

Microbial Adhesion and Molecular Interactions

Andrew Marsh University of Warwick

go.warwick.ac.uk/marshgroup

28 March 2019

Bioelectrical Engineering Hub Warwick

Overview

SiO₂, PS, PEGA beads ··· (phage-λ genomic display library)

Langmuir, **2006**, 22, 8144

Langmuir, 2013, 29, 2961

- Au, Si planar substrates with monolayers (lysozyme, fibrinogen)
- 1 µm microspheres, 100-200 µm beads (*Methanosarcina barkeri*)

D Dobrzanska, PhD Thesis, University of Warwick 2014

 polyurethane foam (cattle slurry, fruit and veg anaerobic digester sampling)

Trimethylamine N-oxide: a 'kosmotrope'

 μ = 5.07 D (calc.) 5.02 D (expt., benzene) *cf.* 1.85 D for water, 0.61 D Me₃N

p*K*_a (Me₃N⁺O-H) = 4.5 (R P Bell, W C E Higginson *Proc. Royal Soc.* **1949**, *1*97, 141)

pKa (Me₃N⁺-H) = 9.76 (H K Hall, Jr. *J. Am. Chem. Soc.* **1957**, 79, 5441.

Calculation performed at MP2/aug-cc-pVDZ level using Gaussian03 T R Walsh

Counteracts denaturing effect of urea on proteins, stabilises macromolecular structure D W Bolen, I L Baskakov *J Mol Biol* **2001**, *310*, 955

New substrates prepared: dendrimeric OEG

S J Dilly, S J Carlisle, A J. Clark, A R Shepherd, S C Smith, P C Taylor, A Marsh *J Pol Sci: Pol Chem (Part A)* **2006**, *44*, 2248 Dilly SJ, Beecham MP, Brown SP, Griffin JM, Clark AJ, Griffin CD, Marshall J, Napier RM, Taylor PC, Marsh A. *Langmuir* **2006**, *22*, 8144.

New substrates prepared: tertiary amine oxides

Dilly SJ, Beecham MP, Brown SP, Griffin JM, Clark AJ, Griffin CD, Marshall J, Napier RM, Taylor PC, Marsh A. *Langmuir* **2006**, *22*, 8144.

Testing non-specific adhesion using plant genome phage-λ display library

Results of non-specific protein adhesion tests

• Low binding levels desirable

Dilly SJ, Beecham MP, Brown SP, Griffin JM, Clark AJ, Griffin CD, Marshall J, Napier RM, Taylor PC, Marsh A. *Langmuir* **2006**, *22*, 8144.

D. A. Dobrzanska ... A. Marsh *Langmuir*, **2013**, *29*, 2961–2970

XPS and water contact angle

average contact angle/° 34±3

average contact angle/° 25±3

D. A. Dobrzanska ... A. Marsh Langmuir, 2013, 29, 2961–2970

QCM study of lysozyme and fibrinogen adhesion to surfaces

D. A. Dobrzanska ... A. Marsh *Langmuir*, **2013**, *29*, 2961–2970

Tertiary amine N-oxide derivatised gold surfaces to control protein adhesion

D A Dobrzanska ... A Marsh *Langmuir*, **2013**, *29*, 2961–2970

Flow cytometry: *M. barkeri* and 1 µm PS beads

Methanosarcina barkeri

+ **O**

1µm polystyrene beads

Dimethylamino- and amine N-oxides

Fluorescence plate reader assay

- (a) White PS beads in PBS buffer after 12h, anaerobic chamber.
- (b) Grey *M. barkeri* with PS beads in PBS buffer
- (c) Black M. barkeri intrinsic fluorescence by subtraction i.e. proportional to concentration

PS beads binding M. barkeri

D Dobrzanska, *PhD Thesis, University of Warwick* **2014**

Methanogen cell envelope structures

Plausible interaction with hydrophobic cell envelope. Possibility of more specific molecular interactions with glycoproteins.

For overview of archaea cell envelope structure see:

Putative cell envelope and adhesion proteins on the outer layer of *Methanobrevibacter ruminantium* Leahy, S C *et al.* PLOS ONE 2010 *5*: e8926

Methanosarcina acetivorans cell envelope M. A. Arbing et al. Proc. Natl. Acad. Sci USA **2012**, 109, 11812-11817

Supports used for Anaerobic Digester biofilm stabilization

Fixed support	Advantage	Disadvantage
PVC sheet media	easy installlow costno loss of material	 fouling if rag removal inadequate
Fabric web	easy installno loss of material	 prone to brandling worm blooms
Dispersed support		
Polypropylene cylinders	excellent mixinghigh surface area	 media loss maintenance of aeration system
Polyurethane foam	excellent mixinghigh surface area	 media loss maintenance of aeration system

High-throughput 16S rRNA sequencing of surface bound microbes

Extracted from microbes:

- In farm scale digester liquid
- On polyurethane foam surfaces suspended in farm scale digester
- Cattle rumen solids
- Cattle slurry lagoon

Sequences searched using QIME pipeline against greengenes 16S RNA database to identify *bacteria* and *archaea*

D A Dobrzanska, C G Dowson, P C Taylor, A Marsh, manuscript to be submitted.

Bacteria from cattle slurry at phylum level using 16S rRNA sequencing

Archaea at phylum level from 16S rRNA sequencing

Autoclaved polyurethane surface chemistry

.... its why medical devices containing PU are not sterilised with heat!

Measuring amines exposed at surface

Summary

• Studied a wide range of substrates and derivatives at interfaces and demonstrated utility of tertiary amine *N*-oxide as a protein resistant functional group

•Found uncharged surfaces preferentially attract a prototype methanogen, *M. barkeri*, possibly interacting with glycoproteins set in a hydrophobic cell envelope

• PU foam attracts a unique set of microorganisms, including methanogens from a large scale anaerobic digester

Acknowledgements

- Dorota Dobrzanska, Craig Wood
- Helena Stec (R Hatton Group)
- Matthew Beecham, Gareth Hall, Guy Clarkson
- Suzanne Dilly, Stephen Carlisle, Andrew Shepherd
- Paul Taylor, Andrew Clark, Tiffany Walsh (Dept of Chemistry)
- Christopher Dowson, Craig Griffin, Jacqueline Marshall Richard Napier (School of Life Sciences & HRI)
- John Griffin, Stephen Brown (Dept of Physics)
- Stephen Evans, Benjamin Johnson (University of Leeds)

Funding

EPSRC Engineering and Physical Sciences Research Council

EPSRC, BBSRC

THE UNIVERSITY OF WARWICK

The Perry Foundation

go.warwick.ac.uk/marshgroup

