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Abstract— DNA recombination provides an ideal mecha-
nism for constructing stable and reversible synthetic biological
switches. Recent advances in recombinase-based circuitry that
account for more than one protein input have been shown to
enable the construction of circuits with temporal Boolean logic
operations in vivo. Associated mathematical models have to date
only captured the qualitative dynamical features of such systems
and are thus of limited utility as tools to aid in the design of
such circuitry. Here we develop a detailed mechanistic model of
a two-input temporal logic gate circuit based on unidirectional
DNA recombination with bacteriophage integrases to detect
and encode sequences of input events. The model is validated
against in vivo experimental data and is shown to quantitatively
replicate and predict key dynamical features of the logic gate.

I. INTRODUCTION

Site-specific recombinases (SSRs) are capable of highly
efficient integration, excision and inversion of genetic se-
quences [1]. Manipulating DNA in this manner has the
potential to enable inducible expression of any gene of
interest. Hence, fully characterized genetic switches based on
DNA recombination represent powerful biological parts for
the design of novel synthetic devices [2]. Serine integrases,
one of the main SSR families, bind attB and attP attachment
sites on the target DNA sequence, causing double stranded
breaks that are reconnected by opposite ends of the inter-
mediate genetic sequence. The sequence is thereby inverted
and flanked by newly formed attL and attR attachment sites.
A recombination directionality factor (RDF), often referred
to as excisionase, works in conjunction with integrase to
mediate the inverse process; binding to attL and attR to re-
establish attB and attP. An alternative orientation of attB and
attP sites will result in the complete integration or excision of
the entire genetic sequence into or from the host, depending
on the initial DNA state [3]–[6].

Single-input recombination offers highly efficient integra-
tion since integrase alone is sufficient to mediate the reaction.
However, the efficiency of subsequent excision is highly
sensitive to the stoichiometry of integrase to excisionase
[7]. As a result, synthetic biologists looking to exploit this
particular mechanism may be limited to designs that can
either support constant protein expression or that do not rely
on temporal induction of the desired outputs. For the latter, a
single-input system would largely amount to a genetic switch
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that can be turned ‘on’ and hold its state, but cannot be turned
‘off’; providing useful albeit limited functionality. Boolean
logic gates have been developed successfully in a host of
biological contexts, enabling a digital response to multiple
inputs [9]–[11]. In realising the true potential of this circuitry,
many synthetic circuits would therefore benefit greatly from
the ability to provide temporal response dynamics, especially
those pertaining to in vivo logic operations. In [12], a
temporal logic gate with “a then b” logic was demonstrated in
E. coli with a system of two orthogonal integrases (integrases
A and B). A simple stochastic model of this circuit was
created to help develop better intuition for overall circuit
behavior, but this model does not account for any specific
molecular interactions between the integrases and the DNA,
instead representing integrase activity as probabilities based
on concentration. This model was shown to be effective
for predicting overall final population fractions as well as
forward experimental design of the system. However, the
inherent limitations of the model design mean that the circuit
cannot be simulated on a molecular scale, and timescales
with regards to specific molecular interactions cannot be
incorporated.

Here, we adapt a recently developed mechanistic model
of DNA recombination [7], [8] to model the two-integrase
temporal logic gate circuit developed in [12]. We demon-
strate that the mechanistic model successfully captures key
dynamical features of circuit time course trajectories derived
from in vivo experimental data, thus improving our capability
to perform model-aided integrase circuit design.

II. DEVELOPING A MECHANISTIC MODEL OF A
TEMPORAL LOGIC GATE

The model of [12] describes the transitioning of the system
from the original DNA state (S0) to each of the three end
states (Sa, Sb and Sab) via three corresponding rate constants.
As shown in Fig. 1, we replace these all-encompassing pa-
rameters with a mechanistic integration reaction structure, in
which integration is initiated by the binding of one integrase
dimer at each of the associated attachment sites and is strictly
unidirectional [13], [14]. We account for dimerization of
both monomeric SSRs, allowing for both monomeric and
dimeric integrase binding to DNA attachment sites. This
process is widely supported in the experimental literature on
DNA recombination [3]–[6]. Thus, four distinct intermediate
DNA:protein complexes can potentially be formed in facili-
tating recombination via this combination of monomeric and
dimeric integrase binding. We also include the formation of
a dysfunctional dimer by both integrases, which is subject to
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Fig. 1. Diagram of the mechanistic two-input logic gate reaction network. The sequence of DNA:protein interactions facilitating integration, taken from
[7], enables the system to transition from the original DNA state (S0) to the three genetically-differentiated DNA states (Sa, Sb, Sab). Expression and
degradation of integrase A and B are denoted by γA,δA and γB,δB respectively. Intermediate DNA:protein complexes with red and green outlines are
associated with Sa and Sab respectively; the summation of ODEs corresponding to these complexes give rise to (2) and (3) respectively. Dashed and solid
black arrows depict reactions mediated by integrase A and B respectively. Adapted from [12].

the same degradation as its functional counterpart; this was
shown to significantly improve model fits to experimental
data in our previous study [7], [8].

