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ABSTRACT
Results of a computational study are discussedwhich investigate roughness-induced and geometry-
induced (confinement) effects on the steady-state velocity components in 3-D boundary-layer flow
over the rotor disc in a rotor–stator flow configuration. It is found that, for the rotor–stator flow
investigated, the roughness-induced effects are very similar to geometry-induced effects, both in
nature and magnitude. The overall aim was to compare these two types of effects with correspond-
ing roughness-induced effects in the von Kármán boundary-layer flow over a disc spinning freely in
anunrestricted fluid environment. The researchwas conducted in the context of a programme inves-
tigating surface roughness as a means of laminar flow control for the development of new passive
drag-reduction techniques. Thegoalwas to establishwhether itwaspossible unequivocally todistin-
guish between roughness-induced andgeometry-induced effects on the boundary-layer flow above
the rotor disc. The results obtained suggest that, for the type of system discussed here, it must be
expected to be difficult to distinguish between these effects in experiments. The similarities regard-
ing the nature and magnitude of results obtained from comparing predictions for three different
computationalmodelling approaches indicate the required sensitivity ofmeasurement technologies
aiming to resolve the investigated effects in experimental studies.
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1. Introduction

Rotor–stator cavity flow is a generic flow configuration
encountered in a wide variety of problems of applied
engineering interest. Generally, rotor–stator flow is the
flow established within the confined, fluid-filled volume
between a rotating disc and an annular, stationary enclo-
sure as illustrated in Figure 1. Reviews of the subject and
the available relevant literature are provided byOwen and
Rogers (1989), Launder et al. (2010) and the references
cited therein.

The flow over the rotor of Figure 1 in the case when
the stator is absent represents the flow over a rotating
disc in an unrestricted, infinite fluid environment. In the
general context of rotating-disc flow one distinguishes
between three different scenarios. These are the cases (cf.
Lingwood & Alfredsson, 2015) of stationary fluid above
a rotating disc (von Kármán flow), a rotating fluid above
a stationary disc (Bödewadt flow) and the case where
both the disc and the fluid rotate at approximately equal
rates (Ekman flow). These three scenarios are commonly
referred to as the Bödewadt–Ekman–von Kármán (BEK)
family of flows.
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Rotor–stator flow gives rise to a boundary layer on
the rotor disc. The rotor drives a recirculating secondary
flow motion within the cavity between the rotor and
the stator. As a result, a boundary layer also forms on
the stator. Consequently, there exists a swirling core-flow
region between the two opposing boundary layers. Thus,
rotor–stator flow combines aspects of von Kármán flow,
Bödewadt flow and Ekman flow.

The current study compares computational results for
effects arising from the presence of roughness on the
surface of the rotor disc with effects arising from the
diameter-to-height aspect ratio associated with the cav-
ity between the rotor disc and the stator. The main focus
of the study is on the steady-state, base-flow profiles
which are required for a subsequent stability analysis
of the boundary layer established over the rotor disc.
However, a brief comment regarding the stability of the
boundary layer on the rotor disc is included since an
aspect obtained from stability calculations based on the
results discussed here bears close relevance to results on
BEK flows recently reported by Alveroglu, Segalini and
Garrett (2016).
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Figure 1. A sketch of an enclosed rotor–stator cavity.

Rotating-disc flow of von Kármán type constitutes the
paradigm flow configuration employed for the study of
fully three-dimensional boundary layers with a cross-
flow component. Such boundary layers are encountered
in similar form in, for instance, the flow over the blades
of wind turbines or highly-swept wings (Lingwood &
Alfredsson, 2015; Reed & Saric, 1989; Saric et al., 2003).
Here we address the rotating-disc flow in a rotor–stator
arrangement in the context of an issue that first arose
in connection with some of the research on the lami-
nar–turbulent transition of rotating-disc boundary-layer
flow over compliant surfaces in Colley, Thomas, Carpen-
ter and Cooper (1999) and Colley, Carpenter, Thomas,
Ali, and Zoueshtiagh (2006) and which has now become
of relevance again in association with the interpreta-
tion of results from some of the latest research on the
effects of surface roughness on the transition process
over a rotating disc in Cooper, Harris, Garrett, Özkan,
and Thomas (2015) and Garrett et al. (2016). These
two studies address roughness effects with the long-term
goal of developing a theory-led approach to designing
energetically optimal roughness, which delays the onset
of laminar–turbulent boundary-layer transition, for new
passive-drag reduction techniques.

The von Kármán case, i.e. flow where the fluid is at
rest sufficiently far above the disc, is illustrated schemat-
ically in Figure 2. Due to the no-slip condition on the
disc surface the disc drives an azimuthal, rotary flow in
which centrifugal effects establish a flow component ori-
entated radially outwards which, in turn, necessitates a
downward, axial flow component towards the disc sur-
face to satisfy continuity. For the case of a rotating disc,
it is the radial flow component that represents the cross-
flow component. The velocity profile of the cross-flow
component has an inflection point at some height above
the disc (cf. Figure 2) and this characteristic is shared by
the cross-flow velocity profile of all other boundary layers
where such a cross flow exists.

Boundary layers with an inflection point are prone
to instability due to Rayleigh’s inflection-point criterion
(Schlichting & Gersten, 2004, p. 432). As a consequence,

all boundary-layer flows with a cross-flow component
display similar laminar–turbulent transition characteris-
tics associated with the instability arising from the inflec-
tion point on the cross-flow velocity profile. Due to the
similarities in the transition scenario for all boundary
layers with a cross-flow component, rotating-disc flow
has become the foremost example to study the transi-
tion process for this type of boundary layers because
it is an easily accessible experimental configuration and
because there exists an exact similarity solution, derived
by von Kármán (1921), to the Navier–Stokes equations
for the laminar rotating-disc boundary-layer flow.

Colley et al. (1999, 2006) investigated the transition
process of boundary-layer flow over a rotating disc sub-
merged in an aqueous environment. In order tominimize
undesirable boundary effects such as those arising, for
instance, from waves on the liquid surface, the disc was
covered with a static shroud. Hence, the flow configu-
ration investigated was effectively the rotor–stator con-
figuration shown here in Figure 1; but note that Colley
et al. (2006) also contains data where the static shroud
was removed for comparison. Nevertheless, the main
questions addressed in Colley et al. (1999, 2006) were
associated with transition over a disc spinning in an infi-
nite fluid environment. The analysis of the hot-film data
discussed in Colley et al. (1999, 2006) revealed that the
azimuthal component of the flow velocity (cf. Figure 2)
did not approach zero, for increasing distances above the
disc surface. This should, however, have been the case
on the basis of the theoretical velocity profiles derived
by von Kármán (1921) for a disc spinning in an infi-
nite environment that is at rest far above the disc. Colley
et al. (2006) commented, in connection with the dis-
cussion of Figure 2(b) in that paper, that it was likely
that this result arose due to residual rotary motion above
the boundary layer over the disc. It was, nevertheless,
not necessary to consider this observation any further in
connection with the particular issues addressed there.

