Numerical Simulations of Unsteady Turbulent Flows: Temporal Acceleration

Dr Yongmann Chung

School of Engineering and Centre for Scientific Computing University of Warwick, United Kingdom

Acknowledgement: T Talha, E Hurst, M Jones, Dr S Y Jung

THE UNIVERSITY OF

Governing equations Temporal acceleration Numerical methods

Contents

1 Introduction

- Governing equations
- Acceleration parameter
- Numerical methods

2 Results

- Wall shear stress
- Mean velocity profile
- Fluctuations
- Flow structures

3 Conclusions

Governing equations Temporal acceleration Numerical methods

Governing equations

The Navier-Stokes equations

$$\frac{\partial u_i}{\partial t} + \frac{\partial}{\partial x_j} u_i u_j = -\frac{\partial p}{\partial x_i} + \frac{1}{Re} \frac{\partial^2 u_i}{\partial x_j \partial x_j} + f \delta_{i1}, \qquad (1)$$

$$\frac{\partial u_i}{\partial x_i} = 0. \tag{2}$$

where Re is the Reynolds number, $Re = \frac{U_{m0}h}{v}$.

Non-dimensionalisation

- h: the half channel height,
- U_{m0} : the initial bulk mean velocity.

Centre for Scientific Computing

WAR

OF

Governing equations Temporal acceleration Numerical methods

Temporal acceleration

Non-dimensional acceleration parameter, f

• f is the non-dimensional acceleration parameter, $f = \frac{dU_m^*}{dt^*}$.

$$f = \frac{h}{U_{m0}^2} \frac{dU_m}{dt},$$

$$\gamma = \frac{D}{u_{\tau 0} U_{m0}} \frac{dU_m}{dt} = 2 \frac{Re_{m0}}{Re_{\tau 0}} f$$

Numerical methods

Finite volume method

- Implicit, fractional step method (FSM) with Crank-Nicolson method,
 Kim et al. (2001)
- Second-order accurate, finite volume scheme,
- Periodic boundary conditions in the streamwise and spanwise directions,
- Ensemble average with 15 realisations.

Validation: Steady DNS/LES comparison									
Re	2800	3500	7000	11000	1200	15000	17000	20000	22600
Re_{τ}	180	210	395	590	640	780	860	1000	1110
	DNS	DNS	DNS	DNS	LES	DNS	LES	LES	LES

WARWICK

Temporal acceleration

Simulation pa	rameters	s for LES			
		initial	final (DNS/LES)	ratios	
	Re	3500	15000/22600	4.3/6.4	
	Re_{τ}	210	800/1110	3.8/5.2	
	$ au_w$			14.5/27.4	
	7	F			
	6	-			
	5	-			
	5				
	4 1 1	Ē			
	~ 3				
	2	-			
	1				
	1				
	0	0 5000	10000 D a 15000 200	000 250	
			ſΛℓ		

Governing equations Temporal acceleration Numerical methods

Low speed streaks

Challenges in grid resolution

• Re = 3500 and 15000

Governing equations Temporal acceleration Numerical methods

Simulations parameters

DNS based on $Re_{ au} = 800$								
$\overline{L_x \times L_y \times L_z}$	$N_x \times N_y \times N_z$	Δx^+	Δy_{min}^+	Δy_{max}^+	Δz^+			
$6h \times 2h \times 4h$	$384 \times 384 \times 640$	12.5	0.4	9.7	5.0			
• Acceleration time: $T = 16.4$								

LES based on $Re_{\tau} = 1110$

$L_x^+ \times L_y^+ \times L_z^+$	$N_x \times N_y \times N_z$	Δx^+	Δy_{min}^+	Δy_{max}^+	Δz^+
$6780 \times 2260 \times 4520$	$256 \times 192 \times 384$	26.2	1.0	28.0	11.6

• Acceleration time: T = 27.3, 16.3 and 10.9.

THE UNIVERSITY OF

Wall shear stress Mean velocity profile Fluctuations Flow structures

Contents

Introduction

- Governing equations
- Acceleration parameter
- Numerical methods

2 Results

- Wall shear stress
- Mean velocity profile
- Fluctuations
- Flow structures

3 Conclusions

Wall shear stress Mean velocity profile Fluctuations Flow structures

Temporal acceleration

Mean velocity profile variation

• Three f values (f = 0.2, 0.35 and 0.5) with steady results.

Wall shear stress Mean velocity profile Fluctuations Flow structures

Wall shear stress

Four distinctive stages

- IT: initial transient $(3500 < Re < 4200, \text{ or } 0 < tU_{m0}/h < 1)$
- WT: weak transient $(4200 < Re < 12000, \text{ or } 1 < tU_{m0}/h < 12)$
- ST: strong transient $(12000 < Re < 16000, \text{ or } 12 < tU_{m0}/h < 17)$
- PS: pseudo-steady stage (Re > 16000, or $tU_{m0}/h > 17$)

Wall shear stress

Wall shear stress variation

- Re_{τ} (left) and the rate of change of Re_{τ} (right)
- Good agreement with Dean and Bradshaw (1976)

Wall shear stress Mean velocity profile Fluctuations Flow structures

Mean velocity profile

Mean velocity profile variation with f = 0.2 and 0.5

- WT: Uniform increase in velocity in the early stage of transient.
- PS: It reaches the pseudo-steady velocity at the end of acceleration.

Wall shear stress Mean velocity profile Fluctuations Flow structures

Log-law profile

Mean velocity profile variation

- A downward shift at the IT stage due to a higher u_{τ} value.
- An upward shift at the WT stage due to delay in new turbulence generation.