Model validation against experimental data for an in vivo
recombinase-based system presents a number of issues that
need to be taken into account. Cellular recombination in
vivo is dependent on the expression and degradation of
recombinase proteins over time, thus contributing four addi-
tional parameters (γA,δA,γB,δB) to the model. Furthermore,
each individual phase of a typical bacterial cell growth
cycle influences the rate at which certain cellular processes
occur, including protein expression (γA,B). Hence, for optimal
results, we must account for time-dependent variation of
protein expression rather than the constant expression ex-
hibited in previous models [2], [12]. In order to capture the
effect of cell growth on protein expression we implement the
logistic function, which has been shown to provide accurate
representations of bacterial growth in the literature [15], [16]:

fA,B(t) =
γA,B

1+ exp
(
(t?A,B−t)

DA,B

) (1)

where the time point t? and the damping constant D specify

the mid point and gradient of the function respectively. We do
not model any effects of bacterial cell growth on the rate of
protein degradation [17] and hence the corresponding param-
eters (δA,B) remain as constants in the model. In the absence
of induction, in vivo systems exhibit regular expression of
SSRs resulting in basal recombination efficiency. Thus we
include model parameters describing both basal (γa,b) and
induced (γA,B) expression of the two integrases, allowing for
non-zero model output when simulating experiments void of
integrase induction.

Our mechanistic model is constructed through the appli-
cation of mass action kinetics to the biochemical equations
arising from the reaction network in Fig 1. This produces
a system of ordinary differential equations (ODEs) that are
solved numerically to provide a deterministic model output.
The formation of intermediate DNA:protein complexes, due
to monomeric and dimeric integrase binding, in our mecha-
nistic model gives rise to multiple state variables associated
with the two DNA states of interest, Sa and Sab. Summing
all the ODEs describing the dynamics of state variables
associated with the same DNA state of interest provides the
total register of the system in those states (SaT and SabT).



Hence, model outputs are determined through the numerical
solutions to the following ODEs:

dSaT

dt
= kRAS0I4A − kRBSaI4B, (2)

dSabT

dt
= kRBSaI4B. (3)

Our mechanistic model consists of thirty-four ODEs with
forty-three model parameters, which are solved in determin-
ing (2) and (3).

III. MODEL SIMULATION AND PARAMETER
OPTIMIZATION

Induction of integrase B prior to integrase A causes transi-
tion to the unwanted excised DNA state, Sb, and therefore we
optimize our model against data regarding induction of inte-
grase A prior to integrase B only. Our data is comprized of
both red and green fluorescent protein (RFP and GFP) levels
(Sa and Sab) under eight distinct experimental conditions (See
Materials and Methods). Firstly, fluorescence is recorded for
no induction of either integrase and, secondly, fluorescence is
recorded for induction of integrase A only. Six experimental
procedures record fluorescence for induction of integrase B
at increasing time intervals, δT, such that δT = 0, . . . ,5
hours following induction of integrase A. Since the observed
fluorescence has no physical dimension, the data for Sa and
Sab is normalized with respect to their respective initial (no
inducer) case experiment. This establishes the fold change in
fluorescence output between each of the eight experiments
and provides the numerical comparisons required to fit the
parameters in our model.

Given that we are using a deterministic model to simulate
recombination efficiencies within a single cell, we overcome
uncertainty regarding physical quantities of DNA by choos-
ing an initial DNA concentration (S0) of 1, hence all model
outputs are bounded within [0,1]. Once a numerical output
has been computed, it is multiplied by 2×104 since this is the
upper bound of the observed fluorescence. Model outputs are
subject to the same normalization applied to the experimental
data, establishing fold changes in observed output for varying
time intervals between the induction of integrases A and B.
All data is normalized with respect to the no-inducer case of
that particular experiment. Replicating this process in silico
involves normalizing all model outputs with respect to the
model output corresponding to the no inducer case for the
particular experiment being simulated. Simulating the case
whereby no induction of integrases A and B occurs relies
on the model parameters describing basal expression of the
two integrases to replicate the non-zero outputs observed
experimentally for no-inducer cases.

