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Bacteria have been studied for a long time ...
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Much of our understanding of biology
IS based on bacterial studies

... for example:




|dentification and characterization
of metabolic pathways

S
‘.
. : .
14 ——
’ "
"
. . -
Y .
' . {
: ! . =
’ ————
’ . .
T EEEREEREE . - .
oot I 1 |eeledee - P S e S = .
! ....'.....-.. . - - ——
Ry : )
o . . I
e




Bacteria even provided structural insight
into the basis of brain activity

Potassium lon Channel

Streptomyces lividans
(Gram positive soil bacteria)

Doyle etal, (1998) Science 280/69



We have learned much from bacterial studies

... but there is a problem. ..




Bacteria are single celled organisms ...

Our model system:

Bacillus subtilis



... but most bacteria reside in communities:
Biofilms

Our model system:

Bacillus subtilis

Bacillus subtilis biofilm



Bacterial behavior in biofilms remains unclear

Liquid culture Biofilm




Fundamental questions:
Emergence of collective behavior




Fundamental questions:
Behavior of single cells in the community




Communication and coordination
within the biofilm




] - " \A ) : _4\ “A\k.‘ .8
2 Biofilms are densely packed tissue-like structures §

- .




a:ﬂ*i tg‘\;a

“What goes on‘|n3|de Biofilms?. /& s &
h» 9 ’r&\\ v M{ ¥

\"lfl"é there new. blology to bé dlscovered’?“\‘
A R > > q ‘

i‘ A\ ,’\ a

L LAL.



| A

o % B._subtilis|biofilm

V4 -.’,




Simplification by restricting growth to 2D




Utilizing unconventionally large microfluidic devices:

Growth chamber

Cell trap



Ability to measure single cells
in a biofilm with over two million cells

Biofilm

Bacillus subtilis



Unexpected biofilm growth dynamics

400 600 800
Diameter (um)

Bacillus SUbti/iS Liu etal, Nature, 523, 550-554



Unexpected biofilm growth dynamics

400 600 800
Diameter (um)

Bacillus SUbti/iS Liu etal, Nature, 523, 550-554



Oscillations start at a defined colony size
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« A colony with a diameter of 600um
contains ~1 500 000 cells.



Oscillations in expansion rate persist for many hours
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What could periodically pause
biofilm growth ?




Glutamate is provided in the media

glutamate \

NH,’




But the biofilm is the only source of ammonium
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Glutamate is limited in the interior
Ammonium is limited in the periphery
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Metabolic feedback between periphery and interior

—_— —

glutavmate \

NH

00:00 hours

Growth

Biofilm

No growth




Metabolic feedback between periphery and interior
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Metabolic feedback between periphery and interior
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Metabolic feedback between periphery and interior

Glutamate

consumption
> Aamid N
/’ N
/ \
, 'Ammonium“

roduction!

\f ;

N\ //
Sa=

gluta'mate \
NH

00:00 hours

Biofilm




Metabolic codependence gives rise to oscillations
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Do oscillations provide a biological benefit?
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Internal conflict !

The same cells are both
cooperating and competing

Protection

Protection vs Starvation




Hypothesis:
Metabolic Codependence resolves the conflict
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What about metabolic /Independence?
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Let’s compare these two strategies
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Metabolic Codependence is a beneficial strategy
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... again glutamate plays a critical role

Biofilm

High

Low



Glutamate is a charged amino acid
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Glutamate cannot diffuse through the membrane
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Proton Motive Force drives glutamate uptake
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PMF depends on the membrane potential
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Prediction:
Membrane potential regulation during biofilm growth
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Prediction:
Membrane potential regulation during biofilm growth
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Metabolically driven growth oscillations
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Metabolically driven growth oscillations
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Measuring membrane potential dynamics
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Prindle et al., Nature, 527, 59-63 (2015)



Measuring membrane potential dynamics
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Which ions are involved in
membrane potential oscillations?
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Which ions are involved in
membrane potential oscillations?
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Which ions are involved in
membrane potential oscillations?
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YugO, the B. subtilis K-channel
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Mechanism for electrical signaling in biofilms
The trigger:
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Trigger for K* release: Glutamate starvation
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Mechanism for electrical signaling in biofilms
The trigger:

