follows. In Section II, the
results of [19] on representing linear systems using idealised
chemical reactions are summarised. In Section III, we present
our main results on how abstract chemical reactions can be
used to implement polynomial functions, rational functions
and Hill-type nonlinearities. After presenting an overview on
DNA implementations in Section IV, we present simulation
case studies in Section V to illustrate the main results.
The paper is concluded in Section VI and all relevant
chemical reactions along with their DNA implementations
are summarised in the Appendix.

II. BACKGROUND RESULTS: GAIN, SUMMATION,
INTEGRATION

Our notation follows the notation used in [19] and [10]:
for example, we represent a bidirectional, i.e., a reversible
bimolecular chemical reaction as

X1 +X2
δ1−⇀↽−
δ2

X3 +X4,

where Xi are chemical species with X1 and X2 being the
reactants and X3 and X4 being the products. Here, δ1 denotes
the forward reaction rate and δ2 denotes the backward
reaction rate. A unimolecular reaction features only one
reactant whereas a multimolecular reaction features two or
more reactants. Degradation of a chemical species X at rate
K into a waste or an inert form is denoted as X K−→ /0.

Whereas signals in systems theory can take both positive
and negative values, biomolecular concentrations can only
take non-negative values. Hence, following the approach in
[19] and [10], we represent a signal, x as the difference in
concentration of two chemical species, x+ and x−. Here, x+

and x− are respectively the positive and negative components
of x such that x = x+− x−. In practice, x+ and x− can be
realised as single strand DNA molecules, as illustrated in
[10].

In [19], results on how to represent elementary system
theoretic operations such as gain, summation and integration
using idealised abstract chemical reactions are obtained and
it is shown that only three types of elementary chemical
reactions, namely, catalysis, annihilation and degradation
are needed for such representations. In [10], this set of
elementary chemical reactions is further reduced to only two.
We now summarise their main results and refer the interested
reader to [10] and [19] for the complete background theory.

Lemma 1: [Scalar gain K]
Let xo = Kxi where xi is the input, xo is the output and
K is the gain. This operation is implemented, at the steady
state, using the following set of abstract chemical reactions:
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Fig. 2: The input-output system derived in Lemma 5 to
compute the univariate polynomial f (x) = ∑

n
i=0 aixi. Our

result uses intermediate variables xp,i which can be computed
using the abstract chemical reactions given by Lemma 4. This
implementation requires 11n+3 abstract chemical reactions,
where n is the degree of the polynomial f (x).

x±i
γK−→ x±i +x±o , x±o

γ−→ /0 and x+o +x−o
η−→ /0, where γ and η are

the kinetic rates associated with degradation and annihilation
respectively. �

Lemma 2: [Summation]
Consider the summation operation xo = xi+xd , where xi and
xd are the inputs and xo is the output. This operation is
implemented, at the steady state, using the following set of
abstract chemical reactions: x±i

γ−→ x±i + x±o , x±d
γ−→ x±d + x±o ,

x±o
γ−→ /0 and x+o + x−o

η−→ /0. The subtraction operation xo =
xi− xd is implemented using the following set of abstract
chemical reactions: x±i

γ−→ x±i + x±o , x±d
γ−→ x±d + x∓o , x±o

γ−→ /0
and x+o + x−o

η−→ /0. �
Lemma 3: [Integration]

Consider the integrator xo = K
∫

xidt where xi is the input,
xo is the output, and K is the DC gain. It is implemented, at
the steady state, using the following set of abstract chemical
reactions: x±i

K−→ x±i + x±o and x+o + x−o
η−→ /0. �

Strictly speaking, each of the equations with superscript ±
and ∓ should be written down after decomposing it into its
’+’ and ’−’ individual component - for example, x±i

K−→ x±o
should be written down as the the set of the following two
reactions: x+i

K−→ x+o and x−i
K−→ x−o . However, for brevity,

following [19], we will represent such a set of reactions
compactly as x±i

K−→ x±o .
Remark 1: It can be easily proved that the steady states

stipulated in Lemmae 1 – 3 exist and that the time to reach
the steady states is a function of the reaction rates. For
example, the scalar gain K can be realised accurately within
1% error in 5/(γK) seconds, the summation operation can
be realised within 1% error in 5/γ seconds, and so on.
In general, the time to reach the steady state is inversely
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Fig. 3: A block diagram representation of the feedback
system SD that computes the ratio y = u/z where u and
z are biomolecular signals.

proportional to the concerned reaction rates. �
Using mass action kinetics, it follows that the gain operator

realised in this manner is described using the following ODE,
dxo
dt = γ(Kxi− xo). Likewise, the ODEs for the summation

and integrator operations are given by dxo
dt = γ(xi + xd − xo)

and dxo
dt = Kxi, respectively.

