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The oscillatory motion of a fluid carrying micron-sized particles inside a capillary tube is investigated
experimentally. It is found that initially uniformly distributed particles can segregate and accumulate to
form regularly spaced micron-sized particle clusters. The wavelength of the microclusters is compared to
data for macroscale sand-ripple patterns and found to obey the same universal scaling as these. A
dimensional analysis is performed that confirms the universality of the experimentally observed scaling.
The experimental data for the microripple clusters further suggest the existence of a minimum particle
length scale for which patterns can form and below which the Brownian motion associated with the
molecules of the matrix fluid inhibits pattern formation.
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Microfluidic devices are common in science and engi-
neering, e.g., equipment for drug delivery, systems for the
analysis of chemical substances [1,2] or devices for the
separation of suspended microparticles, cells, or macro-
molecules in fluids. In these contexts observations of
pattern-formation phenomena in microfluidic two-phase
flows have been described [3–6]. We report a new such
pattern that appears to be closely related to the well-known
type of macroscopic sand-ripples [7–11] one finds on
beaches or on the bottom of the ocean and rivers.

Our experimental setup, see Fig. 1, comprises a glass
capillary tube (diameter D � 288 �m) mounted under-
neath a microscope and filmed with two synchronized
CCD cameras A and B. Optical distortions, while filming
the tube, are minimized by placing it in the water-filled gap
between two parallel microscope slides. The tube is con-
nected to a Hamilton syringe (25 �l) by means of a Teflon
PTFE tube with an internal diameter of 300 �m. The
whole flow circuit is fully filled with water. The capillary
tube contained approximately 5 �l Duke Scientific poly-
mer microspheres (diameter dG: 1 or 10 �m; standard
deviation from mean less than 5%; particle density �G �
1:05 g=cm3). Microscopic inspection revealed that the sys-
tem was free of entrapped air bubbles. According to the
manufacturer the concentration of the microspheres is
1:8� 107 and 1:8� 1010 spheres per milliliter for the 10
and the 1 �m particles, respectively.

The syringe is connected to a computer-controlled KDS
syringe pump. This facilitates a continuous, alternating,
linear injection and withdrawal of prescribed volumes of
liquid at frequency f. This results in a reversing flow inside
the capillary tube. Its amplitude, A, corresponds to the
pump stroke and the smallest value is A � 0:76 mm. The
mean flow velocity, V, and the amplitude of the flow
motion are monitored by camera B in Fig. 1 which records

the displacement of the air-liquid interface visible at the
end of the capillary tube.

Video recordings of experiments with 10-�m particles
revealed that ripple patterns form for certain combinations
of f and A. When ripples form they are located close to the
bottom in the lower half of the capillary tube. Particles
suspended higher up, i.e., further away from the tube wall
(closer to its center) do not appear to cluster. Patterns
typically form after a few tens of seconds and settle on a
stable size and wavelength after a few hundreds of seconds.
Figure 2 displays two typical micro-ripple grain clusters.
The patterns were not as well developed for all parameter
regimes, in some cases they appeared rather faint such that
clusters were hardly observable. Figure 3(a) shows a phase
diagram which reveals that clear patterns were detected for
0:24 & f & 1:1 Hz and amplitudes A & 3 mm. This range
corresponds to the regime where most of the particles settle
on the bottom of the channel. Figure 3(b) displays two
typical examples illustrating the temporal development of
the cluster wavelength; it initially decreases and adopts a
quasistable state by about t � 400 s.

In Fig. 4 we use the average wavelength during the
quasistable phase (diamonds) for comparison with ap-
proximately 900 experimental data points from the litera-
ture (dots) on macroscopic sand ripples forming in a
number of fundamentally different experimental arrange-
ments including unidirectional and oscillatory flows (for
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FIG. 1. Sketch of the experimental setup.
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details see Ref. [12]). The pattern wavelength is nondi-
mensionalized as (�=dG) and a mobility parameter �—
similar to a Shields parameter—is defined as (compare
Ref. [12]; see also [10,11,13,14])

 � � �GU2=�g��G � �F�dG�: (1)

In Eq. (1), U is a typical velocity scale characterizing the
flow velocity that quantifies the forcing of the system. In
the present system U is identified with the speed V of the
air-liquid interface as monitored by means of camera B in
Fig. 1. The solid line, �=dG � 17:64�0:52, in Fig. 4 is a
least-squares fit from Ref. [12] interpolating the data points
of the macroscopic sand ripples. It can be clearly seen that
the present data points for the microripples group around
the data fit for the macroscopic sand ripples. In particular
the new microripple data points extend the scaling of

Ref. [12] by almost 1 order of magnitude towards smaller
� values. This suggests that the microclusters obey the
same scaling one observes for macroscopic sand ripples
and that they constitute an analogue to these. It is empha-
sized that the solid line �=dG � 17:64�0:52 in Fig. 4 rep-
resents a purely empirical result. However, we now show
that the �1=2 scaling follows from a dimensional analysis.

