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Abstract: Developing estimation algorithms for state bounds of nonlinear systems has been of
high importance in robustness analysis for various systems including engineering systems and
biological systems. For many cases, Monte-Carlo simulation might be the only tool to estimate
these bounds for a general type of nonlinear systems. In order to obtain tight bounds the
number of required simulations would be very large and it may not be able to perform so many
simulations for some systems in a given computation time. Recently, a state bound estimation
algorithm using µ-formulation presents a promising result in terms of computational efficiency
and providing very tight bounds. By combining the µ-formulation for state bounds with a
geometrical interpretation of µ-analysis, the algorithm is extended to estimate state bounds for
general types of nonlinear systems. The performance of the algorithms are demonstrated by a
simple discrete system; large-scale biological systems; and a hybrid system.
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1. INTRODUCTION

Robustness analysis is an indispensable step in designing
engineering systems (Balas et al., 2001; Ferreres and
Biannic, 2001; Menon et al., 2006). It is also accepted now
one of the most important aspects in analysing biological
systems (Kitano, 2004; Wagner, 2005; Gilchrist et al.,
2006; Kim et al., 2006; Shinar et al., 2007; Clodong
et al., 2007; Acar et al., 2008). Systematic approach to
model biological interactions and analyse measurement
data is one of the highly preferable ways in improving
our understanding of complex systems (Kholodenko et al.,
2002; Hoehndorf et al., 2011). Recently, some of models are
described with many states and parameters in the order
of several hundreds (Kuhn et al., 2009; Chen et al., 2009)
and these provide information that was not available for
small scale models. Similarly, current engineering systems
become complex than ever before and this tendency will
continue in future. Hence, it is important to have an
efficient numerical and/or theoretical methods to analyse
these large size systems.

Structured singular value or µ-analysis has been proven
to be one of the most successful tools for robustness
evaluation (Doyle, 1982; Skogestad and Postlethwaite,
1996; Kao et al., 2001; Cantoni and Glover, 2000). Even
though the computational complexity of µ-analysis was
acknowledged at the early stage of µ concept emerged,
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some algorithms have been successfully used for many
practical systems design and analyses.

The computational complexity proof in Braatz et al.
(1994) is performed by transforming µ problem to a
corresponding optimisation problem that is known to be
NP-hard. As far as NP 6=P, the computational complexity
is a fundamental obstacle that cannot be overcome by
any traditional algorithms. However, practically µ-analysis
algorithm produced many useful results and recently, it
is further extended to solve some class of optimisation
problems efficiently (Kishida et al., 2011). This is an
inverse interpretation to the one used in Braatz et al.
(1994). One of the proposed applications in Kishida et al.
(2011) is calculating state bounds for polynomial nonlinear
discrete systems, where initial states and parameters in the
systems are given with known uncertain bounds. Then,
the state maximum and minimum bounds are calculated
using µ upper and lower bounds algorithms. As long
as the nonlinearity appears in polynomial formats, the
uncertainties can be decoupled from the known parts and
the system can be described in so called Linear Fractional
Transformation (LFT) (Braatz et al., 1994; Doyle et al.,
1989). Once it is in LFT form, then there are several
powerful numerical tools that provide the upper and the
lower bounds of µ with little computational cost (Balas
et al., 2001).

Conservatism of the calculated bounds and the require-
ment for the uncertainty structures for enabling LFT
format are two main obstacles for the state bounds algo-
rithm to be further extending its applications. µ-analysis



problem is interpreted in geometrical point of view in Kim
et al. (2009) and it enables one to use random sampling
approach to obtain the bounds. Later, it is further lifted
the requirement of LFT-transformation, i.e. LFT-free µ-
analysis (Zhao et al., 2011). It is, hence, a natural fusion
that combining the state bounds estimation using µ and
the LFT-free µ-analysis. Calculating the bounds of a poly-
nomial function using the skewed µ-analysis framework
presented in Kishida et al. (2011) is extended to a general
type of nonlinear systems, including dis-continuous and
non-smooth nonlinear functions using a random sampling
method for µ bounds calculation (Zhao et al., 2011).

