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1 Introduction
In metal industry, after ore extraction, smelting, and casting, the last stage of metal production is
the forming, where one shapes the metal workpiece by mechanical means. In other words, metal
formation processes are used in order to shape a metal workpiece into a final product. Typically, at
this stage, the steel will be rolled. We considered such a roll process where the metal comes as a
ring. This is used to create a seamless, jointless, and smooth metal ring of desired size and achieved
by repeatedly passing the annealing ring between two vertical rolls which thin the ring. Horizontal,
conical rolls limit height growth and vertical guide rolls are used to keep the ring stable. The final
result is a thinner ring of greater radius. An example of this setup is shown in figure 1.

Figure 1: Ring rolling diagram, taken from [Min17], Section 1.2

Although ring rolling is used a lot in industry, e.g. for oil platform legs or aircraft engine parts, a
flexible and accurate analytical model does not exist. Approaches to achieve an analytical model in
2D (ignoring the conical and guide rolls) in the past have had strict assumptions on the circularity,
coaxality, and centrality of the ring. Respectively, these measure how close the ring remains to
a circle in shape, how uniform the thickness of the ring is, and how centred the ring remains to
the line of symmetry of the rollers. See for instance: [HJKA73] and [PA14], which focus on the
roll gap only; [PAS11], [AAA16], [RDS17] which focus on slab models; and we also highlight mass
conservation models proposed in [BQM15] and [GY11]. Current developments in industry have
been concerned with controlling the resulting shape of the ring: attempting to create elliptical
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or polygonal rings, and trying to produce rings with non-rectangular cross sections, such as an L
shape (see [TIST05], [KMK90], and [YKKL03]). As such, a model of ring rolling which is flexible
with regards to circularity, coaxiality and centrality is desired; not only that it could lead to more
automation, it may also lead to better metal forming of other geometries, saving a lot of energy and
material.

The approach laid out in [Min17] by Minton is a convincing step forward to a flexible analytical
model. The idea is to split the problem into an inner model of the roll gap region, which is analysed
by slab methods, see 4, and a curved beam outer model of the outer region of the ring, see 3. Then,
one is aiming for a coupling of the two models by force and geometry. Accordingly, Minton’s work is
considered to be incomplete since he couldn’t achieve satisfying results of the coupling. Moreover,
Minton’s chapter on Ring Rolling, Chapter 6 in [Min17] is not self-contained. In fact, details about
how to derive the differential equations of the inner model are not provided in [Min17]. Nevertheless,
we believe that this approach is a good foundation for future investigations of developing a flexible
theory of ring rolling. As our contribution, we tried to verify Minton’s model in two ways. First,
with slight modifications, we re-derived the differential equations of the the inner model. In this
report, we shall give detailed explanation and full mathematical derivation of both, the inner model
and the outer model. Secondly, we implemented the inner and the outer model numerically in
MATLAB, tested the code against various data-sets and analysed the results, see Chapter 5. Finally,
as an outlook, we shall give detailed explanation about our ideas how to couple the two models, see
Chapter 6.
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2 Preliminaries
In this section, we provide basic definitions and notation for the dynamics and kinematics of simple
bodies, that is, for open subsets B in R3, within the framework of continuum mechanics. While the
physics governing the outer model is elasticity theory and the physics governing the inner model is
plasticity theory, both, elasticity and plasticity are based on a particular mutual dependency of stress
and strain. We start by introducing the strain tensor and the stress tensor. Then, we describe their
particular dependency in elasticity and plasticity. Moreover, we will state Castigliano’s theorem,
which is the basic tool of the outer model.

2.1 The Strain Tensor
For the content of this section, see [MH94, Section 1.1] and [Lub08, Section 1.2]. A configuration
of a simple body B ⊂ R3 is a continuous map φ : B → R3. For any such configuration, the map
u : B → R3 given by

u(x) = φ(x)− x, for x ∈ B
is called displacement. The symmetric part of the space derivative of u,

ε = 1
2(Du+ (Du)∗)
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is called strain tensor, where (Du)∗ is the adjoint associated to Du. The stress tensor ε is related
to the deformation of the transformed body φ[B] compared with its initial configuration B. The
components are given by

εij = 1
2
(
∂xi

uj + ∂xj
ui
)
.

Notice, that u, as well as the following quantities, can be considered time dependent, since φ can
be realised a point on a curve in the space of all configurations of B. Such a curve t 7→ φt is called
motion of B.

2.2 The Stress Tensor
For the content of this section, see [MH94, Section 2.2] and [Lub08, Section 1.3]. Suppose φ describes
the motion of a simple body B ⊂ R3. At each time t, the forces acting on φt[B] can be divided into
long range forces, given by a vector field b, and short range forces, given by t. The short range
forces exerted on a body are felt on its surface. That means, any oriented surface element dS = ndS
experiences a contact force t(n)dS, where n the outward unit normal. Therefore, the so called
surface traction t(n) not only depends on position but also on the local orientation and hence is not
a vector field. We henceforth assume that balance of linear momentum is satisfied. That is,

d

dt

∫
φt[U ]

ρv dV =
∫
φt[U ]

ρb dV +
∫
∂φt[U ]

t dS

for each time t and all sufficiently regular open subsets U of B, where ρ is the mass density function
and v is the spatial velocity. Standard arguments due to Cauchy, employing the Cauchy tetrahedron,
show that t(·) is a linear function. Hence, there exists a (2, 0) tensor field σ, satisfying

t(x, t,n) = σ(x, t)n for each time t and x ∈ φt[B],

called stress tensor. Moreover, we will assume that balance of angular momentum is satisfied. That
is

d

dt

∫
φt[U ]

ρx× v dV =
∫
φt[U ]

ρx× b dV +
∫
∂φt[U ]

x× σn dS

for all x ∈ R3, each time t, and all sufficiently regular open subsets U of B. Using Gauss’s theorem,
one can show

σij = σji.

