

moleculardimensions.com

Clear Strategy Screen[™] I HT-96 MD1-31

The first of two high-throughput screens*, that allows easy interpretation of results and optimization of experiments.

The Clear Strategy I kit reagents are premixed at 4 pH values (pH's 5.5, 6.5, 7.5 and 8.5) in 96×1 ml deep well blocks.

Features of Clear Strategy Screens (CSS):

- Limit number of trials.
- Aid rational design of subsequent trials.
- User defined pH.
- Use protein information.
- Maintain 'folding homogeneity' of protein.
- Cryoprotection of crystals.
- Provision of potential anomalous scattering centres.
- Interchangeable components.

Introduction

Clear Strategy Screens are designed to offer a more individual and alternative approach to crystallization problems. Their 'inherently simple design and their flexible nature' provide a logical platform for further modification and optimization of crystallization experiments.

Clear Strategy Screen I (CSS-I) was designed with the following principles in mind:

- 1. Enzyme proteins as a target.
- 2. Full control of screen solution pH.
- 3. Cryoprotection of crystals.
- 4. Rational planning of further experiments.
- 5. Provision of potential anomalous scattering centres.

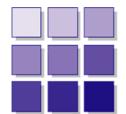
One of the main principles behind the formulation of the CSS-I screen was to increase the rate of successful crystallization of enzymatic proteins. It yielded crystals for several nuclear receptor complexes1, proteins involved in the process of bacterial sporulation, fragments of fibrinogen and growth factors. Crystals of a given protein were often obtained simultaneously in several different conditions. Recently, the ability to control pH was used successfully in the optimization of the crystallization of the 70S ribosome complexed with mRNA and tRNA.2

pH control

One of the most important parameters in the crystallization process is pH. The formulation of both Clear Strategy Screens at 90% of their final volumes leaves the choice of the pH of the screen to the user. Typically the pH of 0.9ml of the screen solution can be adjusted by the addition of 0.1ml of 1M stock buffer.

The starting pH depends upon prior knowledge of each protein's properties, such as purification characteristics, isoelectric point, solubility/stability, pH-aggregation dependence estimated by dynamic light scattering (DLS) and previous crystallization experience with related proteins.

If the optimum pH is unclear, cacodylate buffer at pH 6.5 can be used as a first choice. This covers a broad plateau of pKa values of individual amino acids and provides additional protection against potential specific protein aggregation caused by free –SH groups.


Clear Strategy Screen I shows that the rational use of pH can accelerate successful crystallogenesis through the minimum number of trials.

Cryoprotection

The CSS-I simple but efficient 6×4 matrix was designed with some built in provision for the straightforward cryoprotection of any resultant crystals.

Crystals obtained with PEGs of 2K and 4K MW may be cryoprotected using the same PEGs at their concentrations (app. 30%-35% w/v). Potential cryoprotection of the crystals grown with PEG 8K and 20K has been facilitated by the introduction of additional PEGs of smaller molecular weights. Both PEG 1K and 550 MW are good cryoprotectants at higher concentrations.

^{*} Developed by Dr. A M Brzozowski and J. Walton from the Structural Biology Laboratory at The University of York.

600 666 666 666

moleculardimensions.com

Rational design of further experiments

One of the main aims of the Clear Strategy I formulation is that the underlying principles should be very transparent to the user. A simple matrix of different PEGs Vs different salts combined with simultaneous control of pH enables both easy interpretation of results and planning of the next experiments. A new set of conditions can easily be achieved by an increase in the salt or PEG concentration, a shift towards one of the two mixed PEGs or even a change of the pH.

Anomalous scattering centres

The coupling of new crystallization screens with modern methods to solve the crystallographic phase problem is of special importance for high throughput crystallography. One of the easiest ways to implement this 3 is by soaking protein crystals in cryoprotectants containing Br or I $^{-}$.

To increase the chance of the application of this important approach, one set of **CSS-1** conditions includes potassium bromide. Several well diffracting crystals have been obtained from these conditions and we are currently evaluating whether initial phase estimates can be obtained through location of anomalous scatter sites.

CSS-I is a simple, flexible and efficient screen that can be used in sitting drop, hanging drop and sandwich experiments.

Formulation Notes

To set up a screen:

Clear Strategy Screens reagents are formulated using ultrapure water (>18.0 $M\Omega)$ and are sterile-filtered using 0.22 μm filters. No preservatives are added.

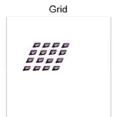
Molecular Dimensions will be happy to discuss the precise formulation of individual reagents.

Individual reagents and stock solutions for optimization are available from Molecular Dimensions.