This paper is organised as follows: Firstly, state bounds
estimation problem is formulated as LFT-free µ-analysis.
Secondly, state bounds algorithms are presented. Thirdly,
the algorithm is parallelised to run on GPU (Graphical
Processing Unit) and its performance is demonstrated
using three examples: an oscillatory discrete system; a
large-scale biological system for epidermal growth factor
receptor dynamics and a hybrid system for an inverted
pendulum control. Finally, the conclusions are presented.

2. STATE BOUNDS IN LFT-FREE µ-FORMULATION

A nonlinear dynamical system is given by

ẋ = f(x, p), (1)

where the initial conditions are x0 = x(0), ẋ is the time-
derivative of x, x is the state vector, an element of the
set, Rnx , Rnx is the nx-dimensional real space, nx is a
positive integer, p is the uncertain parameters, an element
of Rnp , np is a positive integer, and f(x, p) is a nonlinear
function in x and p including dis-continuous functions
and non-smooth functions. For the well-posedness of the
problem, f(x, p) is assumed to give a unique solution for
the nonlinear differential equation. For a chosen positive
real number, ∆t, a transition function φ(, ) is defined to
satisfy the following:

xk+1 = φ(xk, p) (2)

where xk = x(k∆t) for k = 0, 1, 2, . . .. The problem is
finding the bounds for the maximum and the minimum of
the state, xk+1, i.e. φ(xk, p), for the given bounds for x0
and p. For brevity, we consider a scalar case for x and p
only but the general formulation for the multi-dimensional
x and p is exactly the same as shown in below.

Problem 1. (state bounds estimation) Calculate φ
min

,

φ̄min, φ
max

and φ̄max in the following inequalities:

φ
min
≤ φ ≤ φ̄min, (3a)

φ
max
≤ φ̄ ≤ φ̄max, (3b)

where φ ≤ φ(xk, p) ≤ φ̄, x0 ≤ x0 ≤ x̄0, p ≤ p ≤ p̄, and all
the upper and the lower bounds for φ(xk, p), x0 and p are
finite.

By solving problem 1 we are to find state boundaries for
xk+1 for the give uncertain values for the initial condition
and the parameters in the dynamical system. A special
case of the problem, where φ is a polynomial function in
xk and p, can be transformed into LFT form and existing
µ bounds algorithms can be directly used to obtain the
bounds. Details about the special case can be found in
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Fig. 1. Pseudo-LFT form

Kishida et al. (2011). Although Problem 1 is more general
than the one in Kishida et al. (2011), the main idea
obtaining the state bounds using µ-formulation is the same
but exploiting the LFT-free formulation in Zhao et al.
(2011), which will be presented in the following.

Consider the case that each x0 and p can be written as

x0 = xc + wxδx (4a)

p = pc + wpδp (4b)

where xc = (x0 + x̄0)/2, pc = (p + p̄)/2, and wx or wp is
a weight to define the boundary of x0 or p such that δx or
δp is given by

− 1 ≤ δx ≤ 1 (5a)

− 1 ≤ δp ≤ 1 (5b)

In order to lift the polynomial function requirement on
φ(xk, p), define

∆φk(δx, δp) := φk(x0, p)− φk(xc, pc) (6)

where

φk(·, p) := φ ◦ φ ◦ φ ◦ . . . ◦ φ︸ ︷︷ ︸
k-times

(·, p) (7)

and

φ2(·, p) = φ ◦ φ(·, p) = φ[φ(·, p), p] (8)

Now, a pseudo-LFT form as shown in Figure 1 is to be
constructed. It is called a pseudo-LFT as it is in the LFT
format but it can be only evaluated for a fixed δx and δp. In
the standard LFT-formulation, ∆φk is a constant matrix
with a structure. On the other hand, in the pseudo-LFT
formulation, it is a varying vector depending on the values
of δx and δp.