However, Cooper et al. (2015) andGarrett et al. (2016)
began to investigate roughness effects on the transi-
tion process of the boundary-layer flow over a rotat-
ing disc. In order to become able to perform a linear
stability analysis for the boundary-layer flow they had
initially to determine the roughness-induced modifica-
tions to the steady-state base-flow velocity profiles of
the rotating-disc boundary layer. One of the theoretical
results obtained was that the roughness-induced effects
on the azimuthal velocity profile for a disc spinning
in an infinite fluid environment, which is at rest suffi-
ciently far above the disc (vonKármán flow), bore resem-
blance to the experimentally obtained azimuthal velocity
profiles reported in Colley et al. (1999, 2006) with its
residual azimuthal flow. This triggered the question as
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Figure 2. The three velocity components of rotating-disc flow.

to whether it would be possible, in general, always to
unambiguously distinguish between roughness-induced
and confinement-induced effects for rotating-disc and
rotor–stator flow. The results described and discussed
here represent the first investigation addressing this issue.

2. Problem formulation

2.1. The flow configuration

2.1.1. Rotor–stator flow
The sketch of the three-dimensional rotor–stator flow
configuration examined is illustrated in Figure 1. The
problem is described in a stationary, cylindrical polar-
coordinate system z, θ , r. The rotor disc has radius R and
it is spinning about the z-axis with an angular velocity
�. The stator is enclosed by a stationary shroud with
an internal radius equal to the disc radius. The vol-
ume between the rotor disc and the stator is filled with
water at 20 ◦C where the kinematic viscosity of water
is ν = 1.004×10−6m2s−1. The gap between the rotor
and the stator has a height h such that the geometry is
characterized by the aspect ratioD = h/R. A global rota-
tional Reynolds number is defined as Reφ =

√
�R2/ν

to characterize the rotor–stator cavity flow. Note that we
have introduced the root in the definition of the global
Reynolds number tomake the definition formally consis-
tent with that of the local Reynolds number, to be intro-
duced in the next section, normally used in connection
with rotating-disc flow.

The global, recirculating flow induced by the rotor
within the cavity results in the formation of boundary lay-
ers on both the rotor and the stator. The flow within the
boundary layer of the rotor establishes a flow inwhich the
radial component of the flow velocity is orientated away
from the centre of the disc, as in Figure 2, whereas the

flow in the boundary layer on the stator has the opposite
orientation whereby the fluid flows towards the centre of
the stator.

The motivating goal of the study is to compare the
effects induced by the aspect ratio D, and by the surface
roughness of the rotor disc, on the boundary-layer flow
above the rotor disc with the effects which surface rough-
ness induces on the flow in the boundary layer on a disc
spinning in an infinite, unrestricted fluid environment.

2.1.2. Rotating-disc flow
In the limit R → ∞ and D → ∞, the rotor–stator flow
configuration approaches the case of an infinite disc spin-
ning in an unbounded fluid which is at rest sufficiently
far above the disc. This limit of the flow configuration
was first studied by von Kármán (1921), who derived an
exact similarity solution to the Navier–Stokes equations
for this flow. The solution yields the radial, azimuthal and
axial components of the flow field (cf. Figure 2) which we
refer to as, respectively, u(z, r,�), v(z, r,�) andw(z,�) –
note thatw is independent of the radial component r. The
characteristic length scale relevant to the problem is given
by δ∗ = √

ν/� which is used to non-dimensionalize
the vertical coordinate as ζ = z/δ∗. The usual (local)
rotational Reynolds number, corresponding to the non-
dimensional radial distance from the centre of the disc, is
defined as Re =

√
�r2/ν. The three components of the

flow velocity are non-dimensionalized as

F(ζ ) = u
�r

,G(ζ ) = v

�r
,H(ζ ) = w√

ν�
(1)

with boundary conditions F(ζ = 0) = 0, F(ζ = ∞) =
0, G(ζ = 0) = 1, G(ζ = ∞) = 0, H(ζ = 0) = 0 and a
value ofH(ζ = ∞) = −0.8845, the latter being obtained
from a numerical solution of the von Kármán (1921)
problem.A comprehensive set of numerical data forF(ζ ),
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G(ζ ) and H(ζ ), for 0 ≤ ζ ≤ 10, can be found in tabu-
lated form in Table 3.1 in Owen and Rogers (1989, p. 47).
Inspection of the data for G(ζ ) in that table reveals that
the boundary-layer thickness, i.e. the height for which
the azimuthal velocity component is v = 0.01�r (that is,
G(ζ ) = 0.01), is given by δ = 5.5 δ∗.

2.2. Numerical model

The three-dimensional rotor–stator flow, and associated
roughness effects, are simulated bymeans of theANSYS R©

Fluent R© software package implementing the Transi-
tion Shear-Stress-Transportmodel (hereinafter, the TSST
model) based onMenter (1994) andMenter et al. (2006),
and the full description and correlations of the model
were reported by Langtry andMenter (2009). The choice
of this transition model was motivated by our ongoing,
concurrent investigations of issues associated with the
transition process of the boundary-layer flow over the
rotor disc. However, these results are not relevant in the
context of the current study and, consequently, they are
not discussed here. The suitability of the TSST model
to perform simulations that include the effect of surface
roughness has recently been demonstrated by Aldaş and
Yapıcı (2014). They compared numerical results obtained
on the basis of various turbulence models with experi-
mental data and concluded that theTSSTmodel provided
the most accurate description of these.

The TSST model is based on empirical correlations
and formed from the combination of the Shear-Stress-
Transport (SST) k–ω model together with two addi-
tional transport equations for the intermittency γ and
a transition onset criterion in terms of a momen-
tum–thickness Reynolds number R̃e
t . Here, R̃e
t is
the Reynolds number formed using the local velocity
U and the momentum–thickness δ2. The definition of
the momentum–thickness Reynolds number is given in
Equation (2). The SST k–ω model by Menter (1994) can
efficiently combine the robust and precise formulation of
the k–ω model in the field close to a wall and the free-
stream independence of the k–ε model in the region far
from the wall.

R̃e
t = Uδ2

ν
. (2)

The SST model solves continuity and momentum equa-
tions in conjunction with the transport equations for the
turbulence kinetic energy k and the specific dissipation
rate ω. The TSST model additionally solves the trans-
port equations for the intermittency γ and the transi-
tion momentum–thickness Reynolds number R̃e
t . The
detailed coupling of the new TSST model with the SST
turbulencemodel (Menter, 1994) can be found inMenter
et al. (2006).

The intermittency γ characterizes the physical nature
of the flow in terms of the fraction of time for which
there exists turbulent flow at any specific location. The
value γ = 1 indicates continuous turbulent flow, γ =
0 describes continuous laminar flow and values 0 <

γ < 1 characterize the transition region. The transport
equation for the intermittency γ is defined as

∂ (ργ )

∂t
+ ∂

(
ρUjγ

)
∂xj

= Pγ 1 − Eγ 1 + Pγ 2 − Eγ 2

+ ∂

∂xj

[(
μ + μt

σf

)
∂γ

∂xj

]
, (3)

where the detailed formulations of the transition sources
Pγ 1 andEγ 1 and the destruction/relaminarization sources
Pγ 2 and Eγ 2 can be found in Menter et al. (2006).

