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Abstract: The control of biochemical processes is a major goal in systems and synthetic
biology. Current approaches are based on ad-hoc designs, whereas a general and modular
framework would be highly desirable, in order to exploit the well-assessed methods of control
theory. A well-known problem when dealing with complex biosystems is represented by the
retroactivity effect, which can significantly modify the dynamics of interconnected subsystem,
with respect to the behavior they exhibit when disconnected from each other. In the present
work an implementation of a zero-retroactivity Chemical Reaction Network Subtractor (CRNS)
is proposed and its effectiveness is investigated through singular perturbation analysis. The
proposed CRNS represents a first step towards the development of a modular framework for the
design of CRN-based embedded feedback control systems.
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1. INTRODUCTION

The development of a general control theory for biomolec-
ular processes would require the realization of a set of basic
molecular circuits that can be assembled in a modular
way. A common approach for designing and analyzing
a complex system is to decompose it into smaller mod-
ules, whose functions are well isolated by those of the
neighboring modules. This approach has been employed
for long time in engineering disciplines, such as electrical
engineering and computer science and, more recently, it
has been proposed also for the analysis of bio-molecular
systems. Guaranteeing that the properties of individual
components do not change upon interconnection is the
central characteristic on the basis of modularity. Unfortu-
nately, in biological systems modularity is generally com-
promised by retroactivity, which plays a role similar to
impedance in electrical circuits, and consists in the effect of
the reciprocal interactions arising from the interconnection
of two modules (Del Vecchio et al. (2008); Del Vecchio
(2013, 2015)).

From a design point of view, the retroactivity must be
taken into account when engineering bio-molecular circuits
and that suitable insulation mechanisms should be de-
signed in order to buffer connected components from each
other (Del Vecchio (2013)). Some solutions to attenuate
retroactivity, based on high-gain feedback and time scale
separation, are now available (Jayanthi and Del Vecchio
(2011); Mishra et al. (2014)).Designs of insulation de-
vices have been proposed in literature with the aim of
1 Equal contribution.

attenuating retroactivity effects (Del Vecchio et al. (2008);
Del Vecchio and Sontag (2009); Del Vecchio (2015)). The
need for understanding the extent of modularity and at-
tenuating the retroactivity in bio-molecular systems has
become particularly pressing when designing synthetic
circuits. Towards the realisation of modular embedded
feedback controllers in synthetic biological systems, the
availability of a well-characterised subtraction module is
a key step. In the classical one-degree-of-freedom control
scheme, a subtraction module is required to compare the
desired set-point with the actual output of the process to
be controlled. The realization of an embedded subtractor
module remains, to the best of our knowledge, an open
issue, as also discussed in Dolan et al. (2012). Oishi and
Klavins (2011) have also addressed this problem in, though
their approach requires some conditions not easy to meet
in practice, whereas Chen et al. (2014) have shown that
CRNs can be used to compute continuous piecewise lin-
ear functions. Cosentino et al. (2016) have investigated
the general properties of a minimal CRN-based molecular
subtractor and proposed some realization structures. A
preliminar study of the retroactivity of these alternative
structures has been conducted in Bilotta et al. (2015).

The present work proposes a zero-retroactivity CRN-based
subtraction module, which can be used as a basic com-
ponent for designing feedback controllers for biochemical
reaction networks. It is assumed that the CRNS takes
as first input the set-point flux and as second input the
output flux of the controller process. In this case, it is
important to minimize the retroactivity of the subtractor
on the second input, in order to avoid undesired influence
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on the dynamics of the controlled output species. Other-
wise, the subtractor would consume the output species of
the controlled process, thus affecting the capability of the
control system to track the desired set-point.

The paper is organized as follows: in Section 2 we dis-
cuss the general properties required from a subtraction
block and translate these into two minimal CRN-based
subtraction modules. Moreover, the concept of retroactiv-
ity and a general modeling scheme for the connection of
bio-molecular systems are briefly recalled. In Section 3 a
singular perturbation analysis of the two interconnected
subtractors is carried out upon interconnection with an
upstream and a downstream module. Some illustrative nu-
merical examples are given in Section 4. Finally, Section 5,
provides some concluding remarks.