From the pseudo-LFT shown in Figure 1 and the equiv-
alency between µ-bounds and the optimisation problem
shown in Braatz et al. (1994), the maximum of |φk(x0, p)|
is bounded above as

max |φk(x0, p)| ≤
1

κ∗
(9)

where κ∗ is the minimum κ among the ones satisfy the
singular condition:

|I2 −N∆| = 0, (10)

| · | is the determinant of matrix, I2 is the 2×2 identify
matrix,

N =

[
0 1
1 φk(xc, pc)

]
, (11a)

∆ =

[
∆φk 0

0 κδc

]
, (11b)
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Fig. 2. Sign changes along the uncertain box boundary: as κ is smaller than κ∗, all signs of g(δx, δp, κ) for the samples
at the boundary are positive; on the other hand, when κ̄ is greater than κ∗, there are red box samples and blue
circle samples whose sign of g(δx, δp, κ̄) is positive and negative, respectively.

|δc| = |δR+δIj| ≤ 1, δR and δI are the real numbers whose
magnitude is less than or equal to 1, and j =

√
−1.

The singularity condition is expanded

|I2 −N∆| =
∣∣∣∣ 1 −κδc
−∆φk 1− κφk(xc, pc)δc

∣∣∣∣
= 1− κφk(xc, pc)δc − κ∆φkδc

=
{

1− κ
[
φk(xc, pc) + ∆φk

]
δR
}

− κ
[
φk(xc, pc) + ∆φk

]
δIj = 0 (12)

It can be easily seen that the following is the only case
that the singular condition always occurs:

1− κ
[
φk(xc, pc) + ∆φk

]
δR = 0, and δI = 0 (13)

i.e., the imaginary value of δc is always equal to zero.
Notice also that φk(xc, pc) + ∆φk is equal to φk(x0, p) by
the definition. Therefore, the minimum κ, i.e. κ∗, occurs
at the following condition:

κ∗ =
1

max[φk(x0, p)δR]
=

1

max |φk(x0, p)|
(14)

where δR = ±1. This looks trivial and it does not seem to
help to find the bounds for φk(x0, p). In the next section,
a random sampling approach to solve the above problem,
which could be interpreted as a multi-dimensional bi-
section method.

3. BOUNDS ESTIMATION ALGORITHM

Firstly, a geometrical interpretation of the singularity con-
dition is described. Secondly, an algorithm to calculate
an upper bound for |φk(x0, p)| is presented. Finally, algo-
rithms to estimate the bounds for φ and φ̄ are summarised.

Define a function, g(·, ·, ·), as follows:

g(δx, δp, κ) := 1− κ|φk(xc +Wxδx, pc +Wpδp)| (15)

where −1 ≤ δx ≤ 1, −1 ≤ δp ≤ 1, and κ > 0. Note
that g(·, ·, ·) could be dis-continuous as φk(·, ·) could be
dis-continuous. As shown in Figure 2, if κ̄ is larger than
κ∗, then there are two cases, i.e. either having two types
of samples, whose signs are positive or negative, or having
one type of sample, whose signs are all negative. Similarly,
if only positive signs are found, then the corresponding κ
is smaller than κ∗, which is the case that κ = κ. Hence,
the bound for κ∗ is given by

κ ≤ κ∗ ≤ κ̄ (16)

where κ̄ is a deterministic bound as we found the negative
sign but κ is probabilistic as it has always some danger to
be failed depending on the number of samples checked on
the boundary.

Algorithm 1. Pre-κ estimation

(1) Set N , the number of samples along the face of the
uncertain box shown in Figure 2

(2) Set the initial boundary for κ such that ε ≤ κ∗ ≤ E,
where ε is equal to zero and E could be the largest
number that can be expressed in computer.

(3) Set the tolerance, ε, for the magnitude of the interval,
[ε, E], i.e. E − ε

(4) Set κ = (ε+ E)/2, which is the initial guess of κ̄.
(5) for i = 1 to N

• Evaluate g(δx, δp, κ) for the given i-th sample of
δk and δp
• if g(δx, δp, κ) < 0, then replace E by κ and break

the for-loop, else continue the for-loop
(6) If i = N and g(δk, δp, κ) for all samples are positive,

then replace ε by κ.
(7) If E − ε is smaller than ε, then declare κp = E and

stop. Otherwise, go to step 4)

Note that κp from the pre-κ estimation algorithm does
not need to be tight as long as it is smaller than κ∗. The
reason to calculate κp using the above algorithm before

actually obtaining any tight bounds for φk(x0, p) is that
the value of φk(x0, p) can be positive and negative and the
definition of κ∗ in (14) is given in terms of the absolute
value of φk(x0, p).