The transport equation for the transition momen-
tum–thickness Reynolds number R̃e
t is

∂
(
ρR̃e
t

)
∂t

+ ∂
(
ρUjR̃e
t

)
∂xj

= Pθ t + ∂

∂xj

[
σθ t (μ + μt)

∂R̃e
t

∂xj

]
, (4)

where the source termPθ t has the capability of forcing the
transported scalar R̃e
t to correspond to the local value
of Reθ t obtained from an experimental correlation.

A three-dimensional CFD model was created in
Gambit R© 2.1.6 where the fluid domain, water at 20 ◦C,
filled the volume enclosed by the stator with its shroud
(stationary walls) and the rotor (rotating wall) which
drives the cavity flow inside the enclosure. A struc-
tured hexagonal mesh was produced by means of the
same software and around 1,800,000 cells were gener-
ated to achieve mesh independent results. There are 20
cells inside the boundary layers of the rotor and the sta-
tor to provide sufficient resolution in these boundary
layers. This mesh configuration also provides a y+ of
approximately one which is a crucial parameter to cap-
ture the laminar and transitional regions in the boundary
layer (Langtry & Menter, 2009). The mesh model was
then uploaded to Fluent R© 15.0 and the double-precision
pressure-based coupled algorithm was employed to solve
the Reynolds-averaged Navier–Stokes equations. The
simulations were conducted under pseudo transient con-
ditions, which helps to avoid the possible divergence of
the solution in consequence of high pressure gradients,
especially during the early iterations. The least squares
cell-based approach was used for gradient evaluation and
second-order schemes were employed for spatial dis-
cretization. The iterations were stopped when the resid-
uals of all equations dropped below a satisfactory value
of 10−4.
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The roughness of the rotor-disc surface was defined
in terms of a geometric roughness height K which was
then transformed by the software into an equivalent
sand-grain roughness height Ks. Thereafter the law-of-
the-wall was modified for this roughness correspond-
ingly. The reader is referred to page 75 of the ANSYS R©

(2013) Fluent R© Theory Guide, and the cited references
therein, for details of the modification of the law-of-the-
wall and the transformation from the geometric rough-
ness height K into the equivalent sand-grain roughness
height Ks.

The results obtained by the TSST approach, for the
case when the rotor disc is assumed to be smooth,
are validated by comparison with the experimental
data by Sambo (1983) with concurrent simulations by
Vaughan (1986), experiments by Colley et al. (2006) and
in comparison with the theoretical results by von Kár-
mán (1921).

The effects predicted by the TSST approach to be aris-
ing from introducing surface roughness on the rotor disc
are compared with corresponding results obtained on the
basis of the methods described in Cooper et al. (2015),
Garrett et al. (2016) and Alveroglu et al. (2016). There do
not yet exist experimental data that could be used for a
comparisonwith the predicted roughness effects.Obtain-
ing such experimental data is one of the medium-term
goals of our overall current research programme.

Unless stated otherwise the radius of the rotor–stator
system for all TSST simulations isR = 0.6m and the rota-
tional velocity of the rotor disc is � = 1 rad s−1, yielding
a value of Reφ = 600 for the global rotational Reynolds
number.

3. Validation of the computational approach

Here, and in the remainder, only the azimuthal and radial
flow components are considered because for the rotating-
disc flow these are the dominant components governing
the transition process of the boundary layer. The radial
and azimuthal flow components are, moreover, an order
of magnitude larger than the axial flow and one can
normally only measure experimental data for these two
flow components in rotating-disc boundary-layer exper-
iments.

3.1. Comparison of TSST data for rotor–stator flow
with numerical and experimental literature
data

Figure 3 displays a comparison of computational results
obtained from our TSST approach for the entire extent
of the gap in the rotor–stator flow with its two oppos-
ing boundary layers on the rotor and the stator. The

Figure 3. Comparison of the results of the TSST simulation
with previous numerical (Vaughan, 1986) and experimental
(Sambo, 1983) data (Reφ = 224 and D = 0.1).

figure shows the radial and the azimuthal velocity com-
ponents F and G, as a function of the height z/h above
the rotor disc in comparison with numerical results of
Vaughan (1986) and experimental data of Sambo (1983).
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The information on, and results from, these two pub-
lications were obtained from Owen and Rogers (1989,
p. 138).

The experiments of Sambo (1983) involved an air-
based rotor–stator system. The rotor had a radius of
R = 190.5mm and the gap width was h = 19 mm, giv-
ing an aspect ratio of D = 0.1. The data were obtained at
the radial location r = 0.5R for the radial velocity com-
ponent and at r = 0.6R for the azimuthal component.
The global Reynolds number had a value of Reφ = 224.
Assuming that the experiments were conducted approxi-
mately at a room temperature of 20◦C, where the kine-
matic viscosity of air is 1.51×10−5 m2s−1, this value
of Reφ implies a rotational velocity of � = 20.8 rad s−1

equivalent to, approximately, 200 rev/min. This in turn
implies local Reynolds numbers of Re = 112 and Re =
134 for the measurement locations associated with the
data of, respectively, the radial and the azimuthal veloc-
ity components in Figure 3. The flow velocity within
the air-filled cavity was measured by means of a Laser-
Doppler Anemometry (LDA) system. Vaughan (1986)
subsequently developed a finite-difference solver for
the Navier–Stokes equations to model the flow within
Sambo’s system.

Figures 3(a) and 3(b) display a very good qualitative
and quantitative agreement between the current TSST
simulations and the simulations by Vaughan (1986) for
both the radial and the azimuthal flow components.
The maximum discrepancies between the results of both
models occur near the maxima of the radial flow compo-
nent, that is near z/h ≈ 0.05 and z/h ≈ 0.95, and in the
vicinity of z/h ≈ 0.18 for the azimuthal flow component.
Here the differences are of the order of about 1%, or less,
for the radial component and approximately 4% for the
azimuthal component. Owen and Rogers (1989, p. 138)
only display experimental data for the azimuthal flow
component from Sambo (1983) and Figure 3(b) reveals
that, similar to the results of Vaughan (1986), the present
simulations compare well with his experiments.

3.2. Comparison of TSST results with those from the
experimental rotor–stator of Colley et al. (2006)
and von Kármán flow

Colley et al. (1999, 2006) conducted studies investigat-
ing the laminar–turbulent transition over rotating discs
spinning with rotational velocity � = 7.85 rad s−1 sub-
merged under water inside a circular tank. The discs
had a radius of R = 0.2m while the tank had a radius
of 0.5 m and a depth of 0.4 m. The distance between
the surface of the submerged spinning disc and the liq-
uid surface was approximately 0.15 m. They found that
the rotation of their disc induced undesired surfacewaves

with associated wave reflections from the wall of the
tank. In attempts to minimize disturbances affecting the
boundary-layer flow on their discs, Colley et al. (2006)
conducted experiments with two slightly different con-
figurations of their apparatus. In one case the disc was
spinning freely under water. In the other case the disc was
covered by a lid establishing a configuration resembling
the rotor–stator configuration of Figure 1. These configu-
rations are referred to as, respectively, no-stator and stator
in the context of Figures 4 and 5 in this section. Note,
however, that in the configuration of Colley et al. (2006)
with the lid in place there was a narrow annular gap of
about 10–20 mm between the circumferential rim of the
rotor disc and the covering shroud. Hence, there may
have been some exchange of water through this circum-
ferential gap. The lid was mounted such that the gap
width was h = 0.02m, which corresponded to 10 δ in
terms of the boundary-layer thickness over the rotating
disc. Neglecting the width of the circumferential gap, the
aspect ratio of their facility was hence D = 0.1. Colley
et al. (2006) conducted hot-film measurements of the
radial and azimuthal flow components in the boundary
layer over their rotating disc.