2. PRELIMINARIES

2.1 Minimal properties of a molecular subtractor

Let consider a reactor, containing a generic CRN C com-
prising n species. Assume it is possible to inject from
outside the reactor only species A and B, and denote with
uA(t) and uB(t) the number of molecules per unit volume
injected per unit time, and with yC(t) the corresponding
number of molecules per unit volume of a species C pro-
duced by the CRN in the same time interval. To fix ideas,
assume that uA(t) > uB(t) > 0. Furthermore, denote by

unotC
A : the number of molecules of A per unit volume that
the CRN irreversibly converts into species other than C
(including the null species, i.e. degradation of A) over a
unit time interval;

uC
A : the number of molecules of A per unit volume that the
CRN irreversibly converts into molecules of C over the
same time interval (through any number of intermediate
reactions).

Proposition 1. (Cosentino et al. (2016)) Assume that all
the reactions in the CRN C exhibit unitary stoichiometric
coefficients, that the input fluxes uA, uB are constant and
that the following conditions are satisfied

unotC
A = uB, (1a)

uC
A = uA − unotC

A . (1b)
uA = 0⇒ lim

t→∞

yC(t) = 0 . (1c)

Then, the output flux yC tends asymptotically to the
difference of the input fluxes, uA − uB.

Proof Conditions (1a)-(1b) yield uC
A = uA − uB. Condi-

tion (1c) implies that C is a product of either A or a
species produced from A, through an arbitrary number
of intermediate reactions, and cannot be produced from
other sources in the absence of A. Since the reactions
have unitary stoichiometric coefficients and the conversion
of A to C is irreversible, yC(t) will tend asymptotically
to uC

A. Note that there is an infinite number of CRNs
that satisfy conditions (1), since the conversion of A into
other molecules (either C or non-C) can occur through any
sequence of reactions, involving any number of species.

In order to achieve a minimal realization, only CRNs
comprising just the three molecular species associated
to the interconnection fluxes are considered. Under this
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Fig. 1. Response of the isolated CRN subtraction module:
The first input flux (species A) is uA = 0.8 µM s−1,
the second input flux (species B) is uB = 0.2 µM
s−1. The kinetic parameters in CRN (3) are set to
k1 = 4s−1 and k2 = 3 (µM s)−1 therefore the output
flux (solid line) of species C represents the difference
between the two input fluxes (dashed lines).

constraints, a possible realization of the CRNS, satisfying
conditions (1) is

∅
uA
−−→A

k1
−→ C (2a)

∅
uB
−−→B (2b)

A+B
k2
−→ ! , (2c)

where yC = k1a, the symbol “!” means that the product
of reaction (2c) can be any complex of species different
from A, B and C (including the null species ∅ in the case
of degradation), since it does not affect the behavior of the
CRN.

2.2 Two possible CRN-based subtraction modules

To realize the subtraction operation between the fluxes of
two species, A and B, the CRN-based module we propose
to employ is the following CRN.

∅
uA
−−→ A

k1
−→ C

∅
uB
−−→ B

A+ B
k2
−→W .

(3)

The dynamical system describing the behavior of CRN (3)
is given by the two input-single output system

ȧ = uA − k1 a− k2 a b (4a)

ḃ = uB − k2 a b (4b)
ẇ = k2 a b (4c)

yC = ċ = k1 a , (4d)

where italic lowercase letters, a, b, c, and w are used
to denote the concentration of species A, B, C and W,
respectively.

For each molecule of B that enters the CRN (3), exactly
one molecule of A is converted into species W. The
molecules of A that are not degraded or converted to W,
are turned into molecules of C. In this way, the output flux
of species yC tends asymptotically to the difference of the
two inputs fluxes uA and uB, see Fig. 1.