IV. RESULTS - VALIDATION AGINST IN VIVO
EXPERIMENTAL DATA

A comparison of model outputs against experimental data
is shown in Fig. 2. The optimized mechanistic model is
able to capture the observed system dynamics (Fig. 2A, 2B)
using a set of optimized parameter values that are within
biologically plausible ranges. For example, all parameters

associated with DNA:protein interactions take values within
[1,100], exhibiting a maximum variation of two orders of
magnitude.

After training our model using datasets from Fig. 2A and
2B, we used our optimized mechanistic model to predict a
further set of experimental data that was excluded from the
training set. Fig. 2C shows experimental data for increas-
ing integrase induction delays (δT = 1, . . . ,5) along with
optimized model predictions. Additionally, we validated our
model by predicting endpoint GFP fractions relating to both
A then B temporal response data (Fig. 2C) and an entirely
separate dataset regarding B then A temporal responses. The
endpoint response of the system as a function of the integrase
induction separation interval δT is shown in Fig. 3. Optimal
fold change endpoint model outputs as a function of δT
align closely with that of the experimental data, providing
further evidence of the model’s predictive capability. Fig. 3
also reveals that the efficiency of recombination induction
via integrase B must be superior to that of integrase A since
identical efficiencies would result in a 50:50 split for δT= 0.
This inequality in integrase flipping was previously observed
in [12], but no mechanistic comparisons had been performed
at that time. Consequently, it remains to examine functional
differences between distinct integrases as these properties
may allow for specific logic operations dependent on the pair
of integrases selected and the arrangement of the associated
attachment sites.

V. MATERIALS AND METHODS

A. Experimental procedure

Experimental measurements were performed using an en-
gineered E. coli strain with chromosomally-integrated tempo-
ral logic gate as previously described in [12]. Precise control
of inducer separation times (δT = 0, . . . ,5) was achieved
using a Hamilton STARlet liquid handling robot (Hamilton
Robotics, Reno, NV, USA) integrated with an incubating
plate reader. The inducers anhydrous tetracycline (aTc, 200
ng/ml) and arabinose (0.01%/vol) were used to induce ex-
pression of integrases A and B, respectively. Time course
data for GFP and RFP fluorescence were measuring using
a BioTek Synergy H1MF plate reader (BioTek Instruments,
Inc. Winooski, VT, USA). Cell cultures were grown inside
the plate reader at 37◦C in minimal M9CA media.

B. Global optimization

We employ a parallelized coding of a Genetic Algorithm
(GA) on a high-performance computing cluster to perform
global optimization of the mechanistic model against our
large experimental dataset. The GA converges to the global
minimum within the allocated parameter space by evolving
an initial population of randomly generated solutions over
a large number of generations. Best results are achieved for
relatively large population sizes and generations compared
to the number of parameters subject to inference. However,
this also significantly increases the computational workload
and hence a reasonable compromise is required for viable
development times.
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Fig. 2. Model matching and prediction results. Optimized responses of
our mechanistic model against the two corresponding Sa (A) and Sab (B)
time course datasets. (C) Predictions of the mechanistic model of outputs
in response to different induction separation intervals. Dashed lines depict
experimental data; solid lines depict optimal model outputs (A only and
δT= 0) and model predictions (δT= 1, . . . ,5).

VI. CONCLUSIONS

We have developed a detailed mechanistic model of a
synthetic two-input temporal logic gate that incorporates
experimentally well-supported mechanisms underlying DNA
recombination in vivo. The predictive power of the model
was validated against an experimental dataset on time course
dynamics of the logic gate in the presence of none, one
or both integrases, as well as data on the response of the
gate to inputs separated by five different induction separation
intervals. Temporal logic operations have the potential to
expand the range of outputs of standard Boolean systems and
hence this validated model could be a potentially valuable
design tool for synthetic biologists working on the con-
struction of more complex recombinase-based genetic cir-
cuitry. Future work will extend our modelling of fluorescent
protein fold change output as a function of the separation

 

Fig. 3. A then B GFP fold change predictions from Fig. 2C converted to
a fraction of the maximum fold change endpoint and plotted as a function
of δT (δT= 0, . . . ,5; light blue plot line). Equivalent predictions of B then
A temporal responses are shown by the dark blue plot line.

time between integrase induction events in order to identify
potential functional distinctions between different integrases.
The overlapping arrangement of integrase attachment sites
may emerge as an important selection process in the event
that functional distinctions are identified; presenting an array
of potential input permutations and, in turn, expanding the
overall performance specifications of the logic gate.

VII. SUPPLEMENTARY MATERIAL

A complete list of the model ODEs and the relevant
MATLAB code is available on request from the authors.
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