III. MAIN RESULTS

A. Polynomials and rational functions

Lemma 4: [Polynomial xi]
Let xp,i denote the polynomial of degree n defined as xp,i = xi.
Then, xp,i is realised through the following set of idealised
abstract chemical reactions, which should be implemented
via a series of em bimolecular reactions:

x±+ · · ·+ x±︸ ︷︷ ︸
i times

γp−→ x±+ · · ·+ x±︸ ︷︷ ︸
i times

+x±p,i (1)

x±p,i
γp−→ /0, (2)

x+p,i + x−p,i
η−→ /0, (3)

where η is chosen to be arbitrarily large. �
Proof: Using generalised mass-action kinetics, it can

be verified that the set of chemical reactions given by (1)
to (3) is described using the following ordinary differential
equation:

dx±p,i
dt

= γp

(( i

∏
`=1

x±
)
− x±p,i

)
. (4)

Hence, using the final value theorem, it follows that the
set of chemical reactions given by (1) to (3) implements
the desired function at steady-state with 1/γp as the time
constant. �

Lemma 5: [Univariate polynomial]
Let f (x) be the univariate polynomial of degree n defined as

f (x) =
n

∑
i=0

aixi. (5)

Then, f (x) is realised through the feedforward system illus-
trated in Fig. 2. �

Proof: The proof follows in a straightforward manner
using the proofs of Lemmas 1-4. �

Remark 2: It may be noted that the constant a0 can be

realised as /0
a+0−→ x+g,0 and /0

a−0−→ x−g,0 so that the product xg,0
approaches the steady state value a0 with the time constant
of 1/a0. �

Remark 3: A multivariate polynomial such as, for ex-
ample, f (x,y) can be realised by extending Lemma 5 as
f (x,y) = f1(x) f2(y), where f1(x) and f2(y) are appropriately
chosen univariate polynomials. The multiplication can be
realised trivially using the following logic. Suppose we want
to compute z = xy. Then the required chemical reactions are:
x±+ y±

γp−→ x±+ y±+ z±, z±
γp−→ /0 and z+ + z−

η−→ /0. The
resulting ODE is dz/dt = γp(xy− z) so that z approaches
the required result xy at steady state, with the time constant
being 1/γp. Extending this logic to all intermediate variables
of interest, the required feedforward circuit to compute the
multivariate polynomials is obtained. �

Lemma 6: [Rational function]
Consider the system SD shown in Fig. 3. Let the biomolec-
ular signals u and z be its inputs. Then its output y computes
the ratio u/z. �

Proof: From Fig. 3, we have e = u− zy and y = Kde.
Substituting the former equation into the latter one and
rearranging the variables, we get y = Kd(u− yz) = Kdu

1+Kdz =
u

(1/Kd)+z . If Kd is chosen large enough, y≈ u/z. �

Remark 4: Our implementation of the divider, which is
a special case of the rational function, is illustrated in Fig.
3. It comprises a gain, a subtractor, and a multiplier. The
corresponding sets of reactions are obtained using Lemmas
1, 2 and Remark 2 of Lemma 5. �

Remark 5: This configuration can be taken a step further
to compute the ratio of two polynomials. Let û and ẑ be
the univariate polynomials of individual species. The abstract
chemical reactions for both û and ẑ can be realised using
Lemma 5. Then, the ratio of these two polynomials, i.e., û/ẑ
is computed in a similar manner as computing the ratio of u
and z using Lemma 6. �

B. Hill-type nonlinearity

Hill-type nonlinearities occur naturally in the activation-
inhibition interactions in biological networks and can be
represented mathematically as either N(x) = xm1/(α + xm2)

or N(x) = 1−
(

xm1/(α+xm2)
)

where m1 and m2 are positive
integers and α > 0. One way to obtain a biomolecular
implementation of such nonlinearities is to apply Lemma
6 to derive abstract chemical reactions that implement such
a rational function and then obtain a DNA implementation
of such chemical reactions. In many instances, however,
the main objective is simply to implement a qualitative
ultrasensitive input-output behaviour, rather than implement
the exact quantitative rational function. In that case, it
is preferable to note that the naturally occuring mitogen
activated protein kinase (MAPK) cascades exhibit such an
ultrasensitive response, and can be approximated by a set of
chemical reactions of the form:
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chemical reactions. We present a case study for the shown
Lienard system which is a particular case of these oscillators.