In other words, the stress tensor is symmetric.
We define the components sij of the deviatoric stress tensor s by

sij = σij − pδij

where δij is the Kronecker delta and p =
∑3
k=1 σkk is the pressure.

We will be concerned with the 2-dimensional simplification in which case we shall use the
following notation for the stress components:

σ =
(
σx τ
τ σy

)
.
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2.3 Elasticity and Castigliano’s Theorem
For the content of this section, see [Lub08, Section 1.4] and [Sha64, Chapter 10]. A region of a body
is called elastic if no permanent deformation occurs. In so called linear elasticity, this means the
generalised Hooke’s law is satisfied. That is, there exists a constant (4, 0) tensor with components
Cijkl, called elastic constants, such that in the relevant region

σij =
3∑

k,l=1
Cijklεkl.

In other words, the stress is proportional to the strain. Most metallic alloys are considered isotropic,
where by definition the material properties are independent of direction, or mathematically expressed,

Cijkl = λδijδkl + µ(δikδjl + δilδjk)

for some constants λ and µ called Lamé coefficients. One defines Young’s modulus E = µ(3λ +
2µ)/(λ+ µ) and the shear modulus G = µ.

While a system undergoes deformation, it will store energy. We define the strain energy
function W (ε) and the strain energy U of a body B by

σij = ∂W

∂εij
, U =

∫
B

W dV.

We will be concerned with the case that the strain energy of a linear elastic body is given by the
work done by a force f . More precisely, we assume that the strain energy can be expressed as a
function of a force f . In this case, Castigliano’s theorem states that the general displacement δx
of the point of force application in direction of the force f is given by the partial derivative of the
strain energy with respect to f . That means, we have the equation

∂U

∂f
= δx.

See also [TG51, 49].

2.4 Plasticity Theory
In elastic deformations, the strain tensor can be thought of as only a function of the stress and
the temperature T . Plasticity is when the strain additionally depends on internal variables, ξ.
Internal variables could represent material properties or the history of the strain, as well as stress
and temperature. We make the ansatz that the strain tensor splits into elastic and inelastic parts:
ε(σ, T, ξ) = εe(σ, T ) + εi(ξ).

Viscoplasticity is a model of plasticity that assumes the existence of a continuous yield function
f = f(σ, T, ξ) and a region R of the σ, T , ξ- space such that: f < 0 and ∂tεi = 0 inside R but not
outside it. Such a region is called the elastic region. The boundary, f = 0, is called the yield surface.
The physics behind this is that whilst we are within R only elastic deformation occurs but once
we reach the yield surface, plastic deformation occurs. Rigid perfect plasticity is when no elastic
deformation occurs.
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We will be concerned with a 2D problem and we shall use the von-Mises yield function,

f(σ, ξ) =
(
σx − σy

2

)2
+ τ2 − k(ξ)2, (1)

where σx, σy, and τ are the components of the stress tensor, and k is parameter intrinsic to the
material that can be determined experimentally. We remark that the nature of the yield function (1)
suggests that the yield surface is elliptical: this is in line with experimental data on yield surfaces of
metals, and is evidence that this is the right yield function to use in modelling ring rolling.

3 Outer Model
In this section we shall describe the outer section of the beam, and explain our model. The outer
section of the beam undergoes forces that are considerably smaller than those acting on the beam
between the rolls, and we consider all deformation to be elastic. We have a curved beam undergoing
elastic deformation, we recall Castigliano’s theorem

∂U

∂fx
= δx (2)

where U is the strain energy of the solid, fx the force acting on it in some direction x, and δx the
displacement in the same direction x.

We can use the following formula, derived by Timoshenko (1925) [Tim25], for the strain energy
of a curved beam

U =
∫

Γ

M2

RAγE
− MS

AER
+ S2

2AE + κQ2

AG
ds (3)

where M is the local bending moment around the centreline, S the longitudinal force, and Q the
shear force.

Figure 2: Variables in the outer model
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• Γ is the centreline of the beam,

• A the area of the cross section of the beam (assumed to be rectangular),

• R the radius of curvature

• γ is the distance between the centreline and the neutral axis, this is calculated using a series
formula given in Timoshenko [Tim25].

• κ is a numerical factor accounting for the distance between the neutral and centre axes, in
this case it is taken as 1.5;

• E and G are the Young’s and shear moduli respectively.
It should be noted that γ is no larger than the width of the beam, in fact it is relatively small and
thus the first term in the integral is dominant. To find M , S, and Q we assume a force and moment
balance on each part of the beam; this is justified by the small accelerations each segment undergoes.
Using the notation and conventions given in the figure this gives the following equalities

S = −Fv sin(φ) + Fh cos(φ)
Q = −Fv cos(φ)− Fh sin(φ)
M = −M0 + Fv∆h− Fh∆v.

Here M and M0 are the moments around the centreline, and are taken anti-clockwise. Putting these
formulae into equation (3) and taking partial derivatives with respect to Fh, Fv, and M0 gives the
horizontal, vertical and angular displacements respectively between the two ends of the beam

δx =
∫

Γ
∆v
( S

AER
− M

RAγE

)
+ cos(φ)

( S

AE
− M

AER

)
− sin(φ) κQ

AG
ds

δy =
∫

Γ
∆h
( M

RAγE
− S

AER

)
+ sin(φ)

( M

AER
− S

AE

)
− cos(φ) κQ

AG
ds

δθ =
∫

Γ

S

AER
− M

RAγE
ds.

In addition, we can find ∆h and ∆v if we have Γ parametrised with respect to φ and the distance
from some fixed point, r, as

∆h = r0 sin(φ0)− r sin(φ)
∆v = r0 cos(φ0)− r cos(φ).

Where r0 is the initial value of r in the parametrisation of Γ at the point where the beam enters
the roll gap, and φ0 is the corresponding value of φ. These integrals can then be calculated if Γ, A,
and the initial forces are known. This was done for a circular beam. Some results, including error
analysis are displayed below. The code itself will be discussed later in the report.

