Near wall Turbulence of fully developed Turbulent Channel flow

Tariq Talha

University of Warwick

21 Feb, 2008

э

Tariq Talha Near wall Turbulence of fully developed Turbulent Channel flow

ヘロト ヘ戸ト ヘヨト ヘヨト

Recap

- Turbulence statistics in fully developed Channel are only function of y
- Mean stream wise pressure gradient is uniform across the flow

Basic Relationships ۲ $\tau(\mathbf{y}) = \tau_{\mathbf{w}}(1 - \frac{\mathbf{y}}{\delta})$ ۲ $\tau_{t} = \mu \frac{du}{dv} - \rho < u'v' >$ ۲ $u_{\tau} = \sqrt{\frac{\tau_{w}}{\rho}}$ ۲ $y^+ = \frac{u_{\tau}y}{v}$ ۲ $\frac{d\tau_t}{dy} = \frac{dp_w}{dx}$

ъ

Mean velocity profiles

Fully Developed Channel flow is fully described by ρ, ν, μ and pressure gradient.

$$u_{\tau} = \left(-\frac{\delta}{\rho}\frac{dp_{w}}{dx}\right)^{1/2}$$
$$\frac{d\tau}{dy} = -\frac{\tau_{w}}{\delta}$$
$$\tau_{w} = -\delta\frac{dp_{w}}{dx}$$
$$< U >= u_{\tau}F_{o}(\frac{y}{\delta}, Re_{\tau})$$
$$\frac{d < U >}{dy} = \frac{u_{\tau}}{y}\Phi(\frac{y}{\delta}, y^{+})$$

프 🖌 🛪 프 🕨

Law of Wall

Only Valid in Viscous Sub layer $y^+ < 5$

$$\frac{d < U >}{dy} = \frac{u_{\tau}}{y} \Phi_I(y^+) \qquad \text{for} \quad \frac{y}{\delta} << 1$$
$$u^+ = \frac{U}{u_{\tau}}$$
$$\frac{u^+}{dy^+} = \frac{1}{y^+} \Phi(y^+)$$

By Integration

 $u^+ = f_w(y^+)$

Where

$$f_w(y^+) = \int \frac{1}{y'} \Phi(y') d(y')$$

ъ

・ロト ・回 ト ・ヨト ・ヨト

Law of Wall

Figure: Wall law for Different Reynolds Number

æ

(신문) (신문)

Only Valid in range $y^+ > 5, y/\delta < 0.3$

$$\Phi_{I}(y^{+}) = \frac{1}{\kappa}$$
$$\frac{du^{+}}{dy^{+}} = \frac{1}{\kappa y^{+}}$$
$$u^{+} = \frac{1}{\kappa} lny^{+} + B$$

Where

 $\kappa = 0.41, \qquad B = 5.2$

・ロト ・回 ト ・ヨト ・ヨト

(f)

ъ

Figure: Log law for Different Reynolds Number

æ

Tariq Talha

Near wall Turbulence of fully developed Turbulent Channel flow

▲圖> ▲ ヨ> ▲ ヨ>

Figure: Log law for Different Reynolds Number

æ

Tariq Talha

・ロト ・回ト ・ヨト ・ヨト Near wall Turbulence of fully developed Turbulent Channel flow

Wall regions and layer and their properties

Region	Location	Defining property
Inner layer	$y/\delta < 0.1$	$\langle U \rangle$ determined by $u_{\rm f}$ and y^+ , independent of U_0 and δ
Viscous wall region	$y^{+} < 50$	The viscous contribution to the shear stress is significant
Viscous sublayer	$y^{+} < 5$	The Reynolds shear stress is negligible compared with the viscous stress
Outer layer	$y^+ > 50$	Direct effects of viscosity on $\langle U \rangle$ are negligible
Overlap region	$y^+ > 50, y/\delta < 0.1$	Region of overlap between inner and outer layers (at large Reynolds numbers)
Log-law region	$y^+ > 30, y/\delta < 0.3$	The log-law holds
Buffer layer	$5 < y^+ < 30$	The region between the viscous sublayer and the log-law region

Reynolds Stresses

For fixed x,z,t and small y values

$$u = a_1 + b_1 y + c_1 y^2 + \dots,$$

$$v = a_2 + b_2 y + c_2 y^2 + \dots,$$

$$w = a_3 + b_3 y + c_3 y^2 + \dots,$$

All coefficients are zero-mean random variables

At Lower Wall,

$$u = 0, \Rightarrow a_1 = 0$$

 $v = 0, \Rightarrow a_2 = 0$
 $w = 0, \Rightarrow a_3 = 0$

프 🖌 🛪 프 🕨

Reynolds Stresses

$$(\frac{\partial u}{\partial x})_{y=0} = 0$$

$$(\frac{\partial w}{\partial x})_{y=0}=0$$

$$(\frac{\partial v}{\partial x})_{y=0} = b^2 = 0$$

Reynolds stresses

$$< u^2 > = < b_1^2 > y^2 + \dots,$$

$$< v^2 > = < c_c^2 > y^4 +,$$

$$< w^2 > = < b_3^2 > y^2 + \dots$$

$$< uv > = < b_1 c_2 > y^3 +,$$

ヘロト 人間 ト 人注 ト 人注 ト

(f)

æ

Reynolds Stresses

Figure: Reynolds stresses behavior near wall

æ

▶ ★ 臣 ▶

∢ 🗗

Instantaneous U

Tariq Talha Near wall Turbulence of fully developed Turbulent Channel flow

(f)

► < E >

Instantaneous V

(f)

► < E >

Tariq Talha Near wall Turbulence of fully developed Turbulent Channel flow

Instantaneous W

(f)

ъ

Instantaneous Pressure

(f)

► < Ξ >

Tariq Talha Near wall Turbulence of fully developed Turbulent Channel flow