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Physiological simulators which are intended for use in clinical environments face harsh expec-
tations from medical practitioners; they must cope with significant levels of uncertainty
arising from non-measurable parameters, population heterogeneity and disease heterogeneity,
and their validation must provide watertight proof of their applicability and reliability in the
clinical arena. This paper describes a systems engineering framework for the validation of an
in silico simulation model of pulmonary physiology. We combine explicit modelling of uncer-
tainty/variability with advanced global optimization methods to demonstrate that the model
predictions never deviate from physiologically plausible values for realistic levels of para-
metric uncertainty. The simulation model considered here has been designed to represent a
dynamic in vivo cardiopulmonary state iterating through a mass-conserving set of equations
based on established physiological principles and has been developed for a direct clinical
application in an intensive-care environment. The approach to uncertainty modelling is
adapted from the current best practice in the field of systems and control engineering, and
a range of advanced optimization methods are employed to check the robustness of the
model, including sequential quadratic programming, mesh-adaptive direct search and genetic
algorithms. An overview of these methods and a comparison of their reliability and compu-
tational efficiency in comparison to statistical approaches such as Monte Carlo simulation
are provided. The results of our study indicate that the simulator provides robust predictions
of arterial gas pressures for all realistic ranges of model parameters, and also demonstrate the
general applicability of the proposed approach to model validation for physiological
simulation.
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1. INTRODUCTION

Mathematical modelling and computational simulation
are becoming an increasingly important tool in the
fields of medicine where in vivo studies are difficult,
expensive or impractical [1]. However, a significant
factor hampering the wider clinical exploitation of in
silico simulation models is the current lack of rigorous
procedures for model validation and verification, since
doubts about model validity naturally have a strongly
negative impact on the clinical applicability of any pre-
dictions arising from simulation studies. Current best
practice in this area relies mainly on heuristic compari-
sons with previous clinical studies and other available
models, together with some statistical analyses [2,3].
Indeed, many physiological models are designed and
implemented using assumed values of their internal
parameters without any attempt to explicitly incorpor-
ate uncertainty/variability in the model or to estimate
the cumulative effect of uncertainty on model predic-
tions. This contrasts sharply with current best
orrespondence (d.g.bates@exeter.ac.uk).
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practice in the fields of systems and control engineering,
where computer simulation models for safety-critical
applications are routinely subjected to extensive
programmes of verification and validation, using
advanced analytical and computational approaches.
Indeed, it could be argued that physiological simulators
require special attention in this respect, since their
internal parameters are often very poorly known or
difficult to measure and may be subject to large vari-
ations across patient populations. As an example,
consider the following equation which describes the
pressure (PO2)–saturation (SO2) relationship for the
O2 dissociation curve, as proposed by [4]

SO2 ¼ ðððP3
O2
þ 150 � PO2Þ

�1 � 23 400Þ þ 1Þ�1: ð1:1aÞ

This relationship applies to a standard O2 dis-
sociation curve (at pH 7.4, temperature ¼ 37, ignoring
organophosphate affect). Appropriate correction factors
(or in this case the input parameters to determine SO2

as an output), such as the base excess BE, temperature
T and pH correction factors also proposed by
This journal is q 2010 The Royal Society
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Severinghaus, are employed to get a standard O2 ten-
sion (PO2) from the arterial O2 tension (P 0O2

) to be
used in the above equation (7.5005168 is the pressure
conversion factor from kPa to mm Hg)

PO2 ¼ 7:5006168 � P 0O2

� 10½0:48ðpH�7:4Þ�0:024ðT�37Þ�0:0013�BE�: ð1:1bÞ

A simple mathematical analysis reveals that, even in
this very straightforward case, a level of uncertainty of
only +5 per cent in each of these input parameters
could lead to a possible +14 per cent variation in the
resulting prediction of SO2 . It should also be noted
that the calculation of BE currently also relies upon
determining the pH. Clearly, if equation (1.1) was
used as part of a more complex nonlinear simulation
model involving many other such equations, each with
their own set of uncertain parameters, the possible
effects on overall model predictions could be highly
significant.