The left plot of figure 3 shows the deformation of a circular beam under a variety of forces,
displaying intuitively correct behaviour.

The right plot of figure 3 shows the difference between the work done by the forces acting on the
end of the beam and the strain energy calculated by the Timoshenko equation, plotted against the
step size used in the integration. This was done for a fixed set of initial forces and ring geometry. It
shows the error is linearly related to the step size, whilst the error may seem large in the beginning
it should be noted that the work and strain energy calculated are considerably larger, and so the
relative difference is quite small. This provides some validity for the model.
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(a) Example deformations of a circular beam (b) Energy Comparison for the outer model

Figure 3: Outer model

4 Inner Model
In this section, we analyse the inner model via an extended slab method as in [Min17], Section 6.
First we set up the geometry of the model. Then, based on a force and moment balance, we derive
three differential equations. Finally, by assuming linear variation of the horizontal stress through
thickness across the roll gap, using a friction law, and using yield conditions, we turn the differential
equations into a closed system of ordinary differential equations.

4.1 Set-up
We fix our reference picture of the model as Figure 4.

• xint and xinb mark the entry contact points for the top and bottom roll respectively; xoutt and
xoutb mark the exit contact points for the top and bottom roll respectively.

• xnt and xnb refer to the neutral points on the top and bottom roll respectively: these are points
at which the direction of friction changes, so that material is pushed towards neutral points.
We emphasise that the rolling model does not require these neutral points to coincide vertically.

• ht(x) and hb(x) parametrize the top and the bottom roll respectively.

• Rt and Rb denote the radii of the top and the bottom roll respectively.

• w0 denotes the distance of minimal separation of the two rolls.
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Figure 4: Diagram of the Inner Model

4.2 Analysis Via the Slab Method
We consider small vertical strips of the ring of width δx between the two rolls. We model the top
and the bottom surface of each such wedge as a line segment rather than a circle segment. This
approximation will not effect our calculations and the ODEs derived with the slab model will be
accurate. The slab model is based on a force and torque balance around each slab. To determine
torque and forces, we introduce the following notation and convention according to Figure 5.

• The components of the stress tensor

σ =
(
σx τ
τ σy

)
are functions of x and y on the ring.

• The normal vector n and the tangential vector t at the top of the wedge are given by

n = −h
′
tex + ey√
1 + h′2t

, t = ex + h′tey√
1 + h′2t

,

• The normal vector n and the tangential vector t at the bottom of the wedge are given by

n = h′bex − ey√
1 + h′2b

, t = ex + h′bey√
1 + h′2b

.

• The normal vector n and the tangential vector t along the left vertical line of the wedge are
given by

n = −ex, t = ey,
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(a) Tangent and normal
vectors

x0

δx

−τ τ
σx σx

(
−h′tσx + τ
−h′tτ + σy

)
/
√
1 + h′2t

(
h′bσx − τ
h′bτ − σy

)
/
√
1 + h′2b

(b) Forces per unit length

Figure 5: Sign convention and forces per unit length

• The normal vector n and the tangential vector t at the bottom of the wedge are given by

n = ex, t = ey.

We get the forces per unit length at the top and the bottom of the wedge respectively, by
calculating σn as (

−h′tσx + τ
−h′tτ + σy

)
/

√
1 + h′t

2 and
(
h′bσx − τ
h′bτ − σy

)
/

√
1 + h′b

2.

Each force element per unit length σn splits as

σn = t · (σn)t + n · (σn)n.

Along the left and the right vertical line segment we therefore get respectively for σn

σxn− τt and σxn + τt.

Integrating the forces per unit length in direction of ex along the boundary of a slab through x0
and x0 + δ and balance them gives

0 =
∫ ht(x0+δx)

hb(x0+δx)
σx(x0 + δx, y) dy −

∫ ht(x0)

hb(x0)
σx(x0, y) dy

+
∫ x0+δx

x0

−h′t(x)σx(x, ht(x)) + τ(x, ht(x)) dx+
∫ x0+δx

x0

h′b(x)σx(x, hb(x))− τ(x, hb(x)) dx.
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The first two terms equal∫ ht(x0)+h′
t(x0)δx

hb(x0)+h′
b
(x0)δx

σx(x0, y) + δx
∂σx
∂x

(x0, y) dy +
∫ ht(x0)

hb(x0)
σx(x0, y) dy + o(δx)

=
(∫ ht(x0)−h′

t(x0)δx

ht(x0)
+
∫ hb(x0)+h′

t(x0)δx

hb(x0)

)
σx(x0, y) dy + δx

∫ ht(x0)

hb(x0)

∂σx
∂x

(x0, y) dy + o(δx)

= h′t(x0)δxσx(x0, ht(x0))− h′b(x0)δxσx(x0, hb(x0)) + δx
∂

∂x

∫ ht(x0)

hb(x0)
σx(x0, y) dy

− δx[σx(x0, ht(x0))h′t(x0)− σx(x0, hb(x0))h′b(x0)] + o(δx).

Therefore, dividing the force balance equation by δx and letting δx→ 0 we have in the limit

0 = h′t(x0)σx(x0, ht(x0))− h′b(x0)σx(x0, hb(x0)) + ∂

∂x

∫ ht(x0)

hb(x0)
σx(x0, y) dy

+ σx(x0, hb(x0))h′b(x0)− σx(x0, ht(x0))h′t(x0)
− h′t(x0)σx(x0, ht(x0)) + τ(x0, ht(x0)) + h′b(x0)σx(x0, hb(x0))− τ(x0, hb(x0))

= ∂

∂x

∫ ht(x0)

hb(x0)
σx(x0, y) dy

+ h′b(x0)σx(x0, hb(x0))− h′t(x0)σx(x0, ht(x0)) + τ(x0, ht(x0))− τ(x0, hb(x0))

or shorter
∂x

∫ ht

hb

σx dy = h′tσx(ht)− h′bσx(hb) + τ(hb)− τ(ht).