A±1 +A±2
k2−⇀↽−
k1

A±3
k3−→ A±4 +A±2

A±4 +A±5
k5−⇀↽−
k4

A±6
k6−→ A±1 +A±5 ,

where Ai (i∈{1,2, . . . ,6}) are biomolecular species (see [25]
and [26]). This set of chemical reaction is better implemented
through the set SN of 12 abstract chemical reactions given
in Fig. 4(B) which, in turn, can be implemented using 32
DNA implementation reactions, as illustrated in Fig. 4(C).
The set SN can be represented through the following set of

ordinary differential equations [25]:

dx+2
dt

= k2x+C1
− k3x+2 x+e and

dx−2
dt

= k2x−C1
− k3x−2 x−e .

Now, x2 = x+2 − x−2 . Hence

dx2

dt
= k2

(
x+C1
− x−C1

)
− k3

(
x+2 x+e − x−2 x−e

)
.

Without loss of generality, let (x+2 x+e ) = (x2xe)
+ and

(x−2 x−e ) = (x2xe)
−, as proposed in [25]. Then it can be

verified that SN is described by the following set of ODEs:

dx2

dt
= k2xC1 − k3x2xe,

dxC1

dt
= k1xpx1− k2xC1 ,

dxC2

dt
= k3x2xe− k4xC2 .

By varying the concentration of xe, the slope of the
Hill-type nonlinearity can be controlled, as is illustrated in
Fig. 4(A).

Remark 6: While SN can also be realised using Lemmas
4 and 5, the number of these abstract chemical reactions
depends on the values of m1 and m2 — using the prescription
of Lemma 5, a univariate polynomial of degree n is realised
using 11n+3 chemical reactions. Hence if m1 = m2 = 1, at
least 28 reactions are required to realise SN . To obtain an
ultrasensitive response, one typically requires higher values
of m1 and m2, leading to a correspondingly higher number
of chemical reactions, whereas our results in this section
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ular implementation of the Lienard system illustrated in
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the reaction rate d2.

facilitate such a qualitative input-output response using only
12 abstract chemical reactions — this number is independent
of m1 and m2. �

IV. DNA IMPLEMENTATION

The framework relating chemical reactions to DNA strand
displacement (DSD) has been well established (see e.g. [10],
[17], [27]–[29]) and it essentially converts arbitrary chemical
reaction network to a DSD model. In [17], the designed
DNA-based scheme compile the unimolecular and bimolec-
ular chemical reactions into strand displacement DNA-based
chemistry to achieve the desired behaviour of the considered
biomolecular system. Here, only the results are presented and
interested readers are referred to [17] for details. The DNA
implementation for a unimolecular reaction, ru : X1

δ−→X2+X3

and a bimolecular, rb : X1 +X2
δ−→ X3 are respectively given

by Eqns. (6) and (7).

X1 +Gi
qi−→ Oi and Oi +Ti

qmax−−→ X2 +X3 (6)

X1 +Li
qi−−⇀↽−−

qmax
Hi +Bi , X2 +Hi

qmax−−→ Oi and Oi +Ti
qmax−−→ X3

(7)
where G, O, T , L, H, B are auxiliary species with appropriate
initial concentrations Cmax while qi = δ/Cmax and qmax are
the partial and maximum strand displacement rate respec-
tively. This approached is followed throughout the paper (see
e.g. Fig. 4(C)).