Interestingly, these issues also apply to compu-
tational modelling at the molecular level, and recent
research in the new field of systems biology has high-
lighted the usefulness of the engineering concept of
robustness for validating complex in silico simulation
models of biochemical, genetic and signal transduction
networks [5–7]. Robustness, in both engineered and
natural systems, may be defined as the ability of the
system to function correctly in the presence of both
internal uncertainty/variability and/or external dis-
turbances in its environment. This concept may be
applied for the purposes of model validation as follows.
Consider a situation where for a given set of model
parameters, the outputs of a model (or of several
different models) show a good match to the available
experimental data. Such a model or models may be
validated or invalidated by using analytical or compu-
tational approaches to evaluate the robustness of the
responses of the proposed simulation model with
respect to expected levels of uncertainty in the
model parameters. If the model responses do not exhi-
bit the same level of robustness as has been found for
the real system in vivo, then this points to flaws in, or
incompleteness of, the model. In addition, such ana-
lyses have the advantage of directly quantifying the
cumulative effect of uncertainty in internal model par-
ameters on the eventual predictions upon which new
biological understanding or therapeutic strategies
may be based. Fortunately, robustness analysis is
now a well-established research area in the field of sys-
tems and control engineering, and many powerful
approaches have been developed in recent years to
quantify the robustness of complex nonlinear systems
[8–11]. In this paper, we apply such approaches to
compute worst-case deviations of predicted gas press-
ures from physiologically realistic values due to the
effects of realistic levels of parametric uncertainty in
a high fidelity simulation model of cardiopulmonary
gas dynamics [2,3,12]. We rigorously analyse the
effect of simultaneous variations in multiple uncertain
parameters by formulating the problem as a multivari-
able nonlinear constrained optimization problem. We
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also carry out a detailed comparison of the effective-
ness and computational efficiency of a number of
different global optimization algorithms in solving
this problem and compare our results with standard
statistical approaches (Monte Carlo simulation). Our
aim is not to validate a particular setting of the
model against data from an individual patient (the
traditional approach) but to quantify its robustness
(i.e. its ability to always produce realistic results for
all expected levels of uncertainty in internal model
parameters). Our aim is to produce a simulator that
has been validated across the expected range of vari-
ation that would be found in multiple patients, since
this represents a much more stringent test of the
underlying model assumptions than simply checking
the ability of the model to match a single set of
data (it is entirely possible that a model which
included significant errors might still, on occasion, pro-
duce results which matched one particular set of data).

The paper is organized as follows. Section 2 provides
an overview of the simulation model and describes the
formulation of the model validation task as an optimiz-
ation problem. Section 3 provides the results of the
model validation and compares the performance of the
different optimization algorithms with each other and
with standard approaches. Section 4 discusses the
results of the study and their implications for the vali-
dation of physiological simulation models for clinical
applications. Finally, a more detailed description of
the different optimization methods used to perform
the analysis is provided in §5.
2. SIMULATION MODEL AND PROBLEM
FORMULATION

2.1. Simulation model

The simulation model considered in this study is a new
and extended MATLAB implementation of several orig-
inal, physiological models originally developed as the
Nottingham Physiology Simulator (NPS) [12]. The
core models in the simulator are designed to represent
a dynamic in vivo cardiopulmonary state using a
mass-conserving, arithmetic set of equations based on
well-established physiological principles. Designing the
simulator as a set of iterating routines allows the accu-
rate representation and observation of gradual changes
in several parameters that are otherwise hard to esti-
mate in vivo. The simulation of the respiratory
process refines the physiological data iteratively
through a sequence of established theoretical equations
to reproduce complex physiological scenarios [13,14].
The lungs are modelled as a dynamical system compris-
ing external equipment (e.g. a mechanical ventilator),
anatomical and alveolar deadspaces and ventilated, per-
fused alveoli. In this study, 100 individual alveolar
compartments have been incorporated into the model.

The generic configuration of the model is given in
table 1. The inspired air consists of oxygen (19.6%),
nitrogen (74%) and carbon dioxide (0.1%). The balance
is made up of water vapour (6.3%) present due to the
humidification of air, which is assumed to be at 378C.
The model obeys the ideal gas laws and incorporates



Table 1. Model configuration.