Wall shear stress Mean velocity profile Fluctuations Flow structures

Mean velocity

Velocity change in time

- Near-wall region: smaller acceleration due to the no-slip condition
- Centre region: almost constant acceleration.

Wall shear stress Mean velocity profile Fluctuations Flow structures

Velocity fluctuations

u_{rms}

- Near-wall turbulence (y < 0.2) responds first to acceleration.
- Turbulence intensities in the core region are smaller than steady values.

Wall shear stress Mean velocity profile Fluctuations Flow structures

Velocity fluctuations

v_{rms}

- Slower response than u_{rms}
- v_{rms} in y < 0.5 region responded first to acceleration.

Wall shear stress Mean velocity profile Fluctuations Flow structures

Velocity fluctuations

Wrms

- A similar trend to the response of v_{rms}.
- Slower response than *u*_{rms}

Fluctuations Flow structures

Velocity fluctuations

Velocity fluctuations in wall units

- Fluctuations are normalised by local u_{τ} .
- Near-wall turbulence responds to the acceleration first.
- Turbulence is transported to the core region.

Introduction Results Fluctuations Conclusions

u_{rms} velocity fluctuations with three f values (f = 0.2, 0.35 and 0.5)

Wall shear stress Mean velocity profile Fluctuations Flow structures

urms velocity fluctuations

Maximum u_{rms} location

- For steady, $y^+ = 15$.
- At Re = 3500, y = 0.07; and Re = 22600, y = 0.015.

Wall shear stress Mean velocity profile Fluctuations Flow structures

urms velocity fluctuations

Maximum u_{rms} location in wall units

• For steady, $y^+ = 15$.

Wall shear stress Mean velocity profile Fluctuations Flow structures

u_{rms} and v_{rms} velocity fluctuations

Maximum u_{rms} and v_{rms}

- $u_{rms}(t) u_{rms}(0)$ normalised by the steady values.
- An overshoot for f = 0.5 case.

Introduction Wall shear stress Results Hear velocity profile Fluctuations Flow structures

Vorticity fluctuations, ω'_x with three *f* values (*f* = 0.2, 0.35 and 0.5)

Wall shear stress Mean velocity profile Fluctuations Flow structures

Streamwise vorticity fluctuations, ω'_x

Wall ω'_x value

- A delay followed by a sudden increase.
- A longer delay for a large *f* value.

Wall shear stress Mean velocity profile Fluctuations Flow structures

Streamwise vorticity fluctuations, ω'_x

Maximum ω'_x value

- A similar trend to the wall ω'_x value.
- Weaker than the steady state value.

Wall shear stress Mean velocity profile Fluctuations Flow structures

Streamwise vorticity fluctuations, ω'_x

Minimum ω'_x location

- Two sudden decreases.
- Located further away from the wall than the steady state case.

Wall shear stress Mean velocity profile Fluctuations Flow structures

Wall-normal vorticity fluctuations, ω'_{v}

Maximum ω'_v value

- A similar trend to the wall ω'_x value.
- Weaker than the steady state value.

Wall shear stress Mean velocity profile Fluctuations Flow structures

Wall-normal vorticity fluctuations, ω'_{v}

Maximum ω'_{v} location

- Similar to minimum ω'_{v} location: two sudden decreases.
- Located further away from the wall than the steady state case.

Wall shear stress Mean velocity profile Fluctuations Flow structures

Wall-normal vorticity fluctuations, ω'_{v}

Maximum ω'_x and ω'_y location in wall units

- A similar trend to the wall ω'_x value.
- Weaker than the steady state value.

Wall shear stress Mean velocity profile Fluctuations Flow structures

Low speed streaks

Wall shear stress Mean velocity profile Fluctuations Flow structures

λ_2 iso-surface contours

Re = 3500

Re = 12000

Re = 9000

Re = 15000

WARWICK

Wall shear stress Mean velocity profile Fluctuations Flow structures

Domain size test

Destruction of turbulence at Re = 9000

Wall shear stress Mean velocity profile Fluctuations Flow structures

Domain size test

Turbulence structures at Re = 11000

Wall shear stress Mean velocity profile Fluctuations Flow structures

Active area

Percentage of active area during temporal acceleration

- Destruction of **old** turbulence.
- Generation of **new** turbulence.

Wall shear stress Mean velocity profile Fluctuations Flow structures

Conditional average at Re = 12000

Conditional avarage

- Area with/without active flow structures.
- Location for the maximum u_{rms} .

Wall shear stress Mean velocity profile Fluctuations Flow structures

Conditional average at Re = 12000

Destruction of turbulence structure

- Large changes.
- New and old turbulence.

Wall shear stress Flow structures

Conditional average (DNS)

Destruction of turbulence structure

- New turbulence is much weaker at Re = 11000 than the steady flow.
- Generation of new turbulence is almost completed at Re = 15000.

Contents

Introduction

- Governing equations
- Acceleration parameter
- Numerical methods

2 Results

- Wall shear stress
- Mean velocity profile
- Fluctuations
- Flow structures

Conclusions

Turbulent channel flow with temporal acceleration

- Turbulence responds rapidly to the temporal acceleration after a certain delay until pseudo-steady equilibrium is achieved.
- *u_{rms}* velocity component responds to the acceleration first, followed by *v_{rms}* and *w_{rms}* velocity components.
- Three delays: production, redistribution, and transport.
- Destruction of the initial turbulence and generation of new turbulence.
- Effect of the acceleration parameter.
- Effect of the initial flow condition.

Thank You!

Wall shear stress

Wall shear stress variation

- Re_{τ} (left) and the rate of change of Re_{τ} (right)
- Good agreement with Dean and Bradshaw (1976)