The macroscopic sand-ripple data in Fig. 4 are generally
associated with relatively large Reynolds numbers and
turbulent flow conditions. The present micro clusters de-
velop, however, in a laminar Poiseuille flow with particle
Reynolds numbers as low as Re � dGU=� � 10�2. The
fact that ripple clusters do form at such low Reynolds
numbers and that their wavelength appears to scale in the
same manner as for flow in entirely different experiments
and flow regimes prompted one of our main conclusions. It
implies that the formation mechanism must be governed by
local scales. Hence, global scales and global-flow features
are irrelevant. Thus, one can assume that the flow at the
fluid-grain interface can be characterized by a single local
velocity UL. This implies the assumption that the interface
is well defined. Particles are not in suspension as can be the
case, for instance, for large Af in the present experiment.
The interface must also be sufficiently homogeneous such
that spatial variations of UL are negligible. We further
exclude wavy interfaces with preexisting ripple structures
(see Ref. [15] for the difference between wavy and plane
initial interfaces).

The phenomenon is described by the equations of mo-
tion of the grains at the ripple-fluid interface accounting for
all mechanical forces, such as stick-slip friction and hydro-
dynamic forces. Hydrodynamic forces and gravity are
summarized in the Navier-Stokes equation which, with
respect to boundary and initial conditions, introduces the
following set of characteristic parameters:

 ��Gd
3
G; g��G � �F�d

3
G;�g��G � �F�d

3
G;H; �; �F; UL; f�:

(2)

The first two parameters in (2) are the mass and the
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FIG. 3. (a) Phase diagram for cluster formation. (b) Ripple
wavelength as a function of time.
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FIG. 4. Nondimensionalized ripple wavelength, �=dG, as a
function of the mobility parameter �.

FIG. 2. Example of observed patterns (a) X100 magnification
(b) X50 magnification. For a video example cf. Ref. [21].
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apparent weight of the grains. The third is the Coulomb
friction force on the granular bed and � represents the
friction coefficient for which typical values of 0.7 are
commonly quoted [16]. The fifth parameter, H, is a global
length scale long enough to characterize the ripple patterns
while � is the kinematic viscosity of the fluid. Finally, f is a
characteristic frequency of the oscillation or rotation. Since
one can incorporate body forces (hydrostatic pressure) in
the pressure term of the Navier-Stokes equation the gravity,
g, will only appear in the context of the apparent mass but
never independently unless free-surface effects must be
accounted for. Thus, only the kinematic viscosity, � and
�F appear explicitly in the Navier-Stokes equations. Note
that, in practical cases, the global length H is much larger
than dG. It can therefore be used to characterize the number
of grains per unit surface of the granular bed which is
proportional to H2=d2

G. In fact, all purely geometric quan-
tities, such as dG, can be omitted since one characteristic
length is sufficient for geometric considerations as long as
all shapes remain unchanged.

Choosing H, g��G � �F�d3
G and �Gd3

G as the primary,
repeating variables for a dimensional analysis and after
rearranging the dimensionless parameters that one obtains,
the wavelength can be written as
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In Eq. (3) �� � �G � �F and F is a dimensionless func-
tion depending on the geometry of the problem (relative
sizes, shapes, dimensionless dispersion of the grain sizes,
etc.). While Eq. (3) highlights the role of the local velocity
UL it does not have practical use since UL cannot be
determined easily. Therefore, one has to relate UL to the
global flow with its characteristic velocity scale U (U �
V 	 Af in present experiment). The boundary layer, or
more generally a viscous shear layer, above the sand
ripples determines the average velocity gradient at the
sand surface. This gradient can only be determined by
global scales and its characteristic magnitude is U=H.
For a boundary layer H represents a characteristic
boundary-layer thickness. For the present Poiseuille flow
it is equal to the radius D=2, of the capillary tube. Using
this average velocity gradient one concludes that the mag-
nitude of UL, i.e., the typical velocity scale at height dG
above the granule bed, is �U=H�dG. Introducing this scale
for UL into Eq. (3) yields
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The behavior of Eq. (4) in the limit dG=H ! 0, i.e., when
the grain size is small compared to the global scale
(boundary-layer thickness), is the relevant physical limit
to be investigated. It is emphasized that it is only the be-
havior of the ratio dG=H and not independently dG ! 0
(no grains) or H ! 1 (no ripples at macroscopic level)

that needs to be examined. Therefore, the equation must
be written as ��=dG��dG=H� � F �. . .�. For dG=H ! 0 the
left-hand side of the equation approaches zero and the
equation collapses unless both sides of the equation have
the same asymptotic behavior. This implies that F must
be asymptotically a linear function of dG=H when this
tends towards zero. Two parameters of F , namely
�d2

G=H
2 and �FH

3=�Gd
3
G depend on dG=H. One of

them is related, through �, to the global characteristic
velocity, U, and represents the global-flow influence. The
other is related to �F which represents inertial effects
associated with the flowing fluid. The corresponding
two possibilities for the linear dependency are ��=dG��
�dG=H�� ��Gd3

G=�FH
3�1=3F 0�. . .� or ��=dG��dG=H��

�1=2�dG=H�F 0�. . .�. The first case is unrealistic since �,
and therefore the global-flow velocity U, would disappear
from the problem (no flow). Furthermore, the function
must also be universal and, hence, it must remain valid at
Reynolds numbers as low as those encountered in the
present experiments. Here, the inertial term in the
Navier-Stokes equations is negligible and �F can be omit-
ted in the set (2). Hence, the only realistic, universal
possibility for eliminating dG=H is
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Equation (5) reveals that one expects that �=dG / �1=2.
This supports the choice of the scaling parameter � de-
fined in Eq. (1) and, most importantly, it confirms the
universality of the measured scaling � / �0:52 in Fig. 4.