V. SIMULATION RESULTS

A. Implementation of a Stan-Sepulchre oscillator

Since the class of Stan-Sepulchre oscillators has a prov-
ably unique globally stable limit cycle [30], we decided
to implement it to illustrate our results derived in Section
III. We derived the set of abstract chemical reactions to
implement the block-diagram shown in Fig. 5 which rep-
resents a Lienard system, which is a special case of the
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Fig. 7: Computations of univariate polynomials and rational
functions using chemical reactions given by Lemma 6. (A)
The ratio y = u/z of two scalar-valued signals u and z is
computed, where u = 5.5nM and z = 2nM. (B) The rational
function u+u2

z+z2 is computed, where u = 3.5M and z = 2M —
the values are set abnormally high so that the squared terms
do not become vanishingly small.

Stan-Sepulchre oscillators. The choice of k determines the
bifurcation property of the system. We set k = 1.

This system comprises three subtractors, two integrators
and a power component. Table I summarises the DNA im-
plementation, CRNs and ODEs for the Lienard system. The
resulting oscillations are shown in Fig. 6. In this simulation,
we set d1 = 0.01 /s, d3 = 1000 /s, ks1 = 0.003 /s and
ks3 = 0.003 /s. The frequency of oscillation can be tuned
by varying the reaction rate d2.

B. Implementation of a rational function

We next illustrate how to compute a ratio of two biomolec-
ular signals u and z. Let u = 5.5nM and z = 2nM. The
simulation result of y = u/z is shown in Fig. 7(A). Table
II summarises the DNA implementation, chemical reactions,
and ODEs needed to implement this divider. Here, Kd =
γ1Ed = 10,000, γ1 = 0.001 /s, γ2 = 1 /s and ks1 = 0.1 /s.

Next, we compute the ratio of two polynomials y = û/ẑ,
where û= u+u2 and ẑ= z+z2. Let u= 3.5M and z= 2M —
the values are set abnormally high so that u2 and z2 do not
become vanishingly small. The simulation result is shown in
Fig. 7(B). Table III summarises the DNA implementation,
CRNs and ODEs for û and ẑ. In computing û and ẑ, γ1 = 1
/s and ks1 = 0.015 /s. For subtractor, ks2 = 1 /s, gain, Kd =
γ2Ed = 10,000, γ2 = 400 /s and multiplier, γ3 = 0.03 /s.

C. Implementation of PI+anti-windup controller for regulat-
ing the output of a static plant

The ultrasensitive response of a Hill-type nonlinearity
well approximates the actuator saturation in many real-world
applications. We now show how a biomolecular implemen-
tation of a PI+anti-windup controller can be implemented to
counter such actuator saturations. The set of chemical reac-
tions and its DNA implementation to realise a PI controller
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has been derived in [19] and [10] respectively. Here, we
extend those results by incorporating an anti-windup scheme
in the presence of input saturation characterised by the Hill-
type nonlinearity. A block diagram of the closed-loop system
in which a static nonlinear plant is regulated by such a
PI+anti-windup controller is shown in Fig. 8.

This system features three subtractors, two gain compo-
nents, two integrators, one summation, and a Hill-type non-
linearity. Table IV shows the DNA implementation, chemical
reactions, and ODEs for the saturation nonlinearity. The
anti-windup comprises a subtractor and a gain. For the
PI controller, the set of chemical reactions and its DNA
implementation has been derived in [19] and [10]. Fig. 9(A)
illustrates the Hill-type nonlinearity obtained with k1 = 400
/mM/s, k2 = 0.004 /s, k3 = 1350 /mM/s, k4 = 0.0015 /s
and xe = 0.1 nM. This yields an input saturation between
±1× 10−6 /s. The ideal saturation curve and the realised
saturation curve are shown in Fig. 9(A).

As shown in Fig. 9(B), the PI controller is sluggish
in tracking the direction change in the reference signal
whereas the PI+antiwindup controller is faster in tracking
the reference signal, and also reduces the settling time from
26,000 seconds to 12,000 seconds.

VI. CONCLUSIONS

We have presented results on how abstract chemical re-
actions can be used to implement a number of nonlinear
system theoretic operators such as multivariate polynomi-
als, rational functions, and Hill-type nonlinearities. These
results extend the architecture established for linear dynamic
systems in [19]. We have shown how a combination of
three elementary abstract idealised reactions, viz., catalysis,
annihilation, and degradation can be used to realize these
functions and have translated these chemical reactions into
enzyme-free, entropy-driven DNA reactions. We have illus-
trated these results through three applications: (1) the Stan-
Sepulchre oscillator, (2) computation of the ratio of two
biomolecular signals and polynomials, and (3) regulation of
a static nonlinear plant using a PI+anti-windup controller.
We intend to follow the approach of [10], which uses [17],
[27]-[29], to obtain the DNA strand displacement, genelet,
and DNA Toolbox implementations of the results derived in
this manuscript.
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APPENDIX I
CHEMICAL REACTIONS AND DNA IMPLEMENTATIONS

In this section, we note down all relevant sets of chemical
reactions along with their DNA implementations for the case
studies presented in Section IV.