Enquiries regarding Clear Strategy Screen formulation, interpretation of results or optimization strategies are welcome. Please e-mail, fax or phone your query to Molecular Dimensions:

enquiries@moleculardimensions.com

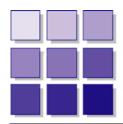

Contact and product details can be found at:


www.moleculardimensions.com

These kits are produced by Molecular Dimensions Ltd under an exclusive license from University of York.

References

- 1. Brzozowski and Walton (2001) J. Appl. Cryst. **34**, 97 101.
- 2. Selmer *et al* (2006), Science **313**, 1935 1942.
- 3. Dauter, Z, Dauter, M & Rajashankar, K. R. (2K), *Acta Cryst.* **D56**, 232 237.



moleculardimensions.com

Crystal Strategy Screen I MD1-31 Rows A – D

HT-96	Salt	Buffer	Precipitant
Well			·
A1	0.3 M sodium acetate	0.1 M sodium acetate pH 5.5	25% w/v PEG 2K MME
A2	0.2 M lithium sulfate	0.1 M sodium acetate pH 5.5	25% w/v PEG 2K MME
A3	0.2 M magnesium chloride	0.1 M sodium acetate pH 5.5	25% w/v PEG 2K MME
A4	0.2 M potassium bromide	0.1 M sodium acetate pH 5.5	25% w/v PEG 2K MME
A5	0.2 M potassium thiocyanate	0.1 M sodium acetate pH 5.5	25% w/v PEG 2K MME
A6	0.8 M sodium formate	0.1 M sodium acetate pH 5.5	25% w/v PEG 2K MME
A7	0.3 M sodium acetate	0.1 M sodium acetate pH 5.5	15% w/v PEG 4K
A8	0.2 M lithium sulfate	0.1 M sodium acetate pH 5.5	15% w/v PEG 4K
A9	0.2 M magnesium chloride	0.1 M sodium acetate pH 5.5	15% w/v PEG 4K
A10	0.2 M potassium bromide	0.1 M sodium acetate pH 5.5	15% w/v PEG 4K
A11	0.2 M potassium thiocyanate	0.1 M sodium acetate pH 5.5	15% w/v PEG 4K
A12	0.8 M sodium formate	0.1 M sodium acetate pH 5.5	15% w/v PEG 4K
B1	0.3 M sodium acetate	0.1 M sodium acetate pH 5.5	10% w/v PEG 8K + 10% w/v PEG 1K
B2	0.2 M lithium sulfate	0.1 M sodium acetate pH 5.5	10% w/v PEG 8K + 10% w/v PEG 1K
B3	0.2 M magnesium chloride	0.1 M sodium acetate pH 5.5	10% w/v PEG 8K + 10% w/v PEG 1K
B 4	0.2 M potassium bromide	0.1 M sodium acetate pH 5.5	10% w/v PEG 8K + 10% w/v PEG 1K
B5	0.2 M potassium thiocyanate	0.1 M sodium acetate pH 5.5	10% w/v PEG 8K + 10% w/v PEG 1K
B6	0.8 M sodium formate	0.1 M sodium acetate pH 5.5	10% w/v PEG 8K + 10% w/v PEG 1K
B7	0.3 M sodium acetate	0.1 M sodium acetate pH 5.5	8% w/v PEG 20K + 8% v/v PEG 550 MME
B8	0.2 M lithium sulfate	0.1 M sodium acetate pH 5.5	8% w/v PEG 20K + 8% v/v PEG 550 MME