All data points in Fig. 4 further gather around one single
line. Thus, they imply that the constant C of the interpolat-
ing line log��=dG� � 0:52 log��� 
 C is the same for all
flow regimes (laminar or turbulent boundary layer, laminar
Poiseuille flow). This observation can also be understood
on the basis of the asymptotic limit dG=H ! 0. In this limit
all global scales, such as for instance the shape of the
channel, disappear from the problem. In other words,
when U is large enough to produce ripples, and as long
as H� dG, then F 0 will not involve any reference to
global scales and, consequently, the constant C must nec-
essarily be the same for all flow regimes. This is consistent
with the disappearance of �F at the asymptotic limit since
in all the experiments of Fig. 4 the grains are not sensitive
to inertial effects such as centrifugal forces caused by
turbulent vortices. This is so either because of their weight,
their near-wall location or beacuse of a low Reynolds
number of the global flow.

The above dimensional analysis implicitly assumed that
the particles forming the ripples are large enough not to be
affected by the Brownian motion of the molecules of the
matrix fluid nor by any nonmechanical forces such as
van der Waals or Coulomb forces. This was evidently the
case in the experiments with 10 �m microspheres in water
where the clear patterns forming near the bottom of the
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tube (because of gravity) obeyed the predicted scaling. The
particles were not observed to spontaneously agglomerate
together or stick on the walls providing further evidence of
the absence of effects due to van der Waals or Coulomb
forces. Experiments with the smaller 1 �m spheres re-
vealed that even after time scales as long as 36 h no clear
patterns were observed. This could be a consequence of the
restrictions which the syringe pump imposes on the fea-
sible values for f and A. However, it may alternatively
indicate that around scales of 1 �m the Brownian motion
of the water molecules becomes significant and suppresses
ripple formation. The relative strength of convective trans-
port to diffusive transport is characterized by the Peclet
number, Pe � �vdG=2�=D, where v is a typical flow ve-
locity (of the order of 10�3 m=s) and D � ��T�=�3��dG�
is the Stokes-Einstein diffusion coefficient in one dimen-
sion [17] (�: Boltzman constant, T: absolute temperature
of fluid, �: dynamic viscosity). It is found that Pe is of the
order of about 105 and 103 for 10 and 1 �m microspheres,
respectively. This would imply that effects due to diffusion
are negligible. However, the mean-square displacement of
a diffusing particle during a time interval, �t, in each
dimension, i, is given by [17] hr2

i �t�i � 2D�t. For the
period, �, of the flow oscillation in our system (0:92 & � &

117 s.) one finds smallest values of ri of the order of 0:1
and 1 �m for 10 and 1 �m-diameter particles, respec-
tively. Consequently, diffusive displacement may be sig-
nificant for the motion of the 1 �m-diameter particles and
it may explain the absence of clustering for these. In that
case the temperature would have to be taken into account in
the set of parameters of expression (2) and the problem
would no longer be purely mechanical. To explore whether
pump limitations or Brownian motion is responsible for the
absence of ripples for the 1 �m spheres we are developing
an improved setup to enable experiments with larger f and
A variations.

Rewriting the main result of Eq. (5) by using the local
velocity,UL, in the expression for � yields further physical
insight into the significance of the �1=2 scaling, the equa-
tion becomes
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Equation (6) shows that the wavelength is directly propor-
tional to a local Froude number when the size of the grains
is small compared with the global scales. Hence, the prob-
lem is of purely mechanical nature and associated with a
forcing with a characteristic frequency or angular fre-
quency. The Froude number can be interpreted as a balance
between lift and weight of the particles but also as a
balance between drag and the friction on the interface—
both effects being responsible for the phenomenon. The
proportionality could be interpreted as follows. Drag and
lift forces on small particles are proportional to the fluid
velocity. Consequently, ULH characterizes the work re-

quired to lift a particle from the interface and entrain it
into the outer flow. On the other hand, �

������������������������������������
g�1� �F=�G�dG

p
corresponds to the frictional work associated with the
motion of a particle from one ripple to the next. When
spatial homogeneity of UL can be assumed, both effects
compete equally in the formation process of the ripples.

In terms of applications, it may be feasible to exploit the
phenomenon for the development of new, alternative in-
dustrial technologies for separating particles or macro-
molecules from a fluid flow. This would constitute an
alternative to existing flow-based separation techniques
such as field-flow fractionation (see, e.g., [18]) or split-
flow lateral thin cell fractionation (see, e.g., [19,20]).
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