The data from Figure 2 in Colley et al. (2006), for both
their experimental configurations, are included here in
Figures 4 and 5 in comparison with the computational
results obtained for TSST simulations and in comparison
with the theoretical data based on von Kármán (1921).
Figure 4 also includes TSST simulations for D = 0.092,
h = 10δ while Figure 5 displays corresponding simula-
tions for D = 0.918, h = 100δ. Both figures moreover
highlight the Reynolds number dependence by includ-
ing TSST simulations for Re = 210 and for Re = 546.
Here the lower Reynolds number corresponds to a loca-
tion within the laminar region of the boundary layer
while the higher Reynolds number is associated with a
location in the turbulent region – i.e. above the critical
value near Re = 513 (Lingwood, 1996). Note that there
exists no dependence on the Reynolds number for the
solution of von Kármán (1921) since it represents a simi-
larity solution expressed in non-dimensional formwhich
is globally valid across the entire laminar-flow region over
the rotating disc.

As regards the validation of the TSST approach, the
first observation to emerge from a comparison of the data
in Figures 4(a), 4(b) and 5(a), 5(b) is that, as regards
most aspects, there exists a good qualitative agreement
between the TSST simulations, the experimental data
of Colley et al. (2006) and the theoretical solution of
von Kármán (1921) in all graphs. The only aspect for
which agreement is not entirely satisfactory concerns
the residual radial motion displayed by the data of Col-
ley et al. (2006) in Figures 4(a) and 5(a), at heights
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Figure 4. Comparison of the results of the TSST simulations (D =
0.092, h = 10δ, Reφ = 733, Re = 210 and Re = 546 ) with the
experimental data from Figure 2 in Colley et al. (2006) and the
von Kármán (1921) similarity solution.

above ≈ 3. This residual radial motion appears partic-
ularly prominent for their experiments at the higher
Reynolds number of Re = 546. We are not aware of any
other measurements for flow over rotating discs display-
ing such a prominent residual radial motion. However,
it is emphasized that the experimental data of Colley
et al. are not suitable to make any definitive quantita-
tive comparisons with the TSST data and the solution
of von Kármán. There exist numerous reasons for this.
For instance, the circumferential gap between rotor disc
and stator in the experiments of Colley et al. may have
resulted in alterations of the experimental flow field in
comparison with that simulated in the TSST approach.

Figure 5. Comparison of the results of the TSST simulations (D =
0.918, h = 100δ, Reφ = 733, Re = 210 and Re = 546 ) with the
experimental data from Figure 2 in Colley et al. (2006) and the
von Kármán (1921) similarity solution.

Moreover, in the experiments the hot-film probe is sub-
ject to an effect known as yaw-angle bias (Bruun, 1995,
p. 71). This arises from along-wire cooling in the flow
field with its three velocity components and leads to over-
estimates of the measured velocity values. The data of
Colley et al. (1999, 2006) were not corrected for yaw-
angle bias, as discussed in Colley et al. (1999, p. 334),
since this was not necessary in the particular context of
their studies. Finally, the experiments in the tank of the
facility of Colley et al. represents a spatially restricted
and, therefore, fairly high-noise environment in which
one has to resolve small quantities. To appreciate this,
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note that a distance of �ζ = 1 on the abscissa in Fig-
ures 4 and 5 corresponds to a vertical height difference
of only �z = 0.36mm for their experimental data. Sim-
ilarly, velocity changes of �F = �G = 0.1, at Re = 210,
correspond to�u = �v ≈ 0.06m s−1 occurring over an
interval of only �ζ ≈ 2, that is 0.72 mm.

One expects the most favourable agreement between
the TSST simulations and von Kármán (1921) for the
lowest Reynolds numbers Re and the largest aspect ratio
D. Reference to Figure 5 shows that this is indeed the case
here where D = 0.918, h = 100δ and for Re = 210. For
these parameters a good quantitative agreement is indeed
displayed for the radial flow component in Figure 5(a),
for all heights ζ and for the azimuthal flow component in
Figure 5(b) up to about ζ = 2. For ζ > 2, the azimuthal
flow deviates more strongly from von Kármán (1921).
However, here the TSST computations are in very good
quantitative agreement with the corresponding experi-
mental data by Colley et al. (2006) which show the same
type of discrepancy with respect to von Kármán (1921).
This type of discrepancy is naturally expected since
our simulations and the data of Colley et al. (2006)
are for rotor–stator flow whereas the theory by von
Kármán (1921) is for a freely spinning disc. Moreover,
note that in Figure 5(b) the TSST simulations almost
exactly quantitatively mirror the dependence on the
Reynolds number that was experimentally observed by
Colley et al. (2006).

Besides the above comments relating to the valida-
tion of our TSST approach, a comparison with the data
in Figures 4(a) and 5(a), and in Figures 4(b) and 5(b),
enable a first evaluation of the effects of the aspect ratio
D on our TSST simulations, but this will be addressed
in more detail in Section 4.1. Nevertheless, these figures
furthermore enable an evaluation of the effects of the
Reynolds number on the TSST simulations at different
values of the aspect ratio D. However, it is not elaborated
on this here since it is not relevant in the context of the
current study, where the focus is on the comparison of
geometry-induced effects and roughness-induced effects.

As an aside to the validation of the TSST approach,
the above comparison of the current simulations with the
experimental data of Colley et al. (2006) provides the first
direct, quantitative support for the speculation expressed
in their paper that their data do not approach the sim-
ilarity solution by von Kármán (1921) for ζ → ∞ due
to residual fluid motion exterior to the boundary layer.
In this context, two further brief comments relating to
the comparison of the TSST simulations and the data of
Colley et al. (2006) are included.

Firstly, the height above the surface of the spinning
disc was only about 0.15 m, corresponding to about
h = 76 δ or D = 0.75, for their no-stator configuration.

Hence, it is not impossible that the effects induced due
to the existence of the liquid surface resembled, to some
extent, those induced in their rotor–stator-like flow con-
figuration. This may have possibly contributed to the
similarity of the experimental data for their stator and
no-stator case. Together with the limited size of the water
tank (diameter approx. 1m) housing the disc (diame-
ter approx. 0.5 m) it may also explain why there exists
a residual radial flow motion in Figures 4(a) and 5(a).
This is supported by the residual radial flow in Fig-
ures 4(a) and 5(a) being more pronounced for the higher
local Reynolds number, Re = 546, which corresponds
to a position of the hot-film probe closer to the lateral
boundary of the water tank and where one would expect
stronger effects of any side-wall-induced recirculation
flow regions that can result in radial flow.

