Understanding metabolism as an electrical process

Orkun S Soyer

BEE Workshop
Warwick, 29 March 2019
(O)SSS $\operatorname{lk} \mathbb{A} \mathbb{B}$)

Beo
Bio Electrical Engineering
Innovation Hub @ Warwick

I'm interested in understanding cell metabolism / physiology

Metabolism is the process through which cells acquire energy to make biomass

This is the dominant view driving the analysis of metabolism.
e.g; Flux Balance Analysis (FBA) implements biomass optimality, metabolic models consider pathways optimised separately for biomass, etc.

Metabolism before a cell

Metabolism without growth

Environmental microbes

Anaerobic digestion

Healthy tissue

Metabolism across cells

Animal gut

Maybe we need an alternative conceptual view on metabolism?

The dream of every cell is to become two cells

François Monod

Metabolism optimised for biomass production

Metabolism invented biomass to stabilise a state of nonequilibrium thermodynamics

Neutral evolution
Life is an electron looking for a place to rest

Albert Szent-Györgyi

Metabolism as an electron flow system shaped by thermodynamic bottlenecks and biophysical tradeoffs

Vignette 1: Thermodynamic bottlenecks

Anaerobic digestion

Schink B Microbiol Mol Biol Rev 61:2 (1997)

Engineer synthetic communities to learn about biochemical basis of communities

Syntrophy: Crucial in all AD systems

Lactate +2 Sulfate $+3 \mathrm{H}^{+} \longrightarrow 3 \mathrm{CO}_{2}+2 \mathrm{HS}^{-}+3 \mathrm{H}_{2} \mathrm{O} \quad \Delta \mathrm{G}_{0}=-259.09 \mathrm{~kJ} / \mathrm{mol}$

Model system to understand the basis of syntrophy:

Isolates from co-culture are consistently "syntrophic", while those from wild type are not

Syntrophy made possible by energy investment to overcome thermodynamics hurdle

Vignette 1: Thermodynamic inhibition due to terminal electron acceptor availability can be a key driver of evolution of metabolic systems (intra- and inter-cellular)

High energy respiratory pathways

Ethanol, Acetate, Lactate, Butyrate, $\mathrm{H}_{2} \ldots$

Low energy fermentative pathways
$\Delta G_{0}<-500 \mathrm{~kJ} / \mathrm{mol}$

$$
\Delta G_{0}>-300 \mathrm{~kJ} / \mathrm{mol}
$$

Test 1: Use electrodes as terminal electron acceptors to control metabolism via electrode potential

Vignette 2: Cellular trade-offs

Christen S \& Sauer U, FEMS (2011)
Fermentation can still happen in the presence of terminal electron acceptor like oxygen

Trade-offs in cellular metabolism can explain respiro-fermentation (overflow metabolism):

Trade-offs in space/enzyme allocation
Szenk M, Dill KA, de Graff AMR, Cell Systems 5 (2017)
Basan M, et al., Nature 528 (2015)

Trade-offs in pathway rate and yield
Pfeiffer T, Schuster S, Bonhoeffer S, Science 292 (2001)

Trade-offs in substrate-based growth rates
Doebeli M, Pop. Ecology 44:2 (2002)

Can trade-offs lead to evolution of overflow metabolism under selection for biomass?

EvoFBA

available to download

Continue ad infinitum

Uptake Reaction Bounds

Directed evolution of E.coli using EvoFBA

Continue ad infinitum

in silico version of
Lenski, R. et al., 1991. Long-term experimental evolution in Escherichia coli. I. Adaptation and divergence during 2,000 generations. American Naturalist, 138(6), pp.1315-1341.

Many clones emerge over evolution

- 98678 clones generated
- 3978 (~4\%) clones survived a subculturing event
- 235 +/- 30 clones present each day

Constraints in cellular resources lead to evolution of overflow metabolism and 'cross-feeding'

Constraints in cellular resources lead to evolution of 'cross-feeding'

Acetate $250 \mathrm{mg} / \mathrm{L}$

Glucose 250 mg/L

Vignette 2: Cellular trade-offs can be a key driver of evolution of metabolic systems (intra- and inter-cellular)

Trade-offs in space/enzyme allocation

Trade-offs in pathway rate and yield

Trade-offs in substrate-based growth rates

Trade-offs arising from conserved moieties and pH???

Vignette 2: Trade-offs arising from conserved moieties and pH leading to thermodynamic inhibition in different paths

Test 2: Do conserved moieties act as trade-off points?

Metabolism as an electron flow system shaped by thermodynamic bottlenecks and biophysical tradeoffs

Interrogating metabolism as an electron flow system.

Engineering microbial communities using thermodynamic principles and electrical interfaces. Christian Zerfass, Jing Chen, Orkun S Soyer,
Current Opinion in Biotechnology 50:121-127 (2017).

Is a view based on electron flows and biophysical limits a useful one to understand and manipulate metabolism?

Red Pill or Blue Pill? The Matrix, 1999, Warner Brothers

Basics: Develop and parameterise a holistic model of metabolism and physiology

Can we develop a toy model capturing the dynamics of metabolism, conserved moieties, pH , and membrane potential?

Hadrien Delattre

Test 1: Use electrodes as terminal electron acceptors to shape respiro-fermentation

B)

Cells utilise both electrode and oxygen

| Lactate | Acetate | Fum. | Succ. e^{-}estimate | e^{-}total | e^{-} |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| cons. | prod. | cons. | prod. | to O_{2} | calculated measured |

20	14	28	28	68	140	140
14	13	-	-	68	132	64
13	12	-	-	68	128	64
12	8	-	-	68	148	80

Assuming 12 (4) e- per lactate resp. (ferm.)

Try with cellulose degrading Clostridia

Link to internal metabolism; Upcoming!

Open PDRA

 positionsBio Electrical Engineering Innovation Hub @ Warwick

Test 2: Use electrodes and redox mediators to shape metabolic trade-offs

More tests: Metabolism as an electron flow system

Controlling bistability and oscillation in enzymatic reaction motifs

Enzyme-level
Cell-level

Clare Hayes

Electric nature of metabolic, spatial oscillations

Open PDRA
positions

Metabolism as an electron flow system

Thermodynamics is the only physical theory of universal content, which I am convinced, that within the framework of applicability of its basic concepts will never be overthrown!

THANK YOU

(O)SS $\mid \mathbf{k} \mathbb{A} \mathbb{B}$

Funders

http://osslab.lifesci.warwick.ac.uk

Craig McBeth
Christian Zerfass Jing Chen
Zoe Schofield
Connah Johnson
Clare Hayes
Kelsey Cremin
Praneet Prakash
Hadrien Delattre

Collaborators

Munehiro Asally, Marco Polin, Pat Unwin, Chris Quince, Joseph Christie-Oleza, Patrick Schaefer (University of Warwick)
Angus Buckling (University of Exeter)