The vertical force balance in direction of ey gives

0 =
∫ ht(x0+δx)

hb(x0+δx)
τ(x0 + δx, y) dy −

∫ ht(x0)

hb(x0)
τ(x0, y) dy

+
∫ x0+δx

x0

−h′t(x)τ(x, ht(x)) + σy(x, ht(x)) dx+
∫ x0+δx

x0

h′b(x)τ(x, hb(x))− σy(x, hb(x)) dx.

Analogously, we have for the first two summands that∫ ht(x0+δx)

hb(x0+δx)
τ(x0 + δx, y) dy −

∫ ht(x0)

hb(x0)
τ(x0, y) dy

= h′t(x0)δxτ(x0, ht(x0))− h′b(x0)δxτ(x0, hb(x0)) + δx
∂

∂x

∫ ht(x0)

hb(x0)
τ(x0, y) dy

− δx[τ(x0, ht(x0))h′t(x0)− τ(x0, hb(x0))h′b(x0)] + o(δx).
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Therefore, dividing the force balance equation by δx and letting δx→ 0 we have in the limit

0 = h′t(x0)τ(x0, ht(x0))− h′b(x0)τ(x0, hb(x0)) + ∂

∂x

∫ ht(x0)

hb(x0)
τ(x0, y) dy

− τ(x0, ht(x0))h′t(x0) + τ(x0, hb(x0))h′b(x0)
− h′t(x0)τ(x0, ht(x0)) + σy(x0, ht(x0)) + h′b(x0)τ(x0, hb(x0))− σy(x0, hb(x0))

= ∂

∂x

∫ ht(x0)

hb(x0)
τ(x0, y) dy

− h′t(x0)τ(x0, ht(x0)) + σy(x0, ht(x0)) + h′b(x0)τ(x0, hb(x0))− σy(x0, hb(x0))

or shorter
∂x

∫ ht

hb

τ dy = h′tτ(ht)− h′bτ(hb) + σy(hb)− σy(ht).

Integrating the moments counter clockwise around (x0, 0) along the boundary of the slab gives

0 =
∫ ht(x0)

hb(x0)
yσx(x0, y) dy +

∫ ht(x0+δx)

hb(x0+δx)
−yσx(x0 + δx, y) + τ(x0 + δx, y)δxdy

+
∫ x0+δx

x0

−hb(x) [h′b(x)σx(x, hb(x))− τ(x, hb(x))]

+ (x− x0) [h′b(x)τ(x, hb(x))− σy(x, hb(x))] dx

+
∫ x0+δx

x0

ht(x) [h′t(x)σx(x, ht(x))− τ(x, ht(x))]

+ (x− x0) [−h′t(x)τ(x, ht(x))− σy(x, ht(x))] dx.

The first two terms equal∫ ht(x0)

hb(x0)
yσx(x0, y) dy +

∫ ht(x0)+h′
t(x0)δx

hb(x0)+h′
b
(x0)δx

−yσx(x0, y)− y ∂σx
∂x

(x0, y)δx+ τ(x0, y)δxdy + o(δx)

=
(∫ ht(x0)+h′

t(x0)δx

ht(x0)
−
∫ hb(x0)+h′

b(x0)δx

hb(x0)

)
− yσx(x0, y) dy

+
∫ ht(x0)

hb(x0)
−y ∂σx

∂x
(x0, y)δx+ τ(x0, y)δxdy + o(δx)

= −h′t(x0)δxht(x0)σx(x0, ht(x0)) + h′b(x0)δxhb(x0)σx(x0, hb(x0))

+ δx
∂

∂x

∫ ht(x0)

hb(x0)
−yσx(x0, y) dy

+ δx [h′t(x0)ht(x0)σx(x0, ht(x0)− h′b(x0)hb(x0)σx(x0, hb(x0))]

+ δx

∫ ht(x0)

hb(x0)
τ(x0, y) dy + o(δx)
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Therefore, dividing the moment balance equation by δx and letting δx→ 0 we have in the limit

0 = −h′t(x0)ht(x0)σx(x0, ht(x0)) + h′b(x0)hb(x0)σx(x0, hb(x0)) + ∂

∂x

∫ ht(x0)

hb(x0)
−yσx(x0, y) dy

+ h′t(x0)ht(x0)σx(x0, ht(x0)− h′b(x0)hb(x0)σx(x0, hb(x0)) +
∫ ht(x0)

hb(x0)
τ(x0, y) dy

− hb(x0) [h′b(x0)σx(x0, hb(x0))− τ(x0, hb(x0))] + ht(x0) [h′t(x0)σx(x0, ht(x0))− τ(x, ht(x))]

= ∂

∂x

∫ ht(x0)

hb(x0)
−yσx(x0, y) dy +

∫ ht(x0)

hb(x0)
τ(x0, y) dy

− hb(x0) [h′b(x0)σx(x0, hb(x0))− τ(x0, hb(x0))] + ht(x0) [h′t(x0)σx(x0, ht(x0))− τ(x, ht(x))]

or shorter,

∂x

∫ ht

hb

yσx dy =
∫ ht

hb

τ dy + ht [h′tσx(ht)− τ(ht)]− hb [h′bσx(hb)− τ(hb)] .

4.2.1 General Inner Model Equations

Let us summarise the equations that we have derived. For conventience, we shall write σx(ht) = σt
and τ(ht) = τt (similar for y = hb).