Secondly, the small quantitative discrepancies between
experiment and TSST simulation at ζ > 4 in Figure 5(a),
for the parameter configurations thatmost closely resem-
ble the case of Colley et al. (2006), i.e. h = 100 δ or D =
0.918 and at Re = 210, are possibly partly associated with
the, previously addressed, yaw-angle bias.

3.3. Validation: concluding remarks

In conclusion, the above discussion of the computational
simulations involving the TSST approach has demon-
strated that these correctly simulate rotor–stator flow
and, in particular, the flow within the boundary layer
on the rotor disc. Hence, this provides sufficient confi-
dence that the methods are suitable for evaluating quali-
tative effects, together with their quantitative magnitude,
induced by changes in the boundary conditions associ-
ated with the rotor–stator configuration. Therewith one
can be confident that it is possible to evaluate these effects
in comparison with the boundary-layer flow over a freely
spinning disc on the basis of the theoretical similarity
solution by von Kármán (1921).

The main issues of the current study are now
addressed in the following section. Further additional
validation of the TSST approach will emerge in Section 5,
where the roughness effects predicted on the basis of
these computations are compared with the correspond-
ing theoretical results of Cooper et al. (2015), Garrett
et al. (2016) and Alveroglu et al. (2016).

4. Results from TSST simulations: geometry
effects versus roughness effects

The nature and the magnitude are considered of
the effects that variations in the aspect ratio of the
rotor–stator system induce on the flowwithin the bound-
ary layer over the rotor in a rotor–stator system, and
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how they compare with roughness-induced effects is
evaluated. The underlying rationale being to establish
whether the effects in both cases are of similar nature
and, if so, whether they must be expected to be of
comparable magnitude in the type of system considered
here.

4.1. Geometry effects

Figure 6 shows results from TSST simulations illustrat-
ing how the aspect ratio D of the rotor–stator system
affects the radial and azimuthal components of the flow
velocity within the boundary layer on the rotor for a
global rotational Reynolds number of Reφ = 600 and
at a radial position corresponding to a local rotational
Reynolds number of Re = 500 (laminar region) – where
R = 0.6m and� = 1 rad s−1. Figure 6 shows the compu-
tational results from our TSST approach in comparison
with the corresponding theoretical laminar velocity pro-
files of von Kármán (1921) for an unrestricted rotor. The
four profiles for the computational results are associated
with aspect ratios D of 0.046, 0.092, 0.367 and 0.918.
These values forD correspond to gapwidths h of 5 δ, 10 δ,
40 δ and 100 δ when expressed in terms of the boundary-
layer thickness for the flow over a rotating disc satisfying
the theory of von Kármán (1921).

A comparison of the computational profiles in Figure 6
with the curve representing the theory of von Kár-
mán (1921) reveals that, as one would expect, our data
approach the results for the freely spinning disc with
increasing gap width D. However, even for the aspect
ratio D = 0.918, corresponding to a gap width of 100 δ,
the azimuthal flow component in Figure 6(b) still remains
substantially modified in comparison with the von Kár-
mán profile. This is the case at least for all heights above
approximately ζ = 1 – and recall that the boundary layer
extends to ζ = 5.5 according to von Kármán (1921). At
heights above approximately ζ = 2, the difference for the
azimuthal flow component is still of the order of �G ≈
0.15–0.25, reflecting the core rotation in rotor–stator
flow.

In Figure 6(a), the reduction effect of a decreased
aspect ratio on the radial flow component is observed
especially in the region of approximately 0 ≤ ζ ≤ 2. The
reduction in the maximum radial jet flow is in the order
of around �F ≈ 0.02. This corresponds to about 10% in
comparison with the value of F ≈ 0.18 at the position
of the maximum. This same sort of reduction effect is
also observed as a result of an increase in the geometric
roughness height, which will be discussed in the follow-
ing section. The differences between the rotor–stator flow
and the freely spinning disc for the gap width 100 δ are
less substantial for the radial flow component than the

Figure 6. The effect of the aspect ratio on the basic flow profiles
(Reφ = 600, Re = 500).

azimuthal flow component; but, nevertheless, within the
region of approximately 3 ≤ ζ ≤ 6, one can still iden-
tify differences of up to the order of around �F ≈ 0.003,
which corresponds to about 2% in comparison with the
maximum value of F ≈ 0.18.
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Figure 7. The effect of isotropic roughness on the basic flow
profiles (D = 0.092, h = 10 δ, Reφ = 600, Re = 500).

4.2. Roughness effects

Figure 7 displays the effects of surface roughness on the
radial and azimuthal components of the flow velocity
within the boundary layer on the rotor in a rotor–stator

configuration as predicted by our TSST approach. The
data were obtained for a configuration with an aspect
ratio D = 0.092 which corresponds to h = 10 δ, for a
global rotational Reynolds number Reφ = 600 and for a
position associatedwith a local rotational Reynolds num-
ber of Re = 500. The figure compares results for a smooth
disc with simulations for values of K = 100, 300 and
500 μm for the geometric roughness height (ANSYS R©,
2013, p. 75; Schlichting & Gersten, 2004, pp. 526–531).
These particular values for the roughness were chosen
here since they represent approximately the range of typi-
cal roughness heights onewould expect to find associated
with applications involving drag-reduction techniques in
practice.

The inspection of the roughness-induced effects illus-
trated here in Figure 7 reveals that they are qualitatively
similar to the geometry-induced effects in Figure 6 – but a
direct comparison to evaluate quantitative difference will
be shown in Figure 8. The data in Figure 7(a) reveal that
roughness reduces the radial velocity, in comparisonwith
the curve for the smooth disc, within, approximately, 0 ≤
ζ ≤ 5,whereas the trend is reversed for heights above this
region.

The magnitude of typical variation of the predictions
for different roughness levels are of the order of around
0.02 ≤ �F ≤ 0.04 and this is of comparable magnitude
to the values �F ≈ 0.02 obtained for the geometry-
induced effects in Figure 6(a).

Similar roughness-induced variations are found for
the predictions associated with the azimuthal velocity
component in Figure 7(b) where typical values are of the
order of around �G ≈ 0.1 for heights ζ > 0.15, which
compares with 0.15 ≤ �G ≤ 0.25 for the geometry-
induced effects at ζ > 2 in Figure 6(b). Figure 7(b),
moreover, shows that roughness is seen to decrease the
strength of the core rotation. Although this influence
is not directly in line with an increase in roughness, it
is of comparable magnitude to the geometry-induced
effects.

Thus, the comparison of Figures 7 and 6 indicates that
one must expect it to be difficult to distinguish between
roughness-induced and geometry-induced effects in
experiments. Specifically, and in a general experimental
context, the comparison of Figures 7 and 6 defines the
required measurement sensitivity for methods aiming to
distinguish between geometry-induced and roughness-
induced effects in a geometrically restricted environ-
ment. Any measurement technology to be adopted must
be sufficiently sensitive to resolve velocity changes sub-
stantially smaller then the magnitude of the changes
expected on the basis of the roughness effects and the
geometry effects individually.
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Figure 8. Comparison between the effects of the gap and the
roughness (Reφ = 600, Re = 500).

4.3. Comparison: roughness effects versus
geometry effects

Figure 8 compares the roughness-induced and the
geometry-induced effects, as predicted by the TSST com-
putations, from the preceding two sections to each other.