B9	0.2 M magnesium chloride	0.1 M sodium acetate pH 5.5	8% w/v PEG 20K + 8% v/v PEG 550 MME
B10	0.2 M potassium bromide	0.1 M sodium acetate pH 5.5	8% w/v PEG 20K + 8% v/v PEG 550 MME
B11	0.2 M potassium thiocyanate	0.1 M sodium acetate pH 5.5	8% w/v PEG 20K + 8% v/v PEG 550 MME
B12	0.8 M sodium formate	0.1 M sodium acetate pH 5.5	8% w/v PEG 20K + 8% v/v PEG 550 MME
C1	0.3 M sodium acetate	0.1 M sodium cacodylate pH 6.5	25% w/v PEG 2K MME
C2	0.2 M lithium sulfate	0.1 M sodium cacodylate pH 6.5	25% w/v PEG 2K MME
C3	0.2 M magnesium chloride	0.1 M sodium cacodylate pH 6.5	25% w/v PEG 2K MME
C4	0.2 M potassium bromide	0.1 M sodium cacodylate pH 6.5	25% w/v PEG 2K MME
C5	0.2 M potassium thiocyanate	0.1 M sodium cacodylate pH 6.5	25% w/v PEG 2K MME
C6	0.8 M sodium formate	0.1 M sodium cacodylate pH 6.5	25% w/v PEG 2K MME
C7	0.3 M sodium acetate	0.1 M sodium cacodylate pH 6.5	15% w/v PEG 4K
C8	0.2 M lithium sulfate	0.1 M sodium cacodylate pH 6.5	15% w/v PEG 4K
C9	0.2 M magnesium chloride	0.1 M sodium cacodylate pH 6.5	15% w/v PEG 4K
C10	0.2 M potassium bromide	0.1 M sodium cacodylate pH 6.5	15% w/v PEG 4K
C11	0.2 M potassium thiocyanate	0.1 M sodium cacodylate pH 6.5	15% w/v PEG 4K
C12	0.8 M sodium formate	0.1 M sodium cacodylate pH 6.5	15% w/v PEG 4K
D1	0.3 M sodium acetate	0.1 M sodium cacodylate pH 6.5	10% w/v PEG 8K + 10% w/v PEG 1K
D2	0.2 M lithium sulfate	0.1 M sodium cacodylate pH 6.5	10% w/v PEG 8K + 10% w/v PEG 1K
D3	0.2 M magnesium chloride	0.1 M sodium cacodylate pH 6.5	10% w/v PEG 8K + 10% w/v PEG 1K
D4	0.2 M potassium bromide	0.1 M sodium cacodylate pH 6.5	10% w/v PEG 8K + 10% w/v PEG 1K
D5	0.2 M potassium thiocyanate	0.1 M sodium cacodylate pH 6.5	10% w/v PEG 8K + 10% w/v PEG 1K
D6	0.8 M sodium formate	0.1 M sodium cacodylate pH 6.5	10% w/v PEG 8K + 10% w/v PEG 1K
D7	0.3 M sodium acetate	0.1 M sodium cacodylate pH 6.5	8% w/v PEG 20K + 8% v/v PEG 550 MME
D8	0.2 M lithium sulfate	0.1 M sodium cacodylate pH 6.5	8% w/v PEG 20K + 8% v/v PEG 550 MME
D9	0.2 M magnesium chloride	0.1 M sodium cacodylate pH 6.5	8% w/v PEG 20K + 8% v/v PEG 550 MME
D10	0.2 M potassium bromide	0.1 M sodium cacodylate pH 6.5	8% w/v PEG 20K + 8% v/v PEG 550 MME
D11	0.2 M potassium thiocyanate	0.1 M sodium cacodylate pH 6.5	8% w/v PEG 20K + 8% v/v PEG 550 MME
D12	0.8 M sodium formate	0.1 M sodium cacodylate pH 6.5	8% w/v PEG 20K + 8% v/v PEG 550 MME