In order to estimate the bounds for the maximum
φk(x0, p), the following is defined:

ḡ(δx, δp, κ) := 1− κ|φk(x0, p) + s/κp| (17)

where s is a safety factor, greater than 1. As 1/κp >

|φk(x0, p)| can be guaranteed only in a probabilistic sense,
the safety factor will make sure the terms inside the abso-
lute sign be positive. Then, the maximum of |φk(x0, p) +
s/κp| occurs at φ̄k(x0, p) + s/κ.

Algorithm 2. φ̄-bounds estimation Algorithm

(1) Run the pre-κ estimation algorithm after replacing
g(δx, δp, κ) by ḡ(δx, δp, κ)

(2) Set κ = ε and κ̄ = E
(3) Declare φ

max
= 1/κ̄− s/κp and φ̄max = 1/κ− s/κp

Similarly, to obtain the bounds for the minimum, define
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g(δx, δp, κ) := 1− κ|φk(x0, p)− s/κp| (18)

and run the following algorithm:

Algorithm 3. φ-bounds estimation Algorithm

(1) Run the pre-κ estimation algorithm after replacing
g(δx, δp, κ) by g(δx, δp, κ)

(2) Set κ = ε and κ̄ = E
(3) Declare φ

min
= 1/κ̄+ s/κp and φ̄min = 1/κ+ s/κp

It is worth to note that the suggested algorithm is different
from the blind Monte-Carlo random searches. The search
performs through random samples but each iteration it
converges towards a solution with the speed of bisection
method.

The proposed three algorithms are embarrassingly par-
allel, i.e. all sampling evaluations are independent each
other and no effort is required to parallelise the algo-
rithms. Therefore, it is a perfect problem to be solved on
GPU (Graphical Processing Unit). The algorithms are im-
plemented using CUDA-GPU (NVIDIA Developer zone:
NVIDIA, CUDA 5.0, 2013). In the following examples,
the sampling evaluation part of the algorithms is running
on NVIDIA Tesla C2050, which has 449 Cores and the
maximum number of threads per block is 1024.

4. EXAMPLES

4.1 Oscillatory state

The following example is from Kishida et al. (2011):[
x1,k+1

x2,k+1

]
= φ(xk, p) =

1√
1 + p2

[
1 p
−p 1

] [
x1,k
x2,k

]
(19)

Because of the polynomial format requirement of the algo-
rithm in Kishida et al. (2011),

√
1 + p2c was used instead of√

1 + p2. Here, it does not need to be polynomial and the

original form,
√

1 + p2, is used. The intervals for the initial
state and the uncertain parameters, p, are given as follows:
0.9 ≤ x0,1 ≤ 1.1, 0.9 ≤ x0,2 ≤ 1.1, and 0.45 ≤ p ≤ 0.55.

The algorithm firstly calculates the pre upper bound for
|φ|, 1/κ, and set s = 2. Secondly, the bounds for max(φ)
and min(φ) are obtained by the algorithm 2 and 3. Figure
3 shows the bounds for x1,k, where k = 1, 2, . . . , 39, 40.
The upper and lower bounds for the maximum and the
minimum shown in Figure 3 are very close to each other
and only the upper bounds for both are indicated. All
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Fig. 4. Bounds for p-ErbB1 with respect to uncertainties
in 226 kinetic parameters

trajectories from random simulations are well bounded by
the estimated bounds.

4.2 ErbB Signalling Pathways

ErbB or epidermal growth factor receptor related path-
ways are among the most extensively studied biological
signalling networks (Chen et al., 2009). Abnormality of
ErbB signalling pathways cause various human cancers
(Engelman et al., 2007; Zhou et al., 2009; Yonesaka et al.,
2011). In Chen et al. (2009), an ErbB mathematical
model including 13 known ErbB ligands, EGF (Epidermal
Growth Factor) and heregulin (HGF) and Erk and Akt
pathways are presented. It has 504 states, 828 reactions
and 226 kinetic parameters. The set of 504 differential
equations is extracted from the simbiology model (Chen
et al., 2009). It is known that this model is only valid up
to a few hours and it is not necessary for this system to
be stable for infinite time period. As long as the states
remain in a certain bound, the network works perfectly as
it should be. Therefore, the required robustness analysis is
the exaclty obtaining the finite future state bounds with
respect to the uncertain parameters.