The figure displays results for two aspect ratios D =
0.046 and D = 0.092, which correspond to h = 5 δ and
h = 10 δ, respectively, in comparison with the results for
the roughness-induced effects for the largest aspect ratio
investigated, D = 0.092, h = 10 δ, with surface rough-
ness of 100 and 300 μm on the stator disc. The figure
highlights qualitatively that the predicted roughness-
induced effects and the geometry-induced effects on the
radial and the azimuthal component of the flow velocity
within the boundary layer are very similar in both nature
and magnitude.

4.4. Conclusions based on comparison of geometry
versus roughness effects from TSST simulations

Themain conclusion to be drawn from the comparison of
geometry-induced effects and roughness-induced effects
in Figures 6, 7 and 8 is that it can be difficult to distin-
guish between them in a water-based rotor–stator-like
rotating disc configuration with typical, practical dimen-
sions similar to those of the facility used in Colley et al.
(1999, 2006). Consequently, the predictions based on the
TSST simulations suggest that it is difficult to use data
from the rotor of such a rotor–stator-like rotating-disc
apparatus to corroborate many of the computational pre-
dictions for roughness effects induced into the boundary-
layer flow for an unrestricted disc spinning in an infinite
liquid medium. For this purpose it ideally requires a
rotating disc housed within a substantially larger water
tank where it can spin freely without the requirement for
the stator shroud shown in Figure 1 to eliminate free-
surface, wave- and wall-induced disturbances affecting
the boundary-layer flow on the surface of the rotating
disc.

5. Comparison of predicted roughness effects
from TSST simulations with the results of
Cooper et al. (2015), Garrett et al. (2016) and
Alveroglu et al. (2016)

The roughness-induced effects predicted by the TSST
simulations are now compared with the correspond-
ing predictions obtained on the basis of the meth-
ods described in detail in Cooper et al. (2015) and in
Garrett et al. (2016). The purpose of this comparison is
twofold. Firstly, it will provide an additionalmeans of val-
idation for the TSST simulations. Secondly, a favourable
comparison between all three fundamentally different
approaches will, in turn, yield further support for some
of the main conclusions arrived at in Cooper et al. (2015)
and Garrett et al. (2016). Note that the TSST simula-
tions in Sections 5.1, 5.2 and 5.3 were obtained for a
rotor–stator system of constant gap width, D = 0.092,



ENGINEERING APPLICATIONS OF COMPUTATIONAL FLUID MECHANICS 153

h = 10 δ, such that changes of the computational data
truly reflect roughness-induced effects only.

The global Reynolds number for the TSST simula-
tions is Reφ = 600 and the results are for a radial position
corresponding to a local Reynolds number Re = 500.
However, the results of Cooper et al. (2015), Garrett
et al. (2016) and Alveroglu et al. (2016) are indepen-
dent of the Reynolds number because in these studies
the steady-state flow profiles represent modified versions
of the similarity solution of von Kármán (1921) for the
Navier–Stokes equations, which describes the flow at all
values of the Reynolds number Re.

5.1. TSST versus Cooper et al. (2015)

Figure 9 compares the TSST simulations for roughness-
induced effects with corresponding data we obtained
on the basis of the methods, and the code, of Cooper
et al. (2015). The theoretical considerations and conclu-
sions in that paper are based on the approach ofMiklavčič
and Wang (2004) whereby roughness is modelled by
means of replacing the usual no-slip boundary condi-
tion with a partial slip condition at the disc surface. In
the context of the present study it is only necessary to
know that this is achieved by means of introducing two
slip coefficients relating the radial and azimuthal velocity
components with, respectively, the radial and azimuthal
shear stresses. The slip coefficient for the radial com-
ponent is referred to as λ and that for the azimuthal
component is η in Cooper et al. (2015). The partial
slip reduces to the usual no-slip boundary condition for
λ → 0 and η → 0, whereas the hypothetical condition
of complete slip is approached for λ → ∞ and η → ∞.
Hence, higher values for λ and η effectively correspond
to rougher surfaces. But note that it is possible to choose
λ 	= η such that rough surfaces of qualitatively differ-
ent nature can be modelled – for further details refer
to Cooper et al. (2015). Based on the partial slip con-
dition, they then determine the modified steady-flow
velocity field according to the similarity solution of the
Navier–Stokes equations due to von Kármán (1921).

Here we select values of η = 0.14, 0.57 and 1.18 and
λ = 0 to enable a direct inter-comparison between the
current TSST results and the results in both previous pub-
lications, Cooper et al. (2015) and Garrett et al. (2016).
As discussed in Garrett et al. (2016), the choice of λ = 0
was enforced in that study to enable a comparison with
Cooper et al. (2015) due to certain limitations of the alter-
native approach of modelling roughness to be addressed
in Section 5.2.

A comparison of the results in Figure 9(a) obtained
by means of the TSST simulations for different geomet-
ric roughness heights of 100, 300 and 500 μm with the

Figure 9. Comparison between the roughness effects predicted
by the TSST simulations (Reφ = 600, Re = 500) and the rough-
ness effects as predicted by using the code of Cooper et al. (2015)
(λ = 0) based on their partial slip approach. Markers identify cur-
rent TSST data and lines represent data of Cooper et al. (2015).

partial slip approach for the different values of η reveals
a very high level of qualitative agreement for the radial
velocity component. In this context it is worth high-
lighting again that it is the instability mode arising from
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the inflection point on the radial velocity component
(cf. Figure 2) that is primarily responsible for the lami-
nar–turbulent transition of boundary layers with a cross-
flow component. Hence, this good agreement between
the results of the current TSST approach and Cooper
et al. (2015) represents substantial supportive evidence
regarding validity of the boundary-layer transition issues
discussed in that paper.

A comparison between the roughness-induced effect
predicted by the TSST approach and Cooper et al. (2015)
is not quite that straightforward for the azimuthal veloc-
ity component. This is so since for this component,
in Figure 9(b), the transition from rotor–stator flow to
rotating-disc flow involves a qualitative change in the
velocity profile. In rotor–stator flow there exists rotary
flow motion above the boundary layer whereas the
azimuthal velocity component vanishes for rotating-disc
flow. Hence, the TSST simulations for rotor–stator flow
naturally differ quite substantially from those based on
the rotating-disc results of Cooper et al. (2015). Never-
theless, what the data in Figure 9(b) do show is that for the
TSST simulations and also for the simulations following
Cooper et al. (2015) roughness effects are of comparable
magnitude.

While partial-slip is a standard approach in modelling
flow over rough surfaces, it is however noted that the
slip coefficients λ and η associated with the partial slip
approach do not, a priori, bear any direct relevance to
real geometric roughness. In applied contexts they only
become useful if, for any particular application, empiri-
cal data are available that suggest how their values should
be selected. Due to the high level of agreement that the
TSST simulations displayed in comparison with experi-
mental and computational data in all preceding sections,
and due to the qualitative agreement in the present, and
in the following sections, it appears that itmay be possible
to employ TSST simulations to determine theory-based
calibration charts relating λ and η to different values of
geometric roughness. However, only future experiments
will be able to reveal if this is indeed possible in practice.