∂x

∫ ht

hb

σx y dy =
∫ ht

hb

τ dy − ht(−h′tσt + τt)− hb(h′bσb − τb) (EQ1)

∂x

∫ ht

hb

τ dy = h′tτt − σy(ht)− h′bτb + σy(hb) (EQ2)

∂x

∫ ht

hb

σx dy = h′tσt − τt − h′bσb + τb (EQ3)

4.3 A Specific Inner Model
Equations (EQ1), (EQ2) and (EQ3) make no significant assumptions about the physics of the inner
model, but they are underconstrained. In particular, we have differential equations in three averaged
quantities and we need to also know the values of the stress tensor (σx, σy and τ) at both the top
and bottom contact surfaces. Additional physical assumptions are needed in order to get a problem
which is neither underconstrained nor overconstrained. The major assumptions that we shall use
in this section are: a friction law at the top and bottom, where the workpiece contacts the roller;
the workpiece is at yield at the top and bottom; the horizontal stress varies linearly through the
thickness. This then leads to differential equations in σt, σb and τ (the average shear stress). The
friction law and yield condition allow us to write σy(ht) (resp. σy(hb)) and τt (resp. τb) in terms of
σt (resp. σb), thereby leaving us with three differential equations in three unknowns.
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4.3.1 Assumptions: Friction Law, Yield Condition and Linear Stress

Define the modified sign functions,

sgnt(x) = sgn(x− xnt ) hvsd(x− xint ) hvsd(xoutt − x),
sgnb(x) = sgn(x− xnb ) hvsd(x− xinb ) hvsd(xoutb − x),

where hvsd is the Heaviside function: hvsd(z) = 1, z ≥ 0 and 0 elsewhere. The friction law states
that material is pushed towards the neutral point1. Mathematically, the friction law at the top and
bottom of the rollers states:

µ
(
h′2t σt − 2h′tτt + σy

)
sgnt(x) = (1− h′2t )τt + (σy − σt)h′t

−µ
(
h′2b σb − 2h′bτb + σy

)
sgnt(x) = (1− h′2b )τb + (σy − σb)h′b.

We assume that the deformation occuring at the roll surfaces is plastic, which means we have the
yield condition: (

σx − σy
2

)2
+ τ2 = k2.

Our most controversial assumption is the linear variation of stress through thickness across the roll
gap:

σx(y) = σt − σb
∆h y + σbht − σthb

∆h .

Evidence in support of this assumption is dubious. In his thesis [Min17], Minton had observed
constant pressure across the roll gap in some flat rolling configurations. Other than this, there is
little other reason to suppose this. Our main reason for this assumption is that it was the simplest
assumption we could make in order to obtain a working example of an inner model given our time
constraints.

4.3.2 Manipulating EQ1: An Equation For σb
Note that,

∂x

∫ ht

hb

σxy dy = h′thtσt − h′bhbσb +
∫ ht

hb

∂xσxy dy,

which implies that (EQ1) becomes∫ ht

hb

∂xσxy dy = ∆h τ − htτt + hbτb.

Using the linear stress assumption and computing the derivative, we find:

∂xσx =
(
∂xσt − ∂xσb

∆h − σt − σb
(∆h)2

d∆h
dx

)
y + ht∂xσb + h′tσb − hb∂xσt − h′bσt

∆h − σbht − σthb
(∆h)2

d∆h
dx

.

1We assume the existence of one neutral point per roller.
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Hence,∫ ht

hb

∂xσxy dy =
(
∂xσt − ∂xσb

∆h − σt − σb
(∆h)2

d∆h
dx

)
(h3
t − h3

b)
3 +

+
(
∂xσbht − ∂xσthb

∆h + σbh
′
t − σth′b
∆h − σbht − σthb

(∆h)2
d∆h
dx

)
(h2
t − h2

b)
2

=
(
h3
t − h3

b

3∆h − hb(h2
t − h2

b)
2∆h

)
∂xσt +

(
−h

3
t − h3

b

3∆h + ht(h2
t − h2

b)
2∆h

)
∂xσb+

+
(
− (σt − σb)(h3

t − h3
b)

3(∆h)2 − (σbht − σthb)(h2
t − h2

b)
2(∆h)2

)
d∆h
dx

+ (σbh′t − σth′b)(h2
t − h2

b)
2∆h

=
(

2h2
t − hbht − h2

b

6

)
∂xσt +

(
−2h2

b + hbht + h2
t

6

)
∂xσb+

+
(
−2h2

t + hthb + h2
b

6∆h σt + 2h2
b − hthb − h2

t

6∆h σb

)
d∆h
dx

+ (σbh′t − σth′b)(ht + hb)
2 .

Putting this back into our differential equation and rearranging, we find a differential equation for
σb:

∂xσb = 6
−2h2

b + hthb + h2
t

(∆h τ − htτt + hbτt) +
(
−
(
−2h2

t + hthb + h2
b

−2h2
b + hthb + h2

t

)
σt + σb

)
1

∆h
d∆h
dx
−

− 3(σbh′t − σth′b)(ht + hb)
−2h2

b + hthb + h2
t

+
(
−2h2

t + hthb + h2
b

−2h2
b + hthb + h2

t

)
∂xσt.

The form of the above equations suggests to introduce geometric quantities,

ρt = −2h2
t + hthb + h2

b ,

ρb = −2h2
b + hthb + h2

t .

The quantity ρt

ρb
measures the asymmetry of the roll geometry - indeed, it is 1 for symmetric rolls of

the same radius. In order to see this better, note that

ρt
ρb

= 2ht + hb
2hb + ht

=
2ht

hb
+ 1

2 + ht

hb

.

Our equation then becomes,

∂xσb = 6
ρb

(∆h τ − htτt + hbτb) +
(
−ρt
ρb
σt + σb

)
1

∆h
d∆h
dx
− 3(σbh′t − σth′b)(ht + hb)

ρb
+ ρt
ρb
∂xσt.

4.3.3 Manipulating EQ2: An Equation For τ

We have the equation,

∂x

∫ ht

hb

τ dy = h′tτt − σy(ht)− h′bτb + σy(hb).