Alternatively, let us consider another CRN, which involves
a species B that can exist in two forms (e.g., a protein in
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Fig. 2. Two alternative implementations of the CRNS
scheme (2)

phosphorylated or dephosphorylated form), which will be
denoted with B◦ and B∗. In this case, the letter B denotes
the total amount of the species (independently of the
fractions of B◦ and B∗) and with b we will denote the whole
concentration of B, that is the sum of the concentrations of
B◦ and B∗, denoted by b◦ and b∗, respectively. We consider
as input to this CRN the total flux of species B (in either
one of the two forms), uB and assume that such input flux
is composed by a fraction λ of molecules of the form B◦.
Therefore, we have

uB = uB◦ + uB∗

= λuB + (1− λ)uB

and the CRN reads

∅
uA
−−→A

k1
−→ C (5a)

∅
λuB
−−−→B◦ (5b)

A+B◦ k2
−→ B∗

(1−λ)uB
←−−−−−− ∅ . (5c)

The two devised CRN subtraction modules are illustrated
in Fig. 2. The dynamics of CRN (5) are described by the
system

ȧ = uA − k1 a− k2 a b
◦ (6a)

ḃ◦ = λuB − k2 a b
◦ (6b)

ḃ∗ = k2 a b
◦ + (1− λ)uB (6c)

yC = ċ = k1 a . (6d)

2.3 Mathematical model for interconnected systems

Exploiting the framework devised in Jayanthi and Del Vec-
chio (2011), let us consider a generic system S with σ ∈
Du ⊂ R

q
+, x ∈ Dx ⊂ Rn

+ and ν ∈ Dν ⊂ R
p
+ denoting con-

centrations of chemical species, such as proteins, enzymes,
DNA sites, etc. Our aim is to investigate whether and to
what extent the dynamics of system S change upon in-
terconnection with other modules. Therefore, we consider
the case in which system S is connected to an upstream
and a downstream module, as illustrated in Fig.3. Looking
and the interconnections scheme, we can distinguish four
interconnection fluxes, denoted with f , g, r, and s. In
particular, g(σ, t) and f(x,σ) are reaction rate vectors
representing the input and output fluxes of system S.
In the interconnected scheme, g(σ, t) represents the input
molecular fluxes generated from the upstream module (the
source), whereas f(x,σ) represents the molecular fluxes
produced by system S and fed to the load module.

The reaction rates terms r(x,σ), s(x, ν), instead, denote
the retroactivity to the input and retroactivity to the out-
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Fig. 3. The analysis of the retroactivity is realised by
a modular interconnection of the CRN-based sub-
traction module. The CRN-based subtraction module
takes as inputs the fluxes of species A and B gener-
ated from an upstream module. This source block is
composed of reactions of formation and degradation
for each input species. The output of the subtractor
module is the flux of species C produced by the
reactions of the CRNS. The transcription factor C
binds to the promoter p, inducing the transcription
and translation of a protein D. The red arrows denote
retroactive fluxes arising upon interconnection of the
CRNS with the source and load modules.

put, respectively. These terms arise from the interconnec-
tion of S with the source and load module and, thus,
perturb the dynamics of S with respect to the isolated
case.

The dynamics of the interconnected system can be conve-
niently described by means of the following system

σ̇ = g(σ, t) +Gα A r(x,σ) (7a)
ẋ = Gα B r(x,σ) +Gα f(x,σ) +Gβ C s(x, ν) (7b)
ν̇ = Gβ D s(x, ν) +Gβ l(ν) + h(ν, t) , (7c)

where A ∈ Rr×q, B ∈ Rr×n, C ∈ Rs×n and D ∈ Rs×p

are constant matrices, l(ν) ∈ Rp, h(ν, t) ∈ Rp are vector
fields, Gα, Gβ are positive scalars that can be used to tune
the relative velocity of the dynamics of the three modules.
Note that a mathematical description of the unloaded
system can be readily obtained by considering s(x, ν) = 0
(Del Vecchio et al. (2008); Del Vecchio (2013); Mishra et al.
(2014); Del Vecchio (2015)).