5.2. TSST versus Garrett et al. (2016)

Figure 10 compares the TSST simulations for roughness-
induced effects from the previous section with corre-
sponding data obtained on the basis of the methods
described in detail in Garrett et al. (2016). In that pub-
lication, an alternative method of modelling roughness
was employed which is based on the approach of Yoon,
Hyun & Park (2007). Their approach models roughness
by imposing a particular surface distribution as a func-
tion of the radial position and assumes a rotational sym-
metry. The results of Garrett et al. (2016) are shown in

Figure 10. Comparisonbetween the roughness effects predicted
by the TSST simulations (Reφ = 600, Re = 500) and the rough-
ness effects predicted in Garrett et al. (2016) based on the
approach of modelling roughness by prescribing a surface distri-
bution as a function of the radial position.Markers identify current
TSST data and lines represent data of Garrett et al. (2016).

terms of the parameter a, which is the ratio of the height
to the pitch of the sinusoidal surface roughness. The
approach of Yoon et al. (2007) is consequently restricted
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since it models roughness in the radial direction only
whereas the more flexible approach based on Miklavčič
and Wang (2004) in Cooper et al. (2015) allowed for
modelling roughness in both the radial and the azimuthal
directions by means of selecting the slip coefficients λ

and η as desired. This limitation of the approach by Yoon
et al. (2007) is the reason that the value λ = 0 had to be
chosen in the previous section. The data in Figures 10(a)
and 10(b) do not require a further detailed description
since they exactly mirror the observations discussed in
connection with Figures 9(a) and 9(b) in the preceding
section. It is, however, emphasized again that it is not per-
missible to make quantitative comparisons between the
results obtained from the different simulation approaches
due to the discussed specific differences, and limitations,
associated with the methods in Cooper et al. (2015) and
Garrett et al. (2016). The important result is that all
approaches lead to consistent qualitative trends and to
changes of the relevant quantities which are of similar
magnitude.

5.3. TSST versus Alveroglu et al. (2016)

The type of steady-state, base-flow velocity profiles dis-
cussed in the preceding sections are underlying the
boundary-layer stability analysis summarized in Cooper
et al. (2015) and in Garrett et al. (2016), where results
for different types and levels of roughness are considered.
Boundary-layer stability issues are not the focus of the
current study, which compares roughness-induced and
confinement-induced effects on the steady-state base-
flow profiles only. Nevertheless, as part of the current
study the base profiles obtained here for the rotor disc
were subjected to a stability analysis. This led to an obser-
vation of particular interest and significance as regards
rotating-disc flow in general and in relation to the very
recent roughness-related boundary-layer-stability con-
siderations of Alveroglu et al. (2016) for the BEK fam-
ily of flows. Since a comparable observation does not
seem to have been reported previously anywhere in the
rotating-disc literature it is briefly documented here.

Alveroglu et al. (2016) modelled roughness based on
the approach ofMiklavčič andWang (2004) and by apply-
ing the samemethods as inCooper et al. (2015). Figure 11
compares the neutral stability curves obtained by our
TSST simulations with curves of Alveroglu et al. (2016).
The figure shows the standard type of results where the
wave-number of the radial disturbance αr is displayed
as a function of the local Reynolds number Re. For any
value of Re, any particular disturbance αr is unstable if
it lies within the area enclosed by the curves displayed
and it is stable if it lies outside the area enclosed. The
figure shows the TSST simulations in comparison with

Figure 11. Comparison of neutral curves obtained by the TSST
simulations for the rotor–stator flow configuration with the ones
presented by Alveroglu et al. (2016) for isotropic roughness. Mark-
ers identify results of stability calculations based on current TSST
data and lines represent data of Alveroglu et al. (2016).

data of Alveroglu et al. (2016) for rotor–stator Kármán
and Ekman flow over isotropically rough discs. These
two flow cases were selected from Alveroglu et al. (2016)
for the comparison because the qualitative nature of the
flow over the rotor-disc in the rotor–stator cavity flow lies
somewhat between these two types of flow scenario.

The main issue addressed here relates to one of the
two convective instability modes for rotating-disc flow
which are referred to as Type I and Type II modes in
the literature (Lingwood & Alfredsson, 2015; Reed &
Saric, 1989; Saric et al., 2003)The Type I mode is a vis-
cous instability arising due to Rayleigh’s inflection point
criterion (Schlichting & Gersten, 2004, p. 432) and as a
consequence of the existence of the inflection point on
the velocity profile of the radial component of the flow
velocity in Figure 2. TheType IImode is an inviscid insta-
bility associated with streamline curvature and Coriolis
effects. The Type I mode reveals itself in experiments in
the formof a series of co-rotating vortices within the lam-
inar–turbulent transition region of the boundary layer
over the disc and it constitutes the dominant mode lead-
ing to transition. However, the exact physical nature of
the Type II mode remains, as yet, unknown. The result
documented below, together with in-depth further TSST
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simulations, might be able to shedmore light on the exact
physical nature of the Type II mode.

In both Figures 11(a) and 11(b), there is a qualita-
tive agreement between the results showing a stabilizing
effect of roughness on both the inviscid Type I (cross-
flow) and the viscous Type II instability mode. Stabiliza-
tion is revealed by a shift of the curves towards higher
Reynolds number; i.e. a shift to the right in the figure.
It is emphasized that it is not possible to make quantita-
tive comparisons between the present results for rough
discs and those of Alveroglu et al. (2016). This is due to
the approach of Miklavčič and Wang (2004), adapted by
Alveroglu et al. (2016), being based on two ad hoc slip
coefficients, introduced into Newton’s law of viscosity, to
simulate partial slip at the disc surface in the radial and
azimuthal directions. These slip coefficients have no, a
priori, immediate relation to the real physical roughness
height as prescribed in the context of the current TSST
simulations.

Note, nevertheless, that for the von Kármán flow
over smooth surfaces in Figure 11(a) there exists a very
good quantitative agreement between the results for the
neutral-stability curves obtained from the TSST simula-
tions and the corresponding computations of Alveroglu
et al. (2016). Both sets of results are in almost perfect
agreement with each other, apart from the absence of
the Type II instability in the current TSST simulation
within the narrow region around 460 ≤ Re ≤ 480 where
0.13 ≤ αr ≤ 0.15. The Type IImode is represented by the
little kink on the curve for η = λ = 0 in that parameter
region. The very good quantitative agreement between
the neutral-stability curves found here further reinforces
confidence in the TSST simulations. In fact, the close
agreement suggests that it may even become possible
to employ TSST simulations to calibrate the slip coef-
ficients, when used in the context of the type of calcu-
lations described in Cooper et al. (2015) and Alveroglu
et al. (2016), for subsequent comparisons with experi-
mental data. The main result of this section relates, how-
ever, to the absence of the Type II mode for the TSST
results.