weight 70 kg
inspired gas warmed and humidified
inspired flow pattern constant flow
fraction of inhaled O2, FiO2 0.196
tidal volume 500 ml
respiratory rate 12 bpm
inspiratory to expiratory ratio 1 : 2
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Figure 1. Ventilation–perfusion distribution in the lung
model. Filled square, ventilation nominal case; filled diamond,
perfusion nominal case.
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the resultant effect on flow of gas with the temperature
difference between inspired gas and core body tempera-
ture. In the model, it is assumed that a complete mixing
of gases occurs in the alveoli. Simulating movement of
oxygen, carbon dioxide, nitrogen and an anaesthetic
gas causes changes in the lung volume and resulting
gas concentrations. Blood flow through the lung is mod-
elled as shunted or non-shunted blood. Blood flow
across the alveoli is ‘time-sliced’ such that individual
packets of blood are considered. Each packet comes to
equilibrium with alveolar gases using an iterative pro-
cess that includes movement of gas between alveolar
and capillary compartments, resulting in a highly accu-
rate simulation of the equilibration process. Calculation
of blood oxygen and carbon dioxide content after equi-
libration uses standard formulae and includes the
effects of BE, temperature and plasma pH in the
internal blood-gas calculations. The plasma pH depends
on the BE, temperature and plasma carbon dioxide con-
tent. Humidification and temperature effects on the
inspired dry air concentrations are also incorporated.
Barometric pressure, or the atmospheric pressure, is
taken to be at 101.3 kPa. Peripheral metabolism
involves simple production of carbon dioxide and
extraction of oxygen, using oxygen consumption
(VO2), respiratory quotient (RQ) and cardiac output
(CO).

Each alveolar compartment can be attributed a
specific pulmonary vascular resistance, bronchiolar
resistance and compliance in order to create a desired
ventilation–perfusion distribution. Bronchiolar resist-
ance variations as a result of expansion of the lungs
are included. The bronchiolar flow can be laminar or
turbulent and a common resistance to flow is included.
The type of inspiratory flow during mechanical venti-
lation of the lungs could be preset to constant flow or
constant pressure; constant flow is considered in this
study. Small airway closure and the resultant recruit-
ment pressure variation are included in the model
using a simple algorithm that allows the bronchioles
feeding each alveolus to collapse when the alveolus
volume approaches zero (less than 1% of its volume at
full respiratory capacity (FRC)); this simulates the
real-world phenomenon of absorption atelectasis.
Reopening is through attainment of a threshold-open-
ing pressure, set at 10 cm H2O above atmospheric.
Note, however, that in the present investigation where
a healthy lung mode is considered, the model did not
suffer any significant collapse-reopening behaviour
during the simulations. Figure 1 shows the venti-
lation–perfusion distribution created by the chosen
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lung settings in the NPS (for 100 alveolar compart-
ments). The figure clearly shows the inhomogenity of
the lung representation considered here, which closely
matches the data from [15], i.e. 95 per cent of venti-
lation and perfusion in a young male is confined to
within the V : Q ratio of 0.3 and 2.1. For further details
of the simulation model and its calibration, the reader is
referred to [2,3,12].
2.2. Modelling of uncertain parameters

Clearly, the number of uncertain parameters that could
be considered in a complete analysis of a pulmonary
system model is vast and includes both static and
time-varying parameters arising from uncertainty
within and between individual subjects. To illustrate
our proposed approach, we have chosen a representative
subset of these parameters, representing the haemo-
globin (Hb) level, CO, VO2, RQ and the core body
temperature (T ). These parameters are assigned a
‘nominal’ value together with an allowable range of
variation/uncertainty, as shown in table 2. These
values were chosen in consultation with medical special-
ists and are based on direct clinical experience of the
levels of uncertainty that would be expected among
the general patient population.
2.3. Formulation of the model validation problem
as an optimization problem

The model validation problem considered in this study
is as follows: for the realistic levels of uncertainty on key
model parameters defined in table 2, guarantee that the
model predictions for P 0O2

(current arterial O2 pressure,
kPa), P 0CO2

(current arterial CO2 pressure, kPa) and
pH0 (current plasma pH) always stay within physiologi-
cally reasonable ranges (i.e. verify that the model’s
responses exhibit the same levels of robustness to this
level of uncertainty as are observed in vivo). Valid
ranges for P 0O2

, P 0CO2
and pH0 were again defined

based on clinical experience and are shown in table 3.