In the following, in place of a generic system S, we shall
consider the two CRNSs (2), (5). In order to evaluate the
retroactivity of the two subtractors, we shall use the CRN

∅
ka
−⇀↽−
δa

A (8a)

∅
kb
−⇀↽−
δb

B , (8b)

as source module. As for the load module, we adopt the
following generic transcriptional mechanism,

C + p
kon
−−⇀↽−−
koff

D , (9)

where p represent a promoter region, to which the species
C can bind, and D denotes the complex C:p, that is the
promoter with a molecule of C bound to it. Note that the
total concentration of the promoter (that is the sum of the
bound and unbound form) is constant over time, we will
denote it by pTOT.
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k̄A := maxtka(t)
δa

k̄B := maxtkb(t)
δb

σA := a

k̄A
σB := b

k̄A

x1 := w

k̄A
x2 := c

k̄A

ν := d

k̄A
k̃A(t) := ka(t)

δak̄A

k̃B(t) := kb(t)
δak̄A

τ = δa t

Table 1. Change of variables for adimensional-
ization of system (11).

3. MAIN RESULTS

In what follows, we analyze the interconnected scheme
described in the previous section, applying a singular
perturbations analysis (Khalil (2002)) approach.

3.1 Singular perturbation analysis of the CRNSs

The interconnected CRN (3) corresponds to the following
reaction network

∅
ka
−⇀↽−
δa

A
k1
−→ C

∅
kb
−⇀↽−
δb

B

A+ B
k2
−→W

C+ p
kon
−−⇀↽−−
koff

D .

(10)

Taking into account the conservation law pTOT = p + d,
the dynamics of CRN (10) are described by the following
system

ȧ = ka(t)− δa a− k1 a− k2 a b (11a)

ḃ = kb(t)− δb b− k2 a b (11b)
ẇ = k2 a b (11c)
ċ = k1 a+ koff d− kon(pTOT − d) c (11d)

ḋ = −koff d+ kon(pTOT − d) c . (11e)

In order to derive non-dimensional variables, let us apply
the change of variables defined in Table (1).

Note that ẋi will denote
dxi

dτ ). Moreover, let us define the

timescale parameters, G1 := k1

δa
, G2 := k2 k̄A

δa
and G3 :=

koff

δa
, which weigh the relative velocity of the dynamics

of the source, subtractor and load module, respectively.
Using the adimensional variables, system (11) can then be
reformulated as

σ̇A = k̃A(t)− σA −G1 σA −G2 σA σB (12a)

σ̇B = k̃B(t)−
δb
δa

σB −G2 σA σB (12b)

ẋ1 = G2 σA σB (12c)

ẋ2 = G1 σA +G3(ν −
x2

kD
(pTOT − k̄A ν)) (12d)

ν̇ = −G3(ν −
x2

kD
(pTOT − k̄A ν)) , (12e)

where kD := koff

kon
is the dissociation constant. Comparing

the generic model (7) with system (12) we can identify
the dynamics of the source module, that are gA(σA, t) =
k̃A(t) − σA and gB(σB, t) = kB(t) −

δb
δa

σB. This means
that, when the source module is not connected to the
subtractor, the dynamics of the input species are given by

σ̇A = gA(σA, t) and σ̇B = gB(σB, t). Our goal is to evaluate
how these dynamics are modified by the interconnection
scheme, that is to quantify the retroactivity to the inputs
of the subtractor.

In order to exploit singular perturbation analysis, we have
to assume that the system dynamics can be separated into
a slow and a fast subset, which is true if G3 ≫ G2 ≫

G1 ≫ 1. Under the latter assumption, the slow and fast
subystem decomposition can be explicated by applying the
change of variables z1 = σA + x1 + x2 + ν, z2 = σB + x1,
y1 = x1 and y2 = x2+ν, which yields the standard singular
perturbation form

ż1 = k̃A(t)− z1 + y1 + y2 (13a)

ż2 = k̃B(t)−
δb
δa

(z2 − y1) (13b)

ϵ1ẏ1 = (z1 − y1 − y2) (z2 − y1) (13c)
ϵ2ẏ2 = z1 − y1 − y2 (13d)

ϵ3ν̇ = −(ν −
y2 − ν

kD
(pTOT − k̄A ν)) , (13e)

where ϵ1 := 1/G1, ϵ2 := 1/G2, ϵ3 := 1/G3.

