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Governing equations

The Navier-Stokes equations
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where Re is the Reynolds number, Re =
Um0h

ν
.

Non-dimensionalisation

h: the half channel height,

Um0: the initial bulk mean velocity.
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Temporal acceleration

Non-dimensional acceleration parameter, f

f is the non-dimensional acceleration parameter, f =
dU∗m
dt∗

.

f =
h

U2
m0

dUm

dt
,

γ =
D

uτ0Um0

dUm

dt
= 2

Rem0

Reτ0
f .

The effect of f

f 0.2 0.35 0.5
DNS/LES LES LES

Y M Chung Unsteady Turbulent Flow Simulations 4/42

http://www.warwick.ac.uk/go/csc/
http://www2.warwick.ac.uk/


Introduction
Results

Conclusions

Governing equations
Temporal acceleration
Numerical methods

Numerical methods

Finite volume method

Implicit, fractional step method (FSM) with Crank-Nicolson method,
Kim et al . (2001)

Second-order accurate, finite volume scheme,

Periodic boundary conditions in the streamwise and spanwise directions,

Ensemble average with 15 realisations.

Validation: Steady DNS/LES comparison

Re 2800 3500 7000 11000 1200 15000 17000 20000 22600
Reτ 180 210 395 590 640 780 860 1000 1110

DNS DNS DNS DNS LES DNS LES LES LES
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Temporal acceleration

Simulation parameters for LES

initial final (DNS/LES) ratios
Re 3500 15000/22600 4.3/6.4
Reτ 210 800/1110 3.8/5.2
τw 14.5/27.4
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Low speed streaks

Challenges in grid resolution

Re = 3500 and 15000

Y M Chung Unsteady Turbulent Flow Simulations 7/42

http://www.warwick.ac.uk/go/csc/
http://www2.warwick.ac.uk/


Introduction
Results

Conclusions

Governing equations
Temporal acceleration
Numerical methods

Simulations parameters

DNS based on Reτ = 800

Lx×Ly×Lz Nx×Ny×Nz ∆x+ ∆y+min ∆y+max ∆z+

6h×2h×4h 384×384×640 12.5 0.4 9.7 5.0

Acceleration time: T = 16.4

LES based on Reτ = 1110

L+
x ×L+

y ×L+
z Nx×Ny×Nz ∆x+ ∆y+min ∆y+max ∆z+

6780×2260×4520 256×192×384 26.2 1.0 28.0 11.6

Acceleration time: T = 27.3, 16.3 and 10.9.
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Temporal acceleration

Mean velocity profile variation

Three f values ( f = 0.2, 0.35 and 0.5) with steady results.
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Wall shear stress

Four distinctive stages

IT: initial transient (3500 < Re < 4200, or 0 < tUm0/h < 1)

WT: weak transient (4200 < Re < 12000, or 1 < tUm0/h < 12)

ST: strong transient (12000 < Re < 16000, or 12 < tUm0/h < 17)

PS: pseudo-steady stage (Re > 16000, or tUm0/h > 17)
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Wall shear stress

Wall shear stress variation

Reτ (left) and the rate of change of Reτ (right)

Good agreement with Dean and Bradshaw (1976)
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Mean velocity profile

Mean velocity profile variation with f = 0.2 and 0.5

WT: Uniform increase in velocity in the early stage of transient.

PS: It reaches the pseudo-steady velocity at the end of acceleration.

f = 0.2 f = 0.5
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Log-law profile

Mean velocity profile variation

A downward shift at the IT stage due to a higher uτ value.

An upward shift at the WT stage due to delay in new turbulence
generation.

f = 0.2 f = 0.5
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Mean velocity

Velocity change in time

Near-wall region: smaller acceleration due to the no-slip condition

Centre region: almost constant acceleration.

f = 0.2 f = 0.5
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Velocity fluctuations

urms

Near-wall turbulence (y < 0.2) responds first to acceleration.