Table 2. Nominal values, allowable uncertainty ranges and
the resultant lower and upper bounds for the selected
uncertain parameters in the model.

uncertain
parameters

nominal value
and uncertainty
range

[lower bound
(x), upper
bound (�x)]

description,
units

Hb 140+15% [119, 161] Hb content in
blood (g l21)

CO 5000+10% [4500, 5500] CO (ml min21)
VO2 250+20% [200, 300] VO2 (ml min21)
RQ 0.8+12% [0.704, 0.896] RQ (non-

dimensional)
T 37.2+0.5% [37.0, 37.4] temperature

(8C)

Table 3. Allowable upper and lower bounds for model
predictions.

predicted
parameters

[lower bound,
upper bound] description (units)

P 0O2
[9, 15] current arterial O2

pressure (kPa)
P 0CO2

[3.5, 7.5] current arterial CO2

pressure (kPa)
pH0 [7.3, 7.5] current plasma pH
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The model validation problem defined above can be
formulated mathematically as an optimization problem
as follows:

max
x

f ðxÞ where f ðxÞ ¼ DO2k k1þ DCO2k k1þ DpH

�� ��
1

subject to x � x � x

ð2:1Þ

DO2 ¼
PO2 � P 0O2

PO2

� �
;DCO2 ¼

PO2 � P 0O2

PCO2

� �
;

DpH ¼
pH� pH0

pH

� �
:

In the above, x is the vector of uncertain model par-
ameters, x and �x are vectors of lower and upper bounds,
respectively, for the uncertain parameters (table 2) and
f(x) is the objective function which is maximized by the
optimization algorithm. In problem (2.1), PO2 , PCO2

and pH refer to the nominal values of the model predic-
tions (i.e. the values that are computed when all the
uncertain parameters are set to their nominal values,
over a given simulation time period). In the objective
function, kak1 refers to the magnitude of the largest
component in the vector a(i.e. max1,i,n jaij), com-
monly known as the infinity norm. Thus, kDk1
measures the normalized absolute magnitude of the lar-
gest difference between the nominal model prediction
and the current model prediction over the course of
the simulation time window, normalized using the nom-
inal output. In this study a simulation time window of
25 min was chosen, in order to ensure that all model
outputs had settled down to steady-state values
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before the objective function was evaluated. In this
case, we have chosen to normalize each of the three
output variables to ensure that they have an equal
weighting in the objective function; however, it is
clearly possible to differentially weigh the different vari-
ables in situations where deviations in one are
considered more problematic or interesting than
another. With the above formulation, the optimization
algorithm searches for the combination of uncertain
parameters within the allowable ranges that drives the
predictions of the simulator as far as possible from the
nominal predicted values over the course of the simu-
lation—a schematic diagram of the model validation
framework is shown in figure 2.

In order to ensure that we find the globally optimal
solution to the above problem, we employ several
global optimization algorithms, each of which is based
on very different mathematical search principles. Once
the optimal solution has been found, we check whether
the corresponding ‘worst-case’ model predictions are
still within the allowable ranges specified in table 3—
if they are, then the model has passed that particular
test. If one of more anomalous responses are found,
then these need to be checked to see whether the par-
ticular combination of model parameters which
produced that response is physiologically plausible,
whether it corresponds to a particular condition which
would be likely to produce unexpected responses etc.
Whatever the results, the point of trying to ‘break’
the model is to uncover unexpected conditions or
responses, which need further investigation and may
(or may not) point to limitations or weaknesses in the
formulation of the model. We are not trying to replace
an expert analysis of the model by an automated com-
puter program, rather we propose an analysis method
which can efficiently uncover anomalous model
responses for further investigation by the user. Further-
more, a comparison of the nominal versus worst-case
values of the model outputs allows the impact of uncer-
tainty on model predictions to be quantified, thus
providing a valuable insight into the reliability and
limitations of any new therapeutic strategies arising
from the model predictions.

In this study, a local gradient-based optimization
algorithm, sequential quadratic programming (SQP)
[16] and two different global methods, namely genetic
algorithms (GAs) [17] and mesh-adaptive direct
search (MADS) [18] were used to solve the problem
defined in problem (2.1). For the purposes of compari-
son, a standard statistical method (Monte Carlo
simulation [8,19]) was also implemented. All algor-
ithms, along with the simulation model, were coded in
the MATLAB high-level modelling and computation
environment [20,21].
3. RESULTS

