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Energy demand driven by a rising global population must 
increasingly be satisfied from renewable alternatives to fos-
sil fuels, as the latter release extensive amounts of greenhouse 

gases with potentially devastating consequences for our ecosystem. 
Solar power is considered to be a particularly attractive source, as on 
average the Earth receives around 10,000 times more energy from 
the Sun in a given time than is required by human consumption1,2. 
Although several technologies exist to convert this extensively avail-
able sunlight into electrical current3,4, factors such as scarcity of 
production materials, high cost per delivered quantity of electricity 
and lack of equally efficient storage technologies have limited their 
adoption4–8. Biological photovoltaics (BPVs; also known as biopho-
tovoltaics and biological solar cells9) are emerging as an environ-
mentally friendly and low-cost approach to harvest solar energy and 
convert it into electrical current10–12. In phototrophic organisms, 
light is converted into high-energy charge-separated electron–hole 
pairs, and the excited electrons are transferred through a number of 
intracellular electron carriers, with a fraction eventually exported 
across the cell membrane and released to the external environ-
ment13–15 (Fig. 1a). In BPVs, these secreted electrons are directed 
to an electrode (anode) and from there allowed to flow to a more 
positive potential electrode (cathode) through an external circuit, 
thus generating current16,17. Simultaneously, the protons released by 
the cells diffuse from the anodic chamber to the cathodic one where 
water is re-formed on an appropriate catalyst (Fig. 1b). This process 
leads to the generation of current without release of any chemical 
side-products. A proton-permeable membrane separates the anodic 
chamber from the cathodic one, ensuring that electrons travel only 
via the external load.

BPVs demonstrated so far have relied on either on suspending 
photosynthetic cells in solution or immobilizing them directly onto 
the anode9. In these designs, electron generation and transfer to the 
electrical circuit occur in a single compartment, and the electrons 

reach the anode and generate current as soon as they have been 
secreted. Here, we propose a two-chamber system in which charg-
ing (reduction of the electron carrier molecules by exoelectrogenic 
electrons) and power delivery (electron transfer to the external elec-
trical circuit) are spatially decoupled from one another (Fig. 1). In 
such a system, it becomes possible to design the geometrical con-
figurations and operating conditions of the electron generation and 
power harvesting units independently, which allows their perfor-
mance to be optimized simultaneously. In particular, in the devices 
described here, we use miniaturized geometries in the power deliv-
ery unit. This operation at small length scales suppresses convective 
mixing18, enabling us to omit the semipermeable membrane from 
the power delivery unit of the BPV, normally required to separate 
the device into the anodic and cathodic compartments. In addi-
tion to decreasing the internal resistance of the device, omitting the 
membrane would reduce the cost of the system and make the opera-
tion easier, as membranes have been reported to dry out, degrade, 
foul and clog19–21. More generally, the use of small length scales has 
the potential to decrease the resistive electrical losses of the system 
because it introduces elevated surface-to-volume ratios, enhanced 
mass-transfer coefficients and small electrode separation20–23.

We show that the use of such two-chamber flow-controlled BPVs 
results in a 2.5-fold increase in anodic power density compared with 
the maximum reported so far when using wild-type Synechocystis 
sp. PCC6803 cells as the phototrophic catalyst (Supplementary Table 
1). When replacing these with Synechocystis mutant cells deficient in 
the main photosynthetic and respiratory electron sinks (the termi-
nal oxidases and the flavodiiron complexes Flv1/3 and Flv2/4), the 
improvement in the power density further increased to 5-fold24,25.