DNA Implementation Formal CRNs ODEs

Stan-Sepulchre Oscillator
Subtractor I

u±+G±1
q1−→ /0+O±1

}
u±

ks1−→ u±+ x±1


O±1 +T±1
qmax−−→ u±+ x±1

x±6 +G±2
q2−→ /0+O±2

}
x±6

ks1−→ x±6 + x∓1
O±2 +T±2

qmax−−→ x±6 + x∓1
x±1 +G±3

q3−→ /0
}

x±1
ks1−→ /0 dx1

dt = ks1(u− x6− x1)

x+1 +L1
qmax−−⇀↽−−
qmax

H1 +B1


x−1 +LS1
qmax−−⇀↽−−
qmax

HS1 +BS1 x+1 + x−1
η−→ /0

x−1 +H1
qmax−−→ /0

Subtractor II

x±1 +G±4
q4−→ /0+O±4

}
x±1

d1−→ x±1 + x±2


O±4 +T±4
qmax−−→ x±1 + x±2

x±4 +G±5
q5−→ /0+O±5

}
x±4

d2−→ x±4 + x∓2
O±5 +T±5

qmax−−→ x±4 + x∓2
x±2 +G±6

q6−→ /0
}

x±2
d3−→ /0 dx2

dt = d1x1−d2x4−d3x2

x+2 +L2
qmax−−⇀↽−−
qmax

H2 +B2


x−2 +LS2
qmax−−⇀↽−−
qmax

HS2 +BS2 x+2 + x−2
η−→ /0

x−2 +H2
qmax−−→ /0

Forward Path Integrator

x±2 +G±7
q7−→ /0+O±7

}
x±2

1−→ x±2 + x±3


O±7 +T±7
qmax−−→ x±2 + x±3

x+3 +L3
qmax−−⇀↽−−
qmax

H3 +B3


x−3 +LS3
qmax−−⇀↽−−
qmax

HS3 +BS3 x+3 + x−3
η−→ /0 dx3

dt = x2

x−3 +H3
qmax−−→ /0

Feedback Path Integrator

x±3 +G±8
q8−→ /0+O±8

}
x±3

1−→ x±3 + x±4


O±8 +T±8
qmax−−→ x±3 + x±4

x+4 +L4
qmax−−⇀↽−−
qmax

H4 +B4


x−4 +LS4
qmax−−⇀↽−−
qmax

HS4 +BS4 x+4 + x−4
η−→ /0 dx4

dt = x3

x−4 +H4
qmax−−→ /0

Cubic Component

3x±3 +G±9
q9−→ /0+O±9

}
3x±3

γ1−→ 3x±3 + x±5


O±9 +T±9
qmax−−→ 3x±3 + x±5

x±5 +G±10
q10−−→ /0

}
x±5

γ1−→ /0

x+5 +L5
qmax−−⇀↽−−
qmax

H5 +B5


dx5
dt = γ1(x3

3− x5)

x−5 +LS5
qmax−−⇀↽−−
qmax

HS5 +BS5 x+5 + x−5
η−→ /0

x−5 +H5
qmax−−→ /0

Subtractor III

x±5 +G±11
q11−−→ /0+O±11

}
x±5

ks3−→ x±5 + x±6


O±11 +T±11
qmax−−→ x±5 + x±6

x±3 +G±12
q12−−→ /0+O±12

}
x±3

ks3−→ x±3 + x∓6
O±12 +T±12

qmax−−→ x±3 + x∓6
x±6 +G±13

q13−−→ /0
}

x±6
ks3−→ /0 dx6

dt = ks3(x5− x3− x6)