Figures 3–5 show the results of the application of the
different optimization algorithms to the problem
defined in problem (2.1). In each figure, the graph on
the left shows the improvement in objective function
value as the algorithm proceeds (i.e. the rate of
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Figure 2. Optimization-based model validation framework.
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convergence to the optimal solution). The bar graph on
the right shows the uncertain parameter combination
corresponding to the optimal solution found by the
algorithm. Note that in the plot each uncertain par-
ameter has been normalized between 21 and 1 (lower
bound and upper bound, respectively; table 2), with a
value of zero corresponding to its nominal value. The
bar graphs show the optimal values of each of the five
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uncertain parameters in the order given in table 2 (i.e.
Hb, CO, VO2, RQ and temperature). Figure 3 displays
the progression and termination of the local SQP algor-
ithm. The algorithm terminates when the magnitude of
the function value improves by less than a preset toler-
ance, chosen as 1026. Local optimization algorithms
such as SQP use gradient information to converge
quickly to an optimal value in the uncertain parameter
space. The surface generated by the objective function
values over the multidimensional space defined by the
uncertain parameters is likely to be non-convex, due
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to the highly nonlinear simulation model of the type
considered here. As a result, local algorithms are likely
to become trapped at local optima and will not be
able to uncover the maximum possible deviation of
the model responses from their nominal values. As
will be shown below, this is exactly what happens in
this case. Figure 3b gives the optimal parameter combi-
nation found by the algorithm.

Global optimization algorithms use randomization,
evolutionary principles and/or heuristic search strat-
egies to escape from local solutions and are generally
accepted to have a high probability of finding globally
optimal solutions, although at the cost of significantly
increased computational overheads. Figure 4 shows
the results of the application of the global GA optimiz-
ation method to the same problem. The GA starts with
an initial randomly chosen population of candidate sol-
utions. Based on the past experience and some initial
exploratory studies, we chose a population size of 20
and the algorithm terminates when the magnitude of
the objective function value improves by less than the
preset tolerance, again chosen as 1026. Figure 4b gives
the final optimal parameter combination found by the
algorithm. Note that the global algorithm finds a com-
pletely different worst-case parameter combination
from the optimal solution found by the local algorithm,
with an improved maximum value of the objective func-
tion, although with a corresponding increase in the
number of simulations required.
J. R. Soc. Interface (2011)
Figure 5 shows the result of the application of a
deterministic global optimization algorithm known as
MADS (or pattern search), which found the maximum
value of the cost function among all the methods con-
sidered in this study. The function tolerance and the
mesh size for the algorithm were both set to 1026.
Figure 5b gives the final optimal parameter combi-
nation computed by the algorithm. It can be observed
that this algorithm, which is based on search principles
completely different from evolutionary algorithms, has
varied each of the uncertain parameters in the same
direction as the GA, but has taken each of the par-
ameters to their boundaries in order to arrive at the
global solution. This reveals one of the drawbacks of
evolutionary algorithms, which, due to their random-
ized nature and lack of gradient information, often
arrives in the vicinity of the global solution but then
have difficulty in converging precisely to it. Interest-
ingly, the MADS algorithm also proved to be
significantly more efficient than the GA, requiring
about one-third as many simulations.

For the purposes of comparison, figure 6 gives the
results of a standard Monte Carlo simulation campaign
using 1000 simulations. Although this number of simu-
lations is more than three times the number required by
the MADS algorithm and provides a strong statistical
confidence that the true worst-case behaviour will be
found (see table 6 in §4), it is apparent from figure 6



Table 4. Comparison of the results of the different optimization algorithms.

optimization algorithm
optimal parameters
[Hb, CO, VO2, RQ, T] number of simulations

optimal value of the
objective function

SQP [161, 5004, 300, 0.896, 37.01] 128 0.3523
GA [125, 4848, 299, 0.894, 37.09] 620 0.3547
MADS [119, 4501, 300, 0.896, 37.01] 211 0.3637
MCS [155, 5144, 299, 0.892, 37.27] 1000 0.3378
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that only a local optimum for problem (2.1) has in fact
been identified, with the corresponding values of the
uncertain parameters being significantly different from
their true worst cases.

Table 4 provides a comparison of the worst-case par-
ameter combinations and objective function values
found by the different methods considered in this
study. The table also compares the computational effi-
ciency of each approach in terms of the number of
simulations required to converge to the optimal sol-
ution. Note the excellent performance of the MADS
algorithm, which achieved the highest value of the
cost function but required only slightly more simu-
lations than the local SQP algorithm.