One of the interesting biological features found in Chen
et al. (2009) using the model is that parametric sensitiv-
ities of the dynamical system strongly depend on input
condition. This could be the reason that it provides so
diverse responses. Parametric uncertainties are introduced
for those 226 kinetic parameters. The uncertainty ranges
are set to ±10% from the nominal values. Among the
several conditions, this example is tested for the case of
EGF equal to 5nM. The bounds for phospholilated ErbB1,
i.e. p-ErbB1, calculated using the suggested algorithm is
shown in Figure 4. Again, the upper and lower bounds
for the maximum and the minimum are very close to each
other and only the upper bounds for both are indicated.
All trajectories from random simulations are well bounded
by the estimated bounds.

4.3 Inverted Pendulum: Hybrid System

A switching controller for inverted pendulum stabilisation
is shown in Åström and Furuta (2000). A simplified version
of the system is given by

θ̈ = p sin θ − u cos θ (20)
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where θ is the angle of pendulum measured from the
upright position, p is the uncertainty caused by some
physical parameters and u is the control input. The total
energy, E, including kinetic and potential energy is given
by

E =
1

2
θ̇2 + (cos θ − 1)

The controller proposed in Åström and Furuta (2000) has
the following switching behaviours:

• Energy dissipation phase (phase 1): if |E| > ε, where
ε is a positive real number, then

u =
sign(E)θ̇

1 + |θ̇|
• Waiting phase (phase 0): if |E| ≤ ε and |θ̇|+ |θ| > δ,

u = 0

• Feedback linearisation control phase (phase 2): if

|E| ≤ ε and |θ̇|+ |θ| ≤ δ,

u =
2θ̇ + θ + sin θ

cos θ

The ranges for the initial values are set to: |θ(0)| ≤ 19◦,

|θ̇(0)| ≤ 20◦/s, and the uncertainty range is given by
0.1 ≤ p ≤ 1.9, i.e. ±90% uncertainty from the nominal
value, 1. And, the controller parameters are: ε = 0.1 and
δ = 0.8.

An example of the controller phase switching history
is shown in Figure 5. The system dynamics is highly
nonlinear because of its inherent nonlinearities and the
switching control. The estimated bounds are shown in
Figure 6. Although it only requires to calculate the bounds
for one of either sign as the system is symmetric about
the angle and the angular rate equal to zero, here for the
demonstration purpose, both bounds are calculated. At
t = 10s, the bounds are between ±140◦ but most of the
trajectories found by Monte-Carlo simulations are showing
the tendency to converge to zero. In fact, the Monte-Carlo
simulation method finds only one trajectory but still far
from the bound calculated by the proposed algorithm at
t = 10s. This clearly demonstrates the advantage of the
proposed bound algorithm over the blind Monte-Carlo
simulations. The number of samples, N , for this example
is set to 1024x10 and the one for Monte-Carlo simulations
is twice more than N used. The calculation time of the
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presented algorithm for each instance is less than 0.5s.
Monte-Carlo simulations takes significantly longer time,
about 3 minutes, which would be varying depending on
the number of samples, and cannot find any solution closer
to the lower bounds at t = 10s.

5. CONCLUSIONS

An algorithm for calculating state bounds for general non-
linear systems with uncertain initial states and parameters
are developed, which combines µ-formulation for optimi-
sation problem and pseudo-LFT format. The algorithms
have several advantages including: 1) no effort to obtain an
LFT form is required, 2) easy to parallelise on distributed
computers, and 3) the algorithm is, in fact, applicable to
many types of functions including the one having finite
number of discontinuity. The algorithms are applied to
a simple oscillatory nonlinear discrete system, a high-
dimensional biological model for ErbB signalling path-
ways, and a hybrid system. It is highly desirable to have
numerically efficient algorithms to estimate state bounds
for general nonlinear systems. Especially, the input-output
robustness analysis with respect to various parametric
perturbations are one of the main interest in the robustness
of biological networks; Unmanned Aerial Vehicle operating
in uncertain environment requires to predict the future
state bounds in order to plan or re-plan its behaviour;
Predicting a group of space debris is very important for
the safety of any space mission. The suggested algorithm
could be the main tool to analyse such complex nonlinear
systems with uncertainties.
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