x+6 +L6
qmax−−⇀↽−−
qmax

H6 +B6


x−6 +LS6
qmax−−⇀↽−−
qmax

HS6 +BS6 x+6 + x−6
η−→ /0

x−6 +H6
qmax−−→ /0

TABLE I: DNA Implementation, CRNs and the corre-
sponding ODEs for the implementation of Stan-Sepulchre
oscillator. /0 indicates the absence of products or waste.
Here, ks1 = 0.003 /s, d1 = 0.01 /s. d3 = 1000 /s, γ1 = 1 /s,
ks3 = 0.003 /s and d2 = 0.005,0.01,0.02 /s. Cmax = 1 µM,
qmax = 1 MM/s and q1−q3 = ks1/Cmax, q4 = d1/Cmax, q5 =
d2/Cmax, q6 = d3/Cmax, q7−q8 = 1/Cmax, q9−q10 = γ1/Cmax,
q11−q13 = ks3/Cmax.



DNA Implementation Formal CRNs ODEs

Divider: Ratio of two species
Subtractor

u±+G±1
q1−→ /0+O±1

}
u±

ks1−→ u±+ e±


O±1 +T±1
qmax−−→ u±+ e±

e±+G±2
q2−→ /0+O±2

}
e±

ks1−→ e±+ e∓

O±2 +T±2
qmax−−→ w±+ e∓

e±+G±3
q3−→ /0

}
e±

ks1−→ /0 de
dt = ks1(u−w− e)

e++L1
qmax−−⇀↽−−
qmax

H1 +B1


e−+LS1
qmax−−⇀↽−−
qmax

HS1 +BS1 e++ e−
η−→ /0

e−+H1
qmax−−→ /0

Forward Path Gain

e±+G±4
q4−→ /0+O±4

}
e±

γ1Ed−−→ e±+ y±


O±4 +T±4
qmax−−→ e±+ y±

y±+G±5
q5−→ /0

}
y±

γ1−→ /0

y++L2
qmax−−⇀↽−−
qmax

H2 +B2


dy
dt = γ1(Ede− y)

y−+LS2
qmax−−⇀↽−−
qmax

HS2 +BS2 y++ y−
η−→ /0

y−+H2
qmax−−→ /0

Multiplier

y±+L±3
q3′−−⇀↽−−
qmax

H±3 +B±3




z±+H±3
qmax−−→ O±5 y±+ z±

γ2−→ w±

O±5 +T±5
qmax−−→ w±

w±+G±6
q6−→ /0

}
w±

γ2−→ /0

w++L4
qmax−−⇀↽−−
qmax

H4 +B4


dw
dt = γ2(yz−w)

w−+LS4
qmax−−⇀↽−−
qmax

HS4 +BS4 w++w−
η−→ /0

w−+H4
qmax−−→ /0

TABLE II: DNA Implementation, CRNs and the correspond-
ing ODEs for the implementation of divider. Here, ks1 = 0.1
/s, γ1 = 0.001 /s, Kd = γ1Ed = 10,000, γ2 = 1 /s. Cmax = 1
µM, qmax = 1 MM/s, q1− q3 = ks1/Cmax, q4 = γ1Ed/Cmax,
q5 = γ1/Cmax, q3′ = q6 = γ2/Cmax.

DNA Implementation Formal CRNs ODEs

Computing (·)+(·)2

Quadratic Component

2x±+G±1
q1−→ /0+O±1

}
2x±

γ1−→ 2x±+ x±p,2


O±1 +T±1
qmax−−→ 2x±+ x±p,2

x±p,2 +G±2
q2−→ /0

}
x±p,2

γ1−→ /0

x+p,2 +L1
qmax−−⇀↽−−
qmax

H1 +B1


dxp,2
dt = γ1(x2− xp,2)

x−p,2 +LS1
qmax−−⇀↽−−
qmax

HS1 +BS1 x+p,2 + x−p,2
η−→ /0

x−p,2 +H1
qmax−−→ /0

Summation

x±p,2 +G±3
q3−→ /0+O±3

}
x±p,2

ks1−→ x±p,1 + y±


O±3 +T±3
qmax−−→ x±g,2 + y±

x±g,1 +G±4
q4−→ /0+O±4

}
x±g,1

ks1−→ x±g,1 + y±

O±4 +T±4
qmax−−→ x±p,1 + y± dy

dt = ks1(xp,2 + xp,1− y)

y±+G±5
q5−→ /0

}
y±

ks1−→ /0

y++L2
qmax−−⇀↽−−
qmax

H2 +B2


y−+LS2
qmax−−⇀↽−−
qmax

HS2 +BS2 y++ y−
η−→ /0

y−+H2
qmax−−→ /0

TABLE III: DNA Implementation, CRNs and the corre-
sponding ODEs for computing û = u+ u2 and ẑ = z+ z2.
Here, γ1 = 1 /s, ks1 = 0.015 /s. Cmax = 1 µM, qmax = 1 MM/s,
q1−q2 = γ1/Cmax, q3−q5 = ks1/Cmax.