moleculardimensions.com

Crystal Strategy Screen I HT-96 Rows E - H **MD1-31**

HT-96	Salt	Buffer	Precipitant
Well E1	0.3 M codium acotato	0.1 M Tris pH 7.5	250/ W/V DEC 2K MME
E2	0.3 M sodium acetate 0.2 M lithium sulfate	0.1 M Tris pH 7.5	25% w/v PEG 2K MME 25% w/v PEG 2K MME
E3	0.2 M magnesium chloride	0.1 M Tris pH 7.5	25% w/v PEG 2K MME
E4	0.2 M potassium bromide	0.1 M Tris pH 7.5	25% w/v PEG 2K MME
E5	0.2 M potassium thiocyanate	0.1 M Tris pH 7.5	25% w/v PEG 2K MME
E6	0.8 M sodium formate	0.1 M Tris pH 7.5	25% w/v PEG 2K MME
E7	0.3 M sodium acetate	0.1 M Tris pH 7.5	15% w/v PEG 4K
E8	0.2 M lithium sulfate	0.1 M Tris pH 7.5	15% w/v PEG 4K
E9	0.2 M magnesium chloride	0.1 M Tris pH 7.5	15% w/v PEG 4K
E10	0.2 M potassium bromide	0.1 M Tris pH 7.5	15% w/v PEG 4K
E11	0.2 M potassium thiocyanate	0.1 M Tris pH 7.5	15% w/v PEG 4K
E12	0.8 M sodium formate	0.1 M Tris pH 7.5	15% w/v PEG 4K
F1	0.3 M sodium acetate	0.1 M Tris pH 7.5	10% w/v PEG 4K
F2	0.2 M lithium sulfate	0.1 M Tris pH 7.5	10% w/v PEG 8K + 10% w/v PEG 1K
F3	0.2 M magnesium chloride	0.1 M Tris pH 7.5	10% w/v PEG 8K + 10% w/v PEG 1K
F4	0.2 M potassium bromide	0.1 M Tris pH 7.5	10% w/v PEG 8K + 10% w/v PEG 1K
F5	0.2 M potassium thiocyanate	0.1 M Tris pH 7.5	10% w/v PEG 8K + 10% w/v PEG 1K
F6	0.8 M sodium formate	0.1 M Tris pH 7.5	10% w/v PEG 8K + 10% w/v PEG 1K
F7	0.3 M sodium acetate	0.1 M Tris pH 7.5	8% w/v PEG 20K + 8% v/v PEG 550 MME
F8	0.2 M lithium sulfate	0.1 M Tris pH 7.5	8% w/v PEG 20K + 8% v/v PEG 550 MME
F9	0.2 M magnesium chloride	0.1 M Tris pH 7.5	8% w/v PEG 20K + 8% v/v PEG 550 MME
F10	0.2 M potassium bromide	0.1 M Tris pH 7.5	8% w/v PEG 20K + 8% v/v PEG 550 MME
F11	0.2 M potassium thiocyanate	0.1 M Tris pH 7.5	8% w/v PEG 20K + 8% v/v PEG 550 MME
F12	0.8 M sodium formate	0.1 M Tris pH 7.5	8% w/v PEG 20K + 8% v/v PEG 550 MME
G1	0.3 M sodium acetate	0.1 M Tris pH 8.5	25% w/v PEG 25K + 676 V/V PEG 336 MINE
G2	0.2 M lithium sulfate	0.1 M Tris pH 8.5	25% w/v PEG 2K MME
G3	0.2 M magnesium chloride	0.1 M Tris pH 8.5	25% w/v PEG 2K MME
G3	0.2 M potassium bromide	0.1 M Tris pH 8.5	25% w/v PEG 2K MME
G5	0.2 M potassium thiocyanate	0.1 M Tris pH 8.5	25% w/v PEG 2K MME
G6	0.8 M sodium formate	0.1 M Tris pH 8.5	25% w/v PEG 2K MME
G7	0.3 M sodium acetate	0.1 M Tris pH 8.5	15% w/v PEG 4K
G8	0.2 M lithium sulfate	0.1 M Tris pH 8.5	15% w/v PEG 1K
G9	0.2 M magnesium chloride	0.1 M Tris pH 8.5	15% w/v PEG 1K
G10	0.2 M potassium bromide	0.1 M Tris pH 8.5	15% w/v PEG 4K
G11	0.2 M potassium thiocyanate	0.1 M Tris pH 8.5	15% w/v PEG 4K
G12	0.8 M sodium formate	0.1 M Tris pH 8.5	15% w/v PEG 4K
H1	0.3 M sodium acetate	0.1 M Tris pH 8.5	10% w/v PEG 8K + 10% w/v PEG 1K
H2	0.2 M lithium sulfate	0.1 M Tris pH 8.5	10% w/v PEG 8K + 10% w/v PEG 1K
H3	0.2 M magnesium chloride	0.1 M Tris pH 8.5	10% w/v PEG 8K + 10% w/v PEG 1K
H4	0.2 M potassium bromide	0.1 M Tris pH 8.5	10% w/v PEG 8K + 10% w/v PEG 1K
H5	0.2 M potassium thiocyanate	0.1 M Tris pH 8.5	10% w/v PEG 8K + 10% w/v PEG 1K
H6	0.8 M sodium formate	0.1 M Tris pH 8.5	10% w/v PEG 8K + 10% w/v PEG 1K
H7	0.3 M sodium acetate	0.1 M Tris pH 8.5	8% w/v PEG 20K + 8% v/v PEG 550 MME
H8	0.2 M lithium sulfate	0.1 M Tris pH 8.5	8% w/v PEG 20K + 8% v/v PEG 550 MME
H9	0.2 M magnesium chloride	0.1 M Tris pH 8.5	8% w/v PEG 20K + 8% v/v PEG 550 MME
H10	0.2 M potassium bromide	0.1 M Tris pH 8.5	8% w/v PEG 20K + 8% v/v PEG 550 MME
H11	0.2 M potassium thiocyanate	0.1 M Tris pH 8.5	8% w/v PEG 20K + 8% v/v PEG 550 MME
H12	0.8 M sodium formate	0.1 M Tris pH 8.5	8% w/v PEG 20K + 8% v/v PEG 550 MME
1111	J.S. 1.1 Soulain Torrilate	012 11 1110 pt 1 010	1 0 70 11, 4 1 E0 2010 1 0 70 V/ 4 1 E0 330 Fill E

Abbreviations:

 $\textbf{Tris; 2-Amino-2-(hydroxymethyl)propane-1,3-diol, PEG, polyethylene glycol (concentrations quoted as w/v \%); \textbf{MME}, monomethyl ether; 1K, 2K, 4K, 8K and 20K correspond to the molecular weight, in thousands of Daltons, of PEG.$

Manufacturer's safety data sheets are available upon request.