Understanding metabolism as an electrical process

Orkun S Soyer

BEE Workshop Warwick, 29 March 2019

OSS KAB

I'm interested in understanding cell metabolism / physiology

Metabolism is the process through which cells acquire energy **to make biomass**

This is the dominant view driving the analysis of metabolism.

e.g; Flux Balance Analysis (FBA) implements biomass optimality, metabolic models consider pathways optimised separately for biomass, etc.

Metabolism before a cell

Selection? Selection on what?

Metabolism without growth

Healthy tissue

....

Metabolism across cells

Anaerobic digestion

Animal gut

Maybe we need an alternative <u>conceptual</u> view on metabolism?

Adaptive evolution

The dream of every cell is to become two cells

François Monod

Metabolism optimised for biomass production

Metabolism invented biomass to stabilise a state of nonequilibrium thermodynamics

Life is an electron looking for a place to rest

Albert Szent-Györgyi

Metabolism as an electron flow system shaped by thermodynamic bottlenecks and biophysical tradeoffs

Interrogating metabolism as an electron flow system.

Christian Zerfass, Munehiro Asally, Orkun S Soyer Current Opinion in Systems Biology 13: 59-67 (2019).

Vignette 1: Thermodynamic bottlenecks

Anaerobic digestion

Schink B *Microbiol Mol Biol Rev* 61:2 (1997)

Engineer synthetic communities to learn about biochemical basis of communities

Grosskopf & Soyer, *Curr. Op. Biotech* (2014)

Syntrophy: Crucial in all AD systems

Lactate + 2Sulfate + $3H^+ \rightarrow 3CO_2 + 2HS^- + 3H_2O$ $\Delta G_0 = -259.09 \text{ kJ/mol}$

Model system to understand the basis of syntrophy:

Isolates from co-culture are consistently "syntrophic", while those from wild type are not

Syntrophy made possible by energy investment to overcome thermodynamics hurdle

Vignette 1: Thermodynamic inhibition due to <u>terminal</u> <u>electron acceptor availability</u> can be a key driver of evolution of metabolic systems (intra- and inter-cellular)

Test 1: Use electrodes as terminal electron acceptors to control metabolism via electrode potential

Vignette 2: Cellular trade-offs

Fermentation can still happen in the presence of terminal electron acceptor like oxygen

Trade-offs in cellular metabolism can <u>explain</u> respiro-fermentation (overflow metabolism):

Trade-offs in space/enzyme allocation

Szenk M, Dill KA, de Graff AMR, *Cell Systems 5* (2017) Basan M, et al., *Nature 528* (2015)

Trade-offs in pathway rate and yield

Pfeiffer T, Schuster S, Bonhoeffer S, Science 292 (2001)

Trade-offs in substrate-based growth rates

Doebeli M, Pop. Ecology 44:2 (2002)

Can trade-offs lead to <u>evolution</u> of overflow metabolism under selection for biomass?

Directed evolution of E.coli using EvoFBA

in silico version of

Lenski, R. et al., 1991. Long-term experimental evolution in Escherichia coli. I. Adaptation and divergence during 2,000 generations. American Naturalist, 138(6), pp.1315–1341.

Many clones emerge over evolution

- 98678 clones generated
- 3978 (~4%) clones survived a subculturing event
- 235 +/- 30 clones
 present each day

Constraints in cellular resources lead to evolution of overflow metabolism and 'cross-feeding'

Constraints in cellular resources lead to evolution of 'cross-feeding'

Ecological lineages d *Escherichi*

Mickaël Le Gac^{a,b}, Jes

divergence. This pr distinct niches or, evolution. Here we and S, that coexiste verging from a con tained phenotypic resource utilization on the catabolic prc

Vignette 2: Cellular trade-offs can be a key driver of evolution of metabolic systems (intra- and inter-cellular)

Trade-offs in space/enzyme allocation

Trade-offs in pathway rate and yield

...

Trade-offs in substrate-based growth rates

Trade-offs arising from conserved moieties and pH???

Vignette 2: Trade-offs arising from conserved moieties and pH leading to thermodynamic inhibition in different paths

Test 2: Do conserved moieties act as trade-off points?

Metabolism as an electron flow system shaped by thermodynamic bottlenecks and biophysical tradeoffs

Thermodynamic feasibility

Lack of electron acceptors?

Internal redox / charge limitations influencing metabolic fluxes

Charge and redox properties of membranes

Toxic redox effects of respiration?

Ecological drivers

Interrogating metabolism as an electron flow system.

Christian Zerfass, Munehiro Asally, Orkun S Soyer Current Opinion in Systems Biology *13:* 59-67 (2019).

Engineering microbial communities using thermodynamic principles and electrical interfaces. Christian Zerfass, Jing Chen, Orkun S Soyer,

Current Opinion in Biotechnology 50:121-127 (2017).

Is a view based on electron flows and biophysical limits a useful one to understand and manipulate metabolism?

RED PILL OR BLUE PILL? THE MATRIX, 1999, WARNER BROTHERS

Basics: Develop and parameterise a holistic model of metabolism and physiology

Can we develop a toy model capturing the dynamics of metabolism, conserved moieties, pH, and membrane potential?

urface Height / µm

Kelsey Cremin

Hadrien Delattre

Test 1: Use electrodes as terminal electron acceptors to shape respiro-fermentation

Control of respiration vs. fermentation in *Shewenalla oneidensis* using electrodes poised at specific potentials

Christian Zerfass

Cells utilise both electrode and oxygen

Try with cellulose degrading Clostridia

Link to internal metabolism; Upcoming!

Test 2: Use electrodes and redox mediators to shape metabolic trade-offs

Control of metabolic pathways in cancer cells with redox mediators

Zoe Schofield Craig McBeth

More tests: Metabolism as an electron flow system

Controlling bistability and oscillation in enzymatic reaction motifs

F₆ P PFK Q_{red}. NADH, ADP AT θ FCytb₂ LDH FDH РК Q_{ox} NAD PEP Lac PÝR

Enzyme-level

Feeder electrode GSSG GSH. Cells NAPOI Nanoparticles Cell-level Feeder electrode Optical readout **Open PDRA** positions **Bio Electrical Engineering** nnovation **Praneet Prakash**

spatial oscillations

Electric nature of metabolic,

Clare Hayes

Metabolism as an electron flow system

Thermodynamics is the only physical theory of universal content, which I am convinced, that within the framework of applicability of its basic concepts will never be overthrown!

THANK YOU

http://osslab.lifesci.warwick.ac.uk

Connah Johnson Clare Hayes Kelsey Cremin Praneet Prakash Hadrien Delattre

Funders

Collaborators

Munehiro Asally, Marco Polin, Pat Unwin, Chris Quince, Joseph Christie-Oleza, Patrick Schaefer (University of Warwick) Angus Buckling (University of Exeter)

> Two PDRA positions

WARWICK CENTRE FOR INTEGRATIVE SYNTHETIC BIOLOGY