DNA Implementation Formal CRNs ODEs

Hill-type nonlinearity

x±p +L±1
q1−−⇀↽−−

qmax
H±1 +B±1




x±4 +H±1
qmax−−→ /0+O±1 x±p + x±4

k1−→ x±c1

O±1 +T±1
qmax−−→ x±c1

x±c1 +G±2
q2−→ /0+O±2

}
x±c1

k2−→ x±4 + x±5
O±2 +T±2

qmax−−→ x±4 + x±5
x+c1 +L3

qmax−−⇀↽−−
qmax

H3 +T3
x−c1 +LS3

qmax−−⇀↽−−
qmax

HS3 +BS3 x+c1 + x−c1
η−→ /0

x−c1 +H3
qmax−−→ /0 dx5

dt = k2xc1− k3x5xe

x+5 +L4
qmax−−⇀↽−−
qmax

H4 +T4
x−5 +LS4

qmax−−⇀↽−−
qmax

HS4 +BS4 x+5 + x−5
η−→ /0

x−5 +H4
qmax−−→ /0 dxc1

dt = k1xpx4− k2xc1

x±5 +L±5
q5−−⇀↽−−

qmax
H±5 +B±5

x±e +H±5
qmax−−→ /0+O±5 x±5 + x±e

k3−→ x±c2
O±5 +T±5

qmax−−→ x±c
dxc2
dt = k3x5xe− k4xc2

x±c2 +G±6
q6−→ /0+O±6

}
x±c2

k4−→ x±p + x±e
O±6 +T±6

qmax−−→ x±p + x±e
x+c2 +L6

qmax−−⇀↽−−
qmax

H6 +B6
x−c2LS6

qmax−−⇀↽−−
qmax

HS6 +BS6 x+c2 + x−c2
η−→ /0

x−c2 +H6
qmax−−→ /0

x+p +L7
qmax−−⇀↽−−
qmax

H7 +B7
x−p +LS7

qmax−−⇀↽−−
qmax

HS7 +BS7 x+p + x−p
η−→ /0

x−p +H7
qmax−−→ /0

Anti-windup gain

x±7 +G±7
q7−→ /0+O±7

}
x±7

γ2KA−−−→ x±7 + x±8


O±7 +T±7
qmax−−→ x±7 + x±8

x±8 +G±8
q8−→ /0

}
x±8

γ2−→ /0

x+8 +L8
qmax−−⇀↽−−
qmax

H8 +B8


dx8
dt = γ2(KAx7− x8)

x−8 +LS8
qmax−−⇀↽−−
qmax

HS8 +BS8 x+8 + x−8
η−→ /0

x−8 +H8
qmax−−→ /0

TABLE IV: DNA Implementation, CRNs and the corre-
sponding ODEs for the implementation of Hill-type nonlin-
earity and anti-windup gain. Here, k1 = 400 /mM/s, k2 =
0.004 /s, k3 = 1350 /mM/s, k4 = 0.0015 /s, xe = 0.1 nM,
γ2 = 0.9 /s, KA = 156. Cmax = 1 µM, qmax = 1 MM/s,
q1 = k1/Cmax, q2 = k2/Cmax, q5 = k3/Cmax, q6 = k4/Cmax,
q7 = γ2KA/Cmax, q8 = γ2/Cmax.


	INTRODUCTION
	Background results: gain, summation, integration
	Main Results
	Polynomials and rational functions
	Hill-type nonlinearity

	DNA implementation
	Simulation results
	Implementation of a Stan-Sepulchre oscillator
	Implementation of a rational function
	Implementation of PI+anti-windup controller for regulating the output of a static plant

	CONCLUSIONS
	References
	Appendix I: Chemical Reactions and DNA Implementations