Notincg that, ∫ ht

hb

τ dy = ∆h τ,
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it is a straightforward computation to show that

∂xτ = 1
∆h

(
h′tτt − σy(ht)− h′bτb + σy(hb)− τ

d∆h
dx

)
.

4.3.4 Manipulating EQ3: An Equation For σt
Using the fundamental theorem of calculus on the first term in the differential equation

∂x

∫ ht

hb

σx dy = h′tσt − τt − h′bσb + τb,

yields the new equation ∫ ht

hb

∂xσx dy = −τt + τb.

Let us calculate this integral using the linearity assumption.∫ ht

hb

∂xσxdy =
∫ ht

hb

(
∂xσt − ∂xσb

∆h − σt − σb
(∆h)2

d∆h
dx

)
y dy

+
∫ ht

hb

(
ht∂xσb + h′tσb − hb∂xσt − h′bσt

∆h − σbht − σthb
(∆h)2

d∆h
dx

)
dy

=(∂xσt − ∂xσb)(ht + hb)
2 − σt − σb

2
ht + hb

∆h
d∆h
dx

+ (ht∂xσb + h′tσb − hb∂xσt − h′bσt)−
σbht − σthb

∆h
d∆h
dx

=(∂xσt + ∂xσb)
∆h
2 −

σt + σb
2

d∆h
dx

+ h′tσb − h′bσt.

Using the above, we obtain the differential equation

∂xσt = 2
∆h (−τt + τb − h′tσb + h′bσt) + σt + σb

∆h
d∆h
dx
− ∂xσb.

In Appendix A, we continue analysing this specific inner model by using friction laws and the
yield condition to eliminate unknowns, so that we can implement our set of differential equations
numerically.

5 Numerical Results
5.1 Implementation
We implement the inner model and a simplified version of the outer model as a combined package
in MATLAB2. Our results are displayed in Figures 6, 7, 8, 9, 10, 11, 12 and 13 found in Appendix
B. In each figure: the first plot is of the horizontal stresses at the top and bottom, as well as the
average shear stress, against the displacement across the roll gap; the second plot is of the horizontal

2Our package has been uploaded to https://warwick.ac.uk/fac/sci/masdoc/current/msc-modules/ma916/mnr/.
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and vertical forces, and moment abouts about the zero-line3 as the displacement across the roll gap
varies. In both of these plots, vertical lines correspond to contact or neutral points, with darker lines
indicating the top roll4. The third plot, in figures with curved ring geometries, is of the predicted
ring profile for an undeformed circular ring of radius 3m subjected to the forces and moments
obtained at the end of the inner model regime.

The code for the inner model presents a complete, flexible numerical model modulo the assump-
tions that: the horizontal stress varies linearly through the thickness; the beam is at yield when in
contact with the rollers; and that we have a friction law at the roll surfaces. As inputs, it takes
roll geometry, contact and neutral points for the metal ring, initial horizontal stress at the top and
bottom, and initial average shear stress. In turn, the code returns: the horizontal stresses at the top,
at the bottom, and the average shear stress, throughout the roll gap; the horizontal and vertical
forces, as well as the moment, across the roll gap. These are then plotted against the displacement
across the roll gap. The model, on its own, does not require specification of: the initial width or
curvature of the beam; the aspect ratio and reduction whether elastic recovery or perfect plasticity
occurs; the roll speeds, curvature prediction to predict exit points and exit curvatures. Indeed,
specification of the aforementioned quantities could allow one to locate the four contact points and
one of the two neutral points. The numerical solutions of the inner model should be interpreted as
being valid for physical rolling problems which yield those contact and neutral points.

The code for the outer model is a simplified code that can only support circular rings. The
reason why we have a simplified code is that we wanted to test what deformations would occur to an
undeformed, circular beam subject to the forces obtained at the end of the inner model. Curvature
and circularity changes were our key points of focus. In order to incorporate more general rings, an
explicit parametrisation of the initial ring is needed and the code can be adapted accordingly. The
key inputs of the model, as it stands, are: the radius of the undeformed ring; the thickness of the
ring; angular displacements that mark the start and end points of the outer model; and, finally, the
forces and moments at one end of the beam. The output is a plot of the deformed ring profile.

In order to use the outer model code to test deformation predictions under forces generated by
the inner model, a toy coupling5 is needed. Throughout all simulations of the inner model, we keep
the length of roll gap roughly around 40mm. Since we keep the radius of the ring fixed at 3m, this
suggests an angular displacement of 0.134 radians is needed between the ends of the outer model.
Moreover, we make a simplifying assumption that the width of the beam is taken to be the width of
closest separation of the rolls. This is of course false in general but for ring rolling configurations
with small reduction and large ring radius (with respect to the roll gap length), this approximation
seems sensible. Our final assumption is that the forces and moments at the ends of the beam in
the outer model are taken to be the forces and moments predicted by the inner model at the point
xout

t +xout
b

2 .
In order to test the physical validity of our model predictions, we aimed to include some numerical

checks against governing equations. For the inner model, such a check seems out of reach without
more knowledge about the physics away from the rollers. This manifests in the fact that our
equations do not give the whole stress tensor in the roll gap; rather, it gives the horizontal stress and
the average shear stress. For the outer model, the physics suggests that the work done in displacing
the beam should be equal to the strain energy. The function workError encodifies this check, and is

3Recall that y = ht(x) and y = hb(x) are global parametrisations of the rollers. The zero-line is just the line y = 0.
4When these points coincide, MATLAB favours the lighter grey line, which indicates the bottom roll.
5We call this a toy coupling because it is not a coupling of the inner and outer models to give a ring rolling model.

Rather, it should be interpreted as seeing the effect of forces produced in the inner model on the outer model.
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used in pproc.m.