Figure 7a–d shows the main result of our model vali-
dation study—for the worst-case deviations from the
nominal model predictions due to parametric uncer-
tainty in the model the responses of the model always
stay within the physiologically realistic bounds defined
in table 3. The shaded cubical region in figure 7a rep-
resents the allowable ranges of each output as given in
table 3. It is clear that the worst-case model predictions
never violate the boundaries of the region over the
course of the simulation. Figure 7b and c displays the
worst-case result as given by each of the different optim-
ization algorithms.

To obtain an understanding of the relative effects of
the different uncertain parameters on the objective
function, a sensitivity analysis was performed around
the nominal point (figure 8a) as well as at the worst-
case point (figure 8b) in the uncertain parameter
space. As shown in the figures, VO2 has the strongest
effect on the objective function relative to the other par-
ameters. Reassuringly, this is to be expected from
physiological considerations as, of all the parameters,
VO2 will be the one which has the most direct effect
on the quantity of oxygen and carbon dioxide in the
blood. VO2 is the oxygen taken away from the blood
(reduction in PO2), which would result in higher
carbon dioxide production at the peripheral tissues
(higher PCO2). Blood–acid relationships suggest that
this increase would also result in a significant decrease
in the levels of pH in the blood. All these factors indi-
cate that variations in this parameter would result in
significant deviations from the nominal PO2, PCO2 and
pH values, i.e. it will have a large influence on the
value of the objective function.

Figure 9 shows the ventilation–perfusion (VQ) dis-
tribution of the lung corresponding to the worst-case
model configuration in comparison to the nominal dis-
tribution in figure 1. It can be observed that the
differences in the values of the uncertain parameters
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such as CO (CO has decreased from 5000 ml min21 in
the nominal configuration to 4504 ml min21 in the
worst-case configuration) have resulted in a change in
the VQ distribution, as shown in the figure. However,
this difference is relatively small, and the resulting
distribution is still representative of a typical VQ distri-
bution for a normal lung as suggested by Wagner et al.
[15]. This provides further confidence in the ability of
the model to accurately represent the dynamics of a
healthy lung over the range of uncertain parameters
considered in the study.

The optimal uncertain parameter combination uncov-
ered by our analysis suggests that the worst-case
physiological response of the model corresponds to anae-
mic conditions (low Hb and low CO) alongside high VO2,
which could be considered a ‘reasonable’ prediction for
the worst case of a pulmonary simulator based on phys-
iological intuition. However, the respiratory system has
an intrinsic response to low oxygen levels in blood
which is to restrict the blood flow in the pulmonary
blood vessels, known as hypoxic pulmonary vasoconstric-
tion (HPV). To investigate the effect of HPV, a simple
function, resembling the stimulus response curve
suggested by Marshall et al. [22], was incorporated into
the simulator to gradually constrict the blood vessels
as a response to low alveolar oxygen tension. Using the
best performing optimization technique from the pre-
vious section (MADS), the new worst case was then
found to be as given in table 5 and figures 10 and 11.
As table 5 shows, once the HPV function is introduced,
a contradictory worst-case uncertain parameter combi-
nation is computed which is different from the
‘intuitive’ predictions found in the previous analysis.
Figure 11a shows that including HPV causes a lower
deviation from nominal for O2 in the worst case and
thus explains the reduced value of the objective function
found by the optimization algorithm (where the worst
case would be the maximum deviation from nominal).
It is interesting that the major difference in the worst-
case parameters seem to be the increased values of Hb
and CO, parameters which typically when increased
would be expected to show a relatively small but direct
incline in the arterial O2, causing in this case the devi-
ation from the nominal to be reduced. However, as
shown in figure 11b, the HPV added to the model
attempts to correct for this hypoxemia in blood, resulting
instead in an increase in arterial PO2 for the particular
parameter configuration which would otherwise have
reduced the arterial PO2 . This clearly demonstrates the
benefits of the proposed validation framework in unco-
vering extreme physiological simulator responses earlier
in the developing stage.
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4. DISCUSSION AND CONCLUSIONS