Turbulence intensities in the core region are smaller than steady values.

f = 0.2 f = 0.5
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Velocity fluctuations

vrms

Slower response than urms

vrms in y < 0.5 region responded first to acceleration.

f = 0.2 f = 0.5
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Velocity fluctuations

wrms

A similar trend to the response of vrms.

Slower response than urms

f = 0.2 f = 0.5
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Velocity fluctuations

Velocity fluctuations in wall units

Fluctuations are normalised by local uτ .

Near-wall turbulence responds to the acceleration first.

Turbulence is transported to the core region.
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urms velocity fluctuations with three f values ( f = 0.2, 0.35 and 0.5)
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urms velocity fluctuations

Maximum urms location

For steady, y+ = 15.

At Re = 3500, y = 0.07; and Re = 22600, y = 0.015.

Re time
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urms velocity fluctuations

Maximum urms location in wall units

For steady, y+ = 15.
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urms and vrms velocity fluctuations

Maximum urms and vrms

urms(t)−urms(0) normalised by the steady values.

An overshoot for f = 0.5 case.

urms vrms
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Vorticity fluctuations, ω ′x with three f values ( f = 0.2, 0.35 and 0.5)
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Streamwise vorticity fluctuations, ω ′x

Wall ω ′x value

A delay followed by a sudden increase.

A longer delay for a large f value.

Re time

Y M Chung Unsteady Turbulent Flow Simulations 25/42

http://www.warwick.ac.uk/go/csc/
http://www2.warwick.ac.uk/


Introduction
Results

Conclusions

Wall shear stress
Mean velocity profile
Fluctuations
Flow structures

Streamwise vorticity fluctuations, ω ′x

Maximum ω ′x value

A similar trend to the wall ω ′x value.

Weaker than the steady state value.

Re time
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Streamwise vorticity fluctuations, ω ′x

Minimum ω ′x location

Two sudden decreases.

Located further away from the wall than the steady state case.

Re time
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Wall-normal vorticity fluctuations, ω ′y

Maximum ω ′y value

A similar trend to the wall ω ′x value.

Weaker than the steady state value.

Re time
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Wall-normal vorticity fluctuations, ω ′y

Maximum ω ′y location

Similar to minimum ω ′y location: two sudden decreases.

Located further away from the wall than the steady state case.

Re time
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Wall-normal vorticity fluctuations, ω ′y

Maximum ω ′x and ω ′y location in wall units

A similar trend to the wall ω ′x value.

Weaker than the steady state value.

ω ′x ω ′y
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Low speed streaks

Re = 3500 Re = 8000

Re = 12000 Re = 15000
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λ2 iso-surface contours

Re = 3500 Re = 9000

Re = 12000 Re = 15000
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Domain size test

Destruction of turbulence at Re = 9000

6×2×4 12×2×4
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Domain size test

Turbulence structures at Re = 11000

6×2×4 12×2×4
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Active area

Percentage of active area during temporal acceleration

Destruction of old turbulence.

Generation of new turbulence.
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Conditional average at Re = 12000

Conditional avarage

Area with/without active flow structures.

Location for the maximum urms.

λ2 urms
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Conditional average at Re = 12000

Destruction of turbulence structure

Large changes.

New and old turbulence.

vrms wrms
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Conditional average (DNS)

Destruction of turbulence structure

New turbulence is much weaker at Re = 11000 than the steady flow.

Generation of new turbulence is almost completed at Re = 15000.

Re = 11000 Re = 15000
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Turbulent channel flow with temporal acceleration

Turbulence responds rapidly to the temporal acceleration after a certain
delay until pseudo-steady equilibrium is achieved.

urms velocity component responds to the acceleration first, followed by vrms
and wrms velocity components.

Three delays: production, redistribution, and transport.

Destruction of the initial turbulence and generation of new turbulence.

Effect of the acceleration parameter.

Effect of the initial flow condition.
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The End

Thank You!
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Wall shear stress

Wall shear stress variation

Reτ (left) and the rate of change of Reτ (right)

Good agreement with Dean and Bradshaw (1976)
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