5.2 Analysis of Results
5.2.1 Flat Sheet Rolling

Figures 6 and 7 display numerical results for flat sheet - both thick and thin - rolling configurations
in our inner model6. Here, thin and thick refer to the aspect ratio which, since we keep the length
of the roll gap of the same order, is changed by changing the minimum separation of the rolls. Thin
refers to a separation of 0.05m, whereas thick refers to a separation of 1m. The purpose of these
figures is to provide a way to check the reliability and accuracy of the model in the simplified case of
no curvature of the incident beam and no asymmetry of the rolls. Indeed, by cross-referencing with
existing models of thin-sheet rolling, we can try to ascertain whether key behaviours of thin-sheet
rolling are captured by our model. We assume that the neutral points of the top and bottom rolls
coincide. This is a reasonable assumption since models of symmetric, thin-sheet rolling predict
coincidence of neutral points. Our key assumption, however, is linear variation of the horizontal
stress through thickness (y-direction) of the workpiece. A rigorous numerical analysis is yet to be
carried out to validate the model, and its assumptions, in these regimes. In general, one does not
expect that the assumption of linear variation of the horizontal stress to always hold. Nevertheless,
we highlight key qualitative features in common and in contrast to existing models.

Analytical models of symmetric, flat thin-sheet rolling exist in the literature - see Chapters 1 and
2 of [Min17] - and two important characteristics of symmetric, thin-sheet rolling that one obtains
from these models are the existence of a pressure hill and discontinuity and in shear stress across the
neutral point. Here, pressure hill means that the pressure is largest in size at the neutral point and
decreases to near zero at the entry and exit points of the rollers. The plot of the horizontal stresses
implicitly incorporates the pressure since the horizontal stress is the deviatoric horizontal stress
minus the pressure. Assuming that the deviatoric stress is much smaller than the pressure term, the
first plot of Figure 6 suggests such a pressure hill occurs. The discontinuity in shear stress cannot
be seen in our models since we use the average shear stress, but the symmetry of the shear stress at
the top and bottom can. This is precisely why the average shear stress is 0. These observations are
encouraging for our model of ring rolling and, if further tests continue to highlight agreement with
existing observations of thin-sheet rolling, validate the assumption of linear variation of horizontal
stress.

For thick-sheet rolling, an analytical model was proposed in [Min17], Chapter 5, but remains
incomplete. The key feature of this model is the occurence of shear stress oscillations. Due to
the lack of dependence of our model on aspect ratio, the inner model results in Figure 7 are a
scaling of that of thin-sheet rolling. Hence, any non-linear behaviour that is unique to the physics
of thick-sheet rolling is not captured by our model. In particular, shear stress oscillations are not
captured. Furthermore, it is not clear whether the assumption of linear variation of horizontal stress
is valid. It would be interesting to see whether the additional physics involved in thick-sheet rolling
can be incorporated into our model and to see whether results captured in [Min17], Chapter 5 can
be replicated and extended. To summarise, further investigation is required in this case.

6There is also plots of deformations to an artificial outer model. This was added more of a curiosity rather than
anything; those plots are more important for curved geometries. One could, however, argue that in a large ring limit,
the inner model would be flat sheet rolling.
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5.3 Curved Beam Rolling
Figures 8 and 9 display results for a curved beam with moderate aspect ratio undergoing symmetric
and asymmetric, respectively, rolling. We chose a moderate aspect ratio, manifested in the minimum
roll separation being 0.3m, with the hope that the linear variation of stress could be approximately
true. There is no evidence, however, for curved beams that linear variation of horizontal stress
through thickness could be valid for small aspect ratios. Rigorous numerical tests and finite element
simulations are yet to be carried out. Nevertheless, we highlight key qualitative features of the
model.

The stress plots in Figure 8 shows horizontal stresses at the bottom and average shear stresses of
the order of 106 to 107 Pa near the exit region, whilst horizontal stresses at the top are clearly of order
of 107 Pa near the exit region. The effect of the contact and neutral points on the rolling model can
clearly be seen as discontinuities in the gradient of these stresses. As expected, despite the symmetry
of the roll configuration, likely due to the curved nature of the problem, the horizontal stresses at
the top and bottom are not symmetric. Moreover, we do not have symmetry in the shear stress
since the average shear stress is oscillating about 0. Unlike the former property, this is potentially
interesting non-linear behaviour and will be discussed in the next subsection. We did assume that
the neutral points coincide, which may not be a realistic phenomenon of curved rolling even with
symmetric rolls; however, it could be possible to make the neutral points coincide by adjusting
the ratio of the roll speeds. The second plot shows forces and moments. The effect of contact and
neutral points on force production are clearly shown for the forces; for the moment, interesting
oscillatory behaviour is shown. The forces at the end of the roll gap are of order 106 N and the
moments are of order 106 Nm. As evidenced in the third plot, these cause severe deformation of the
ring, twisting the ends across each other. This implies that the dataset used may be inappropriate
for a model of ring rolling: either the geometries are incompatible or the forces produced by the
inner model are too large to be coupled to an elastic beam.

The stress plots in Figure 9 also clearly show horizontal stresses at the bottom and at the top,
and average shear stresses of the order of 108 Pascals near the exit region. The second plot indicates
that forces and moments are of the order 107 Newtons and Newtonmetres. The effects of the contact
and neutral points on the horizontal stresses and both forces are again as discontinuities in the
gradient. Interesting oscillatory phenomena with the average shear stress and moment is also present,
with similar period. The effects of these large forces and moments is considerable, though not severe,
deformation of the ring, as seen in the third plot. This could suggest that larger aspect ratios may
be more suitable for ring rolling models.