Monte Carlo simulation is generally considered the
‘gold standard’ in many different areas of science
and technology for estimating the effects of parameter
variations on the outputs of complex dynamical sys-
tems. However, Monte Carlo simulation suffers from
an exponential increase in computation times as the
required confidence levels for the statistical analysis
are increased. As shown in table 6 (taken from [23]),
to be within a probability range of 0.75–0.95 of esti-
mating the worst-case behaviour of a system to
within +20 per cent, only 25 simulations are required.
If, on the other hand, we need to be within a prob-
ability range of 0.94–0.999 of estimating the worst-
case behaviour of a system to within +1 per cent,
then 40 000 simulations are required. Since this
number of simulations is usually totally impractical
for complex physiological simulation models of the
type considered here, much lower confidence levels
are often accepted in practice. As shown by the
example presented in this paper, Monte Carlo analysis
can fail to find global solutions even when very large
numbers of simulations are employed, thus seriously
compromising the integrity of the overall model vali-
dation strategy. Interestingly, this issue has recently
been widely recognized throughout the aerospace
industry, which spends vast sums each year on
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Table 5. Comparison of the effect of HPV on the model.

worst-case parameters
optimal value of the
objective function

without HPV [119, 4501, 300, 0.896,
37.01]

0.3637

with HPV [161, 5500, 300, 0.896,
37.03]

0.3159
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Monte Carlo simulation campaigns to validate new
safety-critical flight systems. This has led to a drive
to investigate alternative validation strategies based
on the use of global optimization algorithms to intelli-
gently search for worst-case behaviour, and promising
results in this direction have recently appeared in the
research literature [8–11]. Similar initiatives are also
underway in the field of molecular systems biology,
where robustness analysis of complex biochemical net-
work models using global optimization methods has
resulted in many new insights and improvements in
the modelling of these complex systems [7].

Simulation models which are intended for direct
application in healthcare research and clinical practice
face extremely stringent requirements; they must cope
with high levels of uncertainty due to non-measurable
parameters, population heterogeneity and disease het-
erogeneity, and simultaneously, their validation
procedures must offer watertight proof of their applica-
bility and reliability in the clinical arena. Clearly, such
expectations have not to date been met by the vast
majority of simulators developed in academic studies.
Typically, adequate statistical results when model
credibility is tested on a single idealized subject have
been substituted for proper population-based model
validation. Modern techniques from systems and con-
trol engineering such as those considered here offer
new hope that simulators can be developed which
acceptably represent true levels of population and dis-
ease heterogeneity, and hence provide robust and
J. R. Soc. Interface (2011)
reliable predictions upon which novel therapeutic strat-
egies may be based. As demonstrated by the results
presented in this paper, the time is now ripe for such
optimization-based approaches to play an important
role in transforming physiological simulators into
powerful biomedical engineering tools for a direct
application in clinical practice.
5. OPTIMIZATION METHODS

In this section, we give a brief description of the differ-
ent optimization algorithms that were used to generate
the results presented in §3.
5.1. Sequential quadratic programming

Local gradient-based optimization techniques provide
fast convergence rates to a local optimum. When used
on a problem with many local optima, the quality of
the resulting solution then completely depends on the
proximity of the initial ‘guess’ for the values of uncer-
tain parameters to the global optimum. Since, for this
problem, no a priori information is available on which
combination of parameter values is most likely to gener-
ate worst-case behaviour in the simulation model, the
uncertain parameters are simply set to their nominal
values and the optimization algorithm proceeds from
this point. The particular algorithm used in this study
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Table 6. Number of Monte Carlo trials required to achieve a
desired estimation uncertainty with known probability [23].

uncertainty probability
range

number of Monte Carlo trials
based on per cent of
estimation uncertainty (%)

20 15 10 5 1

0–0.683 7 12 25 100 2500
0.750–0.954 25 45 100 400 10 000
0.890–0.997 57 100 225 900 22 500
0.940–0.999 100 178 400 1600 40 000

Table 7. Pseudo-code for the GA.

(1) create a random initial population (first generation)
(2) repeat (until terminated)

evaluate each individual’s fitness
select individuals to form parents
create children for the next generation by using:
elite children: individuals with best-fitness values
crossover children: created by combining the vectors of a
pair of parents
mutation: created by randomly changing the genes of a
single parent

check for termination criteria:
amount of time elapsed
fitness limit
function tolerance

(5) go back to (2)
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implements a method based on SQP [16]. A medium-
scale optimization scheme is chosen, where the
algorithm solves a quadratic programming subproblem
at each iteration—see [20] for full details.
5.2. Genetic algorithms

GAs are general purpose stochastic search and optimiz-
ation procedures based on evolutionary principles [24].
Evolutionary algorithms aim to generate a population
of fittest candidates by implementing mathematically
a range of evolutionary concepts such as selection,
mutation, recombination etc. Owing to their ease of
application in problems with large and small parameter
search spaces, GAs have become a popular search and
optimization technique in many fields of science and
engineering [9,17]. Owing to their stochastic nature,
GAs are generally capable of converging to the global
optimum even in highly non-convex parameter
spaces—convergence can be slow, however, and global
algorithms such as GAs typically require much longer
computation times than local gradient-based methods.