UH

trkA gate
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Opening of YugO channels
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Mechanism for electrical signaling in biofilms
Signal relay:

( trkA gate
k iGlu

Depolarization of neighboring cells




Mechanism for electrical signaling in biofilms
Signal relay:

yugO —» ®
( trkA gate 1{

Reduced glutamate uptake




Mechanism for electrical signaling in biofilms
Signal relay:
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Mechanism for electrical signaling in biofilms
Signal relay:
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Should generate an actively relayed

extracellular potassium wave
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Prindle et al., Nature, 527, 59-63 (2015)
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Prindle et al., Nature, 527, 59-63 (2015)
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Extracellular potassium waves

1.8 mm

Phase

A R S R A
Extracellular Potassium (APG-4)

0 min

Prindle et al., Nature, 527, 59-63 (2015)



Extracellular potassium waves

1.8 mm

Phase
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Extracellular Potassium (APG-4)

0 min

Prindle et al., Nature, 527, 59-63 (2015)



The potassium signal is actively propagated

Extracellular Potassuum (APG 4)

(a.u.)

APG-4
- = = K* diffusion (theory)
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The potassium signal is actively propagated

Extracellular Potassnum (APG 4)

0 min

Active signaling

(ool 1) —> (calz) —>

[ T O .

Prindle et al., Nature, 527, 59-63 (2015)



Let’s test our model further

U U
vGlu - Jrk \ L Glu 4




Let’s test the propagation mechanism




Propagation: Potassium mediated depolarization

KCI
shock
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Propagation: Potassium mediated depolarization
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Propagation: Potassium mediated depolarization

KCI
shock
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Propagation: Potassium mediated depolarization
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Is the response Glutamate specific ?
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Is the response Glutamate specific ?

glutamate @'

- Glutamate

O
e
(-
O]
e
O
al
)
C
(©
—
O
&
)
=

10 20 30
Time (min)




What if we bypass the need for Glutamate ?
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What if we bypass the need for Glutamate ?

0 min

. B

glutamine|glutamate




What if we bypass the need for Glutamate ?

0 min

.

glutamine|glutamate




Membrane potential response
is glutamate specific
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Model for electrical signaling in biofilms
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Mathematical model accounts for observations
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Reduced signal propagation efficiency




lon channel gating promotes long-range signaling

Modeling prediction :
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A long-standing question:
What is the function for bacterial ion channels?

Potassium lon Channel
Streptomyces lividans
(Gram positive soil bacteria)

Doyle et al, (1998) Science 280/69




A long-standing question

Channels in microbes: so many holes to fill

Paul Blount roscientists. However, their natural roles in microbial
UT Southwestern physiology remain largely unknown. The intellectual
and technical schisms between ‘neuro’ and ‘micro’

biology must be bridged before we know how we

became so smart, and whether microbes are just as

smart.
Molecular Microbiology (2004) 53(2), 373-380

o A biological role for prokaryotic
s Wil i CIC chioride channels

Ramkumar lyer, Tina M. Iverson, Alessio Accardi & Christopher Miller

ion channels in bacteria are unknown. Strong conservation of
functionally important sequences from bacteria to vertebrates,
and of structure itself'’, suggests that prokaryotes use ion
channels in roles more adaptive than providing high-quality
protein to structural biologists. Here we show that Escherichia
NATURE | VOL 419 | 17 OCTOBER 2002



Bacterial ion channel structures have
provided many insights

Potassium lon Channel
Streptomyces lividans
(Gram positive soil bacteria)

Doyle et al, (1998) Science 280/69



Functional similarity between
mammalian and bacterial ion channels
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... the context of the community matters

Liquid culture Biofilm
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Question...




Question...




Question...




Electrical signaling-mediated

attraction of motile cells to a biofilm
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Species-independent
Attraction

Biofilm
Motile
cells : )

K+

Electrical signals (K*)
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Species-independent : :
Attraction ‘A generic mechamsm?'
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B. subtilis biofilm

P. aeruginosa motile cells
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Let’s extend our thinking... even further




Let’s extend our thinking... even further




Coupling between two biofilms

Membrane potential
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Biofilm 1
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