Device design and operation
The power delivery unit of the BPV was fabricated in 
poly(dimethylsiloxane) via soft photolithography as a rectangular 
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Abstract
Localized ion fluxes at the plasma membrane provide electrochemical gra-
dients at the cell surface that contribute to cell polarization, migration, and
division. Ion transporters, local pH gradients, membrane potential, and orga-
nization are emerging as important factors in cell polarization mechanisms.
The power of electrochemical effects is illustrated by the ability of exoge-
nous electric fields to redirect polarization in cells ranging from bacteria,
fungi, and amoebas to keratocytes and neurons. Electric fields normally sur-
round cells and tissues and thus have been proposed to guide cell polarity
in development, cancer, and wound healing. Recent studies on electric field
responses in model systems and development of new biosensors provide new
avenues to dissect molecular mechanisms. Here, we review recent advances
that bring molecular understanding of how electrochemistry contributes to
cell polarity in various contexts.
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Cell migrationa

Wound healingb

Wound

1 Cell growth2 Cell division3

1 Tissue regeneration2 Development3

Embryonic polarity4

Endogenous electrical currents or fields 
Polarized behavior

Figure 1
Electrical currents surround cells and tissues. (a) Electrical current patterns around single polarizing cells. The black arrows and lines
are electrical currents mapped with vibrating microprobes. The red arrows indicate the direction of polarization. ! Migrating amoebas
(adapted with permission from Nuccitelli et al. 1977). " Polarized fungal growth (adapted with permission from Gow 1984).
# Cleaving Xenopus embryo (adapted with permission from Kline et al. 1983). $ Outgrowing Fucus embryo (adapted with permission
from Nuccitelli & Jaffe 1975). (b) Electrical current patterns around polarizing tissues. ! Healing epithelial layer in a rat corneal
wound (adapted with permission from Reid et al. 2005). " Regenerating newt limb (adapted with permission from Borgens et al.
1977). # Neurulating amphibian embryo (adapted with permission from Shi & Borgens 1995).

EFFECTS OF EXOGENOUS ELECTRIC FIELDS ON POLARITY
The striking effects of applying exogenous electric fields on cells highlight the importance of
electrochemistry in cell polarity. In these experiments, electric fields (EFs) of magnitudes similar
to those measured in vivo have been shown to direct polarity in living cells and tissues. There
is now a large body of evidence that most cells—ranging from bacteria, fungi, and amoebas to
animal cells—are electrotactic and robustly orient polarity, migration, or division planes to applied
EFs (Figure 2a) (Brower & Giddings 1980; Hinkle et al. 1981; Korohoda et al. 2000; Lin et al.
2008; Minc & Chang 2010; Nishimura et al. 1996; Patel & Poo 1982; Pu et al. 2007; Pullar
et al. 2006; Rajnicek et al. 1992, 1994; Soong et al. 1990; Zhang et al. 2000; Zhao et al. 1999,
2006). Similarly, EFs also affect cellular behaviors in multicellular tissues in the context of wound
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Cells as masters of electrochemistry
Cell Physiology Arising From Electron Flow
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PATHWAYS OF OXIDATIVE DAMAGE 397

Figure 1 Molecular-orbital diagrams of molecular
oxygen (O2), superoxide (O2�), hydrogen peroxide
(H2O2), and singlet oxygen (1O2).

THECHEMISTRYOFOXYGEN SPECIES

Much of the behavior of molecular oxygen and its partially reduced species derives
from their reduction potentials and molecular orbital structures. Molecular oxygen
itself is a rarity, a stable diradical, with two spin-aligned, unpaired electrons in its
pi antibonding orbitals (Figure 1). An important consequence of this structure
is that organic molecules with spin-paired electrons cannot transfer more than
one electron at a time to oxygen. Because oxygen is a relatively weak univalent
electron acceptor (andmost organic molecules are poor univalent electron donors),
this restriction ensures that oxygen cannot efficiently oxidize amino acids and
nucleic acids. However, the unpaired electrons of dioxygen readily interact with
the unpaired electrons of transition metals and organic radicals.
In contrast, the reduction potentials of O2�, H2O2, and hydroxyl radical dictate

that in thermodynamic terms they aremuch stronger univalent oxidants than dioxy-
gen is (Figure 2). However, the anionic charge of O2� inhibits its effectiveness as
an oxidant of electron-rich molecules, while the reactivity of H2O2 is diminished
by the stability of its oxygen-oxygen bond. Neither of these features applies to the
hydroxyl radical, and indeed HO· reacts at virtually diffusion-limited rates with
most biomolecules.

Figure 2 Reduction potentials for oxygen species. 1 M
dioxygen is used as the standard state for the first step.
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