In GAs, a randomly selected population of candi-
dates (first generation) undergoes a repetitive process
of reproduction, where selection is based on the value
of the objective function (also known as the fitness func-
tion). Every generation, the best candidates from the
previous generation and candidates obtained through
mutation, crossover and recombination form a new
population. The algorithm can terminate if (i) the
allowed number of iterations are exceeded, (ii) the
objective function improves by less than a preset
J. R. Soc. Interface (2011)
tolerance, (iii) limits relative to time or fitness are
exceeded, or (iv) any other user-defined criterion is vio-
lated. For this study, the population size is fixed at 20
with the number of generations allowed set to 30. A
roulette wheel selection scheme is used in which the
probability of a parent candidate being chosen for
reproduction is proportional to its fitness. A simple
scattered crossover scheme is selected which decides
the manner in which two individuals are selected to
form a new candidate. A Gaussian mutation scheme is
employed, which makes small random changes in the
individuals based on a Gaussian curve to ensure ade-
quate coverage of the entire parameter space. From
the present generation, the best two move into the
next generation (elite count). The rest of the population
is derived from crossover (80% of the new population,
crossover fraction ¼ 0.8) and mutation. Table 7
provides a pseudo-code which summarizes the
implemented algorithm.

5.3. Mesh-adaptive direct search

MADS (also known as pattern search) is another global
optimization algorithm that does not require deriva-
tives of the objective function to determine a solution.
The pattern search algorithm searches for the best
point around a current point based on the evaluation
of the objective function. At each step, a pattern
search algorithm searches a set of points called a
mesh, formed by adding the current point to a scalar
multiple (mesh size) of a set of vectors called a pattern.
If the algorithm finds a point in the mesh that improves



Table 8. Pseudo-code for the MADS algorithm.

MADS algorithm with 2N poll method, where N ¼ number of variables. If N ¼ 2:
(1) select an initial point A ¼ (a1, a2) in the search space
(2) set initial value for mesh size, M, and a pattern vector, V2N, which is randomly chosen as follows: V1 ¼ [x 0], V2 ¼ [0 y],

V3 ¼ [2x 0] and V4 ¼ [0 –y]. x and y are random vectors limited by the upper and lower bounds of the search space
(3) obtain the mesh using: Ā ¼ a þM . V
(4) evaluate the points in the mesh Ā using the objective function. In the case of a successful poll (a better objective

function value has been found), set this point as A, double the mesh size and go back to step 2
(5) in the case of an unsuccessful poll, reduce the mesh size and go back to step 2
(6) stop if termination criteria satisfied
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the value of the objective function (a successful poll),
then the new point becomes the current point and the
mesh size increases. In the current study, the set of vec-
tors in a pattern are chosen at random. If the current
point gives a better value for the objective function
than the other vectors in the mesh (an unsuccessful
poll), then the mesh size is reduced and the method is
repeated for the new points. Table 8 gives the pseudo-
code for the algorithm; for further details, the reader
is referred to [18,21].
5.4. Monte Carlo simulation

MCS refers to the repeated evaluation and statistical
analysis of a given objective function for randomly
chosen values of the uncertain parameters. At its sim-
plest, no prior knowledge of the system is required.
Assuming uniform distribution in the parameter
search space, random parameter combinations, within
the specified bounds, are generated using the random
number generator available in MATLAB and repeated
simulations are carried out for all these combinations.
Statistical information such as sample averages and var-
iances are then computed to assess the performance of
the system. The simplicity of this approach has led to
it being widely used in industrial applications. A serious
disadvantage of MCS is the exponential increase in
computational effort with the desired statistical confi-
dence level of the results [8,23]. Also, recent studies
have clearly demonstrated that MCS can fail to ade-
quately approximate the worst-case behaviour of
complex systems even when large numbers of
simulations (providing high statistical confidence) are
used [10,11].

The authors would like to thank the anonymous reviewers for
their helpful suggestions which have significantly improved
the paper. This research was carried out under EPSRC
Research Grant EP/F057059/1.
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