In Figure 11(a) the Type II mode was absent for the
current TSST simulations of rotor–stator cavity flow over
a smooth disc. Reference to Figure 11(b) reveals that the
Type II mode also vanishes for the results of Alveroglu
et al. (2016) for Ekman flow displayed there. This corre-
spondence suggests that the absence of the Type II mode
from the TSST simulations in Figure 11(a) reflects the
fact that the flow over the rotor disc of the rotor–stator
arrangement represents an intermediate state between
the limits of von Kármán flow and Ekman flow. Hence,
it suggests that the absence of the Type II mode for the
TSST simulations is brought about by the non-vanishing

fluid motion in the core of the flow field between the two
boundary layers on the rotor and the stator. Since the
complete data for the entire three-dimensional flow field
are available for the TSST results, which is in contrast to
the situation for the results of Alveroglu et al. (2016), it
may be possible that a detailed, careful examination of
TSST data can shed more light on what features of the
flow field exactly lead to the disappearance of the Type II
mode during the transition from von Kármán flow to
Ekman flow. To assist with the evaluation of the stability
issues addressed above in a broader context we would, in
conclusion, also like to draw attention to Table III in the
appendix of Garrett et al. (2016), where a literature sur-
vey of the critical instability parameters associated with
flow over smooth rotating discs is presented.

6. Summary and conclusion

A computational study investigating the boundary-
layer flow on the rotor inside the enclosed cavity of
a rotor–stator system was presented. The main focus
was on the individual effects that the surface roughness
and aspect ratio, D = h/R, of the system induce on the
boundary-layer flow above the rotor. These effects were
comparedwith corresponding roughness-induced effects
in the boundary layer over a freely spinning, unrestricted
disc, the latter being the limiting case of rotor–stator flow
approached for R → ∞ and h → ∞ for which a similar-
ity solution to the Navier–Stokes equations exists, which
was obtained by von Kármán (1921).

The study was conducted by means of the TSST
approach within the ANSYS R© Fluent R© software package.
The simulations were validated against previous experi-
mental data (Colley et al., 1999, 2006; Sambo 1983), and
computational data (Vaughan, 1986) and evaluated fur-
ther for consistency in the context of the recent theoreti-
cal considerations summarized in Cooper et al. (2015),
Garrett et al. (2016) and Alveroglu et al. (2016). A
very good qualitative and quantitative level of agree-
ment between the current simulations and the existing
previous work was found.

The original motivation for the study rested on the
intent to evaluate the nature and the magnitude of
roughness-induced and geometry-induced effects in a
rotor–stator flow to establish whether it would be pos-
sible to distinguish between them in our existing rotating
disc facility. However, the results obtained lead to con-
clusions which are of relevance in a substantially wider
context.

In particular, a high level of consistency between
the roughness-induced effects predicted on the basis
of the TSST simulations and the corresponding the-
oretical results of Cooper et al. (2015) and Garrett
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et al. (2016) was obtained. This leads to a very important
general, overall conclusion. The methods underlying the
TSST approach to model roughness effects rely strongly
on input parameters obtained from experimental data
obtained by other authors in entirely different experi-
mental scenarios compared with those considered here.
In contrast, the other two studies model roughness in
terms of some very simple theoretical assumptions. The
fact that all approaches yield results which are, overall,
mutually consistent gives confidence in the validity of the
qualitative behaviours observed. Due to the details asso-
ciated with the methods adopted to model roughness in
Cooper et al. (2015) and Garrett et al. (2016), a quanti-
tative agreement between their results and those of the
current study is, however, not possible.

Specifically, the fact that the TSST approach recon-
firms that roughness is expected to stabilize the Type I
instability mode is very important in a general context.
The Type I mode is the dominant mode resulting in the
laminar–turbulent transition of boundary layers with a
cross-flow component, as encountered in similar form,
for instance, over highly swept aircraft wings. Stabiliza-
tion of the Type I mode equates to postponed transition
and, therewith, to reduced skin-friction drag. Hence, the
results of the TSST computations are strongly reassuring
in that surface roughness can be used in the context of the
development on new passive drag-reduction techniques
as suggested by the results of Cooper et al. (2015) and
Garrett et al. (2016). The TSST results therewith also pro-
vide indirect support to the further results contained in
Cooper et al. (2015) and Garrett et al. (2016), which were
not discussed here, that point a way forwards towards
theory-led strategies for the design of energetically-
optimized, transition-delaying surface roughness.

Moreover, the consistency in the comparisons also
extended across the different BEK flow scenarios inves-
tigated. It was discussed that our rotor–stator flow can be
considered as an intermediate state between von Kármán
flow and Ekman flow. For the case of rotor–stator flow
over a smooth disc a very good quantitative agreement
between the neutral stability curve obtained by our TSST
simulations and the corresponding curve for von Kár-
mán flow of Alveroglu et al. (2016) was found. The results
only differed in a narrow Reynolds-number range where
the results for rotor–stator flow revealed the disappear-
ance of the Type II instability mode. Nevertheless, the
disappearance of this mode is also observed by Alveroglu
et al. (2016) for Ekman flow in the same Reynolds num-
ber regime. This led to the conclusion that the absence
of the Type II mode for the TSST simulations arises as
a consequence of the non-vanishing fluid motion in the
core of the flow field between the two boundary layers on
the rotor and the stator.

Finally, as regards the original motivation and goal
of the study, the results have revealed that the effects
induced by changes in the geometric boundary condi-
tions in a rotor–stator facility can be of similar nature
and magnitude as the effects induced by roughness.
While only one particular system was investigated here,
the result nevertheless suggests that there probably exist
other flow configurations – related to the present one or
not – where roughness-induced and geometry-induced
effects may compete with each other in a similar manner
and where this may have to be taken into consideration
in the context of the particular scientific problems studied
or the design aspects addressed.
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Nomenclature

a the ratio of the height to the pitch of the sinusoidal
roughness

D aspect ratio; = h
R

F(ζ ) non-dimensional radial velocity; = u
�r

G(ζ ) non-dimensional azimuthal velocity; = v
�r

h gap between rotor and stator, (m)

H(ζ ) non-dimensional axial velocity; = w√
ν�

k turbulence kinetic energy,
(
m2/s2

)
K geometric roughness height, (m)

Ks equivalent sand grain roughness
r radial coordinate, (m)

R radius of the rotor–stator system, (m)

Re local rotational Reynolds number; =
√

�r2
ν

Reφ global rotational Reynolds number; =
√

�R2
ν

R̃e
t momentum–thickness Reynolds number; = Uδ2
ν

u radial velocity, (m/s)
U local velocity, (m/s)
v azimuthal velocity, (m/s)
y+ dimensionless wall distance
w axial velocity, (m/s)
z axial coordinate, (m)

γ intermittency
δ boundary layer thickness,m; = 5.5δ∗
δ2 momentum–thickness,m
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δ∗ characteristic length scale,m; =
√

ν
�

ε the rate of dissipation of the turbulence kinetic
energy,

(
m2/s3

)
ζ non-dimensional axial coordinate; = z

δ∗
η the azimuthal component of the slip coefficient
θ azimuthal coordinate
λ the radial component of the slip coefficient
ν kinematic viscosity,

(
m2/s

)
� angular velocity, (rad/s)
ω the specific rate of dissipation of the turbulence

kinetic energy, (1/s)
αr the wave-number of the radial disturbance
LDA Laser-Doppler Anemometry
BEK Bödewadt, Ekman, von Kármán
LES Large Eddy Simulation
SST Shear Stress Transport
TSST Transition Shear Stress Transport
CFD Computational Fluid Dynamics
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