3.2 Quantification of the retroactivity

Since the singular parameters ϵi ≪ 1, i = 1, . . . , 3, the
left-hand side of Eqs. (13c)-(13e) can be approximated to
zero, yielding the system of algebraic equations

0 = (z1 − y1 − y2) (z2 − y1) (14a)
0 = z1 − y1 − y2 (14b)

0 = −(ν −
y2 − ν

kD
(pTOT − k̄A ν)) (14c)

Eqs. (14) enables us to compute y1, y2 and ν as functions

of z = (z1 z2)
T
, that is we can express the trajectories

of the fast subsystem as instantaneous functions of the
trajectories of the slow one. Let us denote by y1 = γy1

(z)
and y2 = γy2

(z) the solutions of (14). By substituting γyi

for yi in (13a)-(13b), we obtain the reduced-order system

ż1 = k̃A(t)− z1 + γy1
(z) + γy2

(z)

= k̃A(t)− σA

ż2 = k̃B(t)−
δb
δa

(z2 − γy1
(z))

= k̃B(t)−
δb
δa

σB ,

(15)

whose dynamics approximate the dynamics of system (13).

At this point we can compute the modified dynamics of
σA and σB: according to the change of variables defined
above, σ̇A = ż1− γ̇y1

− γ̇y2
and σ̇B = ż2− γ̇y1

, hence, from
(15) we get

σ̇A = gA(σA, t)− γ̇y1
− γ̇y2

σ̇B = gB(σB, t)− γ̇y1

Finally, noting that dγy

dt
= dγy

dσ
dσ
dt
, we get

σ̇A =
gA(σA, t)

1 +RA

σ̇B =
gB(σB , t)

1 +RB
,

(17)

where RA =
dγy1

dσA
+

dγy2

dσA
and RB =

dγy1

dσB
represent a

measure of the retroactivity to the first and to the second
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input, respectively. Note that, to enhance modularity
of the interconnection scheme, it would be desirable to
minimize RA and RB, such that the subtractor exhibit
low retroactivity to the inputs.

3.3 A zero-retroactivity CRNS

A possible application of the CRNS is to exploit it in the
design of a modular control systems for chemical reaction
networks. Employing a classical feedback control scheme,
the second input of the subtractor (input species B) coin-
cides with the controlled output of the process. Therefore,
it is highly desirable to minimize the retroactivity to this
input.

In this section we show that the CRN subtraction module
(5) exhibits zero-retroactivity to the input species B. To
this aim, we repeat the analysis performed in Sections 3.1-
3.2, interconnecting (5) with the source and load modules,
which yields

∅
ka
−⇀↽−
δa

A
ks1
−−→ C

∅
kb
−⇀↽−
δb

B◦

A+ B◦
ks2
−−→ B∗

C + p
kon
−−⇀↽−−
koff

D .

(18)

Note that the source can produce only the form B◦, that
is we are in the case λ = 1. The model of this CRN can be
readily obtained from (11) by substituting b◦ for b and b∗

for w. Subsequently, we can exploit the same machinery
used in Sections 3.1-3.2, interconnecting (5) to derive the
adimensional system and the singular perturbations form.
Differently from CRNS (3), in this case the dynamics of the
input species B are given by the sum of the dynamics of B◦

and B∗, that is σ̇B = σ̇B◦ + ẋ1. Therefore, the analysis of
the reduced-order system, obtained through the singular
perturbation analysis, yields

σ̇B = σ̇B◦ + γ̇y1
= gB(σB, t) ,

which means that the dynamycs of the input species B are
not modified upon interconnection of the source and load
modules with CRNS (5).

