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Dear Editor,
Mechanical ventilation in paediatric acute respiratory 
distress syndrome (PARDS) is less studied than in adults, 
with guidelines for ventilation adapted from adult ARDS. 
However, PARDS has a distinct epidemiology, and adult 
ARDS guidelines may not be appropriate in children. As 
an example, clinical trials suggest that lower tidal vol-
umes (VT) reduce mortality in adult ARDS [1]. Recent 
research has highlighted the potential of lung-protective 
strategies based on limiting driving pressure (ΔP) and 
mechanical power to reduce ventilator induced lung 
injury (VILI) [2, 3]. No trials have tested protective ven-
tilation in PARDS, and observational studies are unclear 
[4]. Concerns about hypercapnia or increased dead space 
in paediatrics contribute to the hesitancy to lower VT. 
There is an urgent need for studies that can provide addi-
tional evidence regarding how lung-protective ventilation 
could be implemented in PARDS. We hypothesized that 
analysis of a large PARDS data set using a computational 
simulator would allow us to (a) determine the scope (in 
terms of lowering VT, ΔP, and mechanical power) for 
safely implementing more protective ventilation; and (b) 
develop, test, and directly compare strategies for achiev-
ing this.

Using a prospective cohort of PARDS from the Chil-
dren’s Hospital of Philadelphia with detailed data 

collection (see Supplement), we developed and tested 
four lung-protective strategies for reducing either VT 
(strategies 1–3) or ΔP (strategy 4). Strategy 1 reduced 
VT maintaining constant minute ventilation, strategy 2 
reduced VT maintaining alveolar ventilation with a fixed 
ratio of inspiratory time to total cycle time, strategy 3 
reduced VT maintaining alveolar ventilation with fixed 
inspiratory flow, and strategy 4 simultaneously reduced 
VT and ΔP. The simulations continued incrementally 
reducing VT until safety constraints (hypoxemia, hyper-
carbia, peak pressure > 35  cmH2O, respiratory rate 
[RR] > 40 breaths/min) were violated.

The simulator accurately reproduced patient data 
(Figs.  S2 and S3) in the development cohort. Simi-
lar VT reductions were achieved using strategies 1–3 
(15%, 12%, and 14%; Figs.  1, S4, S5), with the number 
of patients being ventilated using VT > 10  mL/kg fall-
ing to zero. Strategy 1 produced no significant change in 
mechanical power (+1%; p = 0.2, signed-rank test) but 
both strategies 2 and 3 resulted in increases (+22% and 
+19%; both p < 0.05). Strategy 4 reduced ∆P by 6% for all 
30 patients in the cohort, and by 17% for the 13 patients 
on which this strategy could be applied without violating 
constraints. Strategy 4 was the only approach that pro-
duced a significant reduction in mechanical power (− 8%; 
p < 0.05). Similar trends were seen in test cohort 1 (ages 
1–2 years) and 2 (initial VT > 10 mL/kg), with test cohort 
2 showing the greatest potential for lung-protective ven-
tilation (Figs. 1, S7, S8).

Our data suggests that PARDS patients are routinely 
over-ventilated and there is scope for achieving protec-
tive ventilation without compromising gas exchange. 
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Such interventions could be readily implemented at the 
bedside by clinicians directly, or automatically via closed-
loop control algorithms. Our results support the design 
of randomized trials to better delineate the role of lung-
protective ventilation in PARDS.
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Fig. 1  Box plots show data as median (white dot), interquartile range (boxes), and full range (whiskers) of all patient data before and after imple-
mentation of different strategies. Numbers in brackets refer to percentage average change from baseline (mean ± SD). Panels compare the amount 
of tidal volume (left panels) and driving pressure (right panels) changes in the development cohort, and in the two test cohorts. Test cohort 2 (initial 
tidal volume > 10 mL/kg) showed the greatest scope for potential reduction in tidal volumes and driving pressure
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