4. NUMERICAL EXAMPLES

In order to further investigate the behavior of the CRNS
(3) and (5), we have performed some numerical simula-
tions. The CRNS have been simulated in the intercon-
nected configuration depicted in Fig. 3; therefore, the
whole simulation model is provided by system (11). As
mentioned in the previous section, the model of the in-
terconnected scheme with the zero-retroactivity CRNS is
identical to that in Eq. (11), once we have replaced b with
b◦ and w with b∗. The parameters, for both models, have
been set as given in Table 2.

The results of the simulations, given in Figs. 4-5, show that
the dynamics of the two subtractors are identical for what
concerns the output: both CRNS produce a flux of species
C that converges to the ideal difference of the input fluxes
generated by the source module. The behavior of the two
CRNS, instead, differs in the dynamics of the second input
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Fig. 4. Time-course of the fluxes of CRNS (3): “A flux
source” and “B flux source” are the fluxes of species
A and B generated by the source module; “A-B flux
ideal” is the difference of the previous quantities (i.e.,
the output of an ideal subtractor); “C flux output” is
the flux of species C produced by the subtractor (i.e.,
the difference actually computed by the subtractor);
“dB/dt” is the dynamics of species B, as determined
by the whole interconnected system.

(flux of species B). The effect of the non-zero retroactivity
of CRNS (3) is clearly visible in Fig. 4: while the flux of
species B produced by the source module converges to a
fixed nonzero value, the value of db/dt converges to zero,
thus the concentration of species B in the interconnected
system reaches a steady-state. The reason is that in this
subtraction module B is consumed (or transformed to
other species) at a rate that eventually equals the input
flux.

Conversely, in CRNS (5) the species B does not get
consumed, but is rather transformed between the two
forms B◦ and B∗; therefore, the whole dynamics of B
(that is db/dt = db◦/dt + db∗/dt) coincides with the flux
produced by the source module, as shown in Fig. 5.

5. CONCLUSIONS

One of the main goals of synthetic biology is the design
of modular control systems for biochemical processes. A
major obstacle toward this aim is represented by retroac-
tivity effects arising in interconnected reaction networks.
We have devised a CRN module that can be used as
a subtractor in classical feedback control schemes and
its retroactivity properties have been investigated. Using
singular perturbations analysis, we have shown that a
special version of such module exhibits zero-retroactivity
to one of the inputs. The zero retroactivity results from the
exploitation on the second input of a species B that can
assume two forms (e.g., with or without phosphorylation):
only one of the two forms can bind the other input species
A, that enabling to count the difference in the number of
molecules of A and B that are processed by the CRN per

param. value param. value
ka 1.2 δa 0.3
kb 0.8 δb 0.2
k1 10 k2 5
kon 300 koff 100

Table 2. Parameter values of model (11) used
in the numerical examples (arbitrary units).
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Fig. 5. Time-course of the fluxes of CRNS (5): “A flux
source”, “C flux source”, “A-B flux ideal” are the
same as in Fig. 4. Here, instead, “dB/dt” denotes the
total dynamics of B, that is the sum of the dynamics
of the two forms B◦ and B∗. Analogously, “B flux
source” is the total flux of B generated by the source.

unit time. The contribution of the paper is two-fold: on
a first side, the devised CRNS can be used as a starting
scheme to build a wet-lab implementation of a biomolecu-
lar subtractor module, using the tools of synthetic biology.
On the other side, the study presented here provides new
insights about the role of covalent modifications of proteins
in the control of biochemical processes. By analogy with
out CRNS module, indeed, we can surmise that cova-
lent modifications are needed in physiological molecular
feedback control schemes, to implement comparison-by-
subtraction modules with zero-retroactivity, i.e., modules
that do not consume the signaling/regulator proteins while
elaborating the associated information signals.
Future work will be devoted to the study of retroactivity
properties of other modules involved in control schemes
and to the wet-lab implementation of the devised CRNS.
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