These figures show off the potential use of our inner model of analysing curved beams. After
subjecting the model to rigorous numerical testing, it would be fascinating to explore phenomena
such as curvature production or oscillations of shear stresses in curved, asymmetric rolling prolems.
Indeed, the potential occurence of oscillations of shear stresses in curved beams with moderate
aspect ratios is surprising and could be an indicator that such behaviour may be intrinsic to the
physics of rolling. With regards to the deformations of the outer model, the fact that they are
significant could indicate that the rolling configurations presented - in particular, neutral points,
contact points and minimum separation of the rolls - are not suitable for ring rolling problems. This
is speculative, and a numerical investigation into this is the obvious next step.
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5.4 Dependency On Aspect Ratio
Putting aside issues of numerical validity, we try to use our inner model to investigate the dependency
of curved, asymmetric rolling problems on the aspect ratio. The precise rolling configurations are
indicated in Figures 10, 11, 12 and 13. We keep all features of the rolling problem the same except
for the minimum separation of the rolls which, as we have argued before, is essentially varying the
aspect ratio.

In terms of the effect on the deformations in the outer model, one can clearly see from the third
plots in the above figures that larger aspect ratios lead to milder deformations. Indeed, for the
rings of thickness 0.5m and 1m, it seems as though coupling could be plausible if some parameters
are fine tuned. We note that the milder deformations is not entirely due to the magnitudes of the
forces and moments being lessened - they are all, in fact, roughly of order 107 as we vary the aspect
ratio; rather, it seems as though greater symmetry of the forces near the end region of the roll gap
is present for larger aspect ratios. This may be an error from the linear stress assumption, or a
genuine artefact of the inner model.

The truly interesting feature in our comparison is oscillatory behaviour of not only the average
shear stress, but also the horizontal and vertical shear stresses near the top and bottom of the rollers
at small aspect ratios. These oscillations seem to dampen out as the aspect ratio increases, leading
to a greater symmetry of the end region forces and moments, which in turns leads to stabilisation
of the ring deformations. Of course, there is the potential issue with linear variation of horizontal
stress being invalid for large aspect ratios (or, indeed, small aspect ratios of curved geometries).
Indeed, in flat sheet rolling oscillations of shear stresses are observed in Minton’s thick-sheet model
but these results do not seem to corroborate this behaviour for thick-ring rolling. Moreover, there
is a possibility that such oscillations are a manifestation of a numerical error. On the other hand,
there is the possibility that such behaviour is intrinsic to the physics of nonlinear rolling problems.
Clearly, then, there is a case for further investigation to be carried out.

6 Coupling
Coupling the inner and outer models is the most important step in obtaining a static ring rolling
model. The statics problem can be understood in the following way. Take a curved beam undergoing
elastic deformation, with some displacement between the ends, this is the outer model. The
displacement between the endpoints corresponds to the roll gap: this is the inner model. Strictly
speaking, one of the endpoints of the outer model corresponds to the midpoint, on the centreline, of
the entry points of the workpiece into the roll gap; the other endpoint corresponds to the midpoint,
on the centreline, of the exit points of the workpiece out of the roll gap. We assume that the forces
at the end points of the outer model are much smaller in magnitude than the forces involved in
the inner model, so we take zero entry horizontal and average shear stress conditions for the inner
model. The inner model then gives us the forces and displacements at the end of the roll gap. At
this stage, the system - that is, the inner and outer model combined - is possibly out of equilibrium.
By out of equilibrium we mean that the models are incompatible, for example the outer model may
predict the ring does not return to the roll gap. Coupling is achieved if the system is in equilibrium.

In order to understand what equilibrium really means, we need to understand what we have
control over. We want to find a ring geometry for the outer model: that is, centreline parametrisation,
thickness profile and angular displacements between the ends. Given these things, and the forces
acting on the end of the beam, the outer model predicts the displaced beam, this displaced beam
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must match the geometry of the inner model, so this information also fix the position of the contact
points on the rolls. We are free to vary the neutral points of the inner model. If we fix the ratio of
the roll speeds then we are able to determine one of the neutral points given the other7. Assuming
linear variation of horizontal stress we can calculate the average shear stress and horizontal stresses
at the top and bottom of the roller at the start of the inner model.8 Solving the ODEs allows us to
calculate the average shear stress and horizontal stresses at the top and bottom of the roller at the
end of the inner model. We can then find forces and moments at this point but, since the outer ring
is in equilibrium, we require that these forces and moments match the entry forces. Thus, we have
control over the ring geometry and one of the neutral points, and we have a constraint on the end
point forces and moments.

Mathematically, this can be rephrased as an optimisation/root-finding problem. The idea is
to rewrite the inner and outer models as functions, taking all sufficient inputs and returning data
necessary to achieve coupling. Let us make this precise. Suppose that variables (v1, . . . , vj) are
sufficient inputs for the inner model and (vj+1, . . . , vn) are sufficient inputs for the outer model,
where each variable vi is an element of the normed vector space Vi. Furthermore, suppose that
variables (w1, . . . , wm) are the necessary outputs required to match the two models, where wi is
an element of the normed vector space Wi. In other words, we suppose that there exists functions
ginner and gouter on V such that

ginner(v) = wi ∈Wi, gouter(v) = w̃i ∈Wi, (4)

and that for coupling we require ginner(v) = gouter(v) or, equivalently, wi = w̃i. Then we can write
the inner and outer models as functions,

Finner : V →W, Fouter : V →W, (5)

where V =
∏n
i=1 Vi and W =

∏m
i=1Wi.

A full coupling of the two models is then the (fully) hard constraint problem: for K ⊂ V , find
v ∈ K such that

Finner(v) = Fouter(v). (6)

Solutions to this may be hard to find, especially if V is high-dimensional, so partial coupling could be
achieved by considering the (fully) soft constraint problem: for K ⊂ V , find v ∈ K that minimises
the quantity

‖Finner(v)− Fouter(v)‖V . (7)

Solutions to this may be easier to obtain but may not represent physical rolling configurations.
This is a consequence that the minimiser may not make the above quantity be 0. Adding some
hard constraints into the mix leads to a mixed soft-hard constraint problem. The adding of hard
constraints will make finding a minimum harder so these should be added one at a time until a
physically plausible solution is obtained. Existence of multiple solutions may suggest that the
problem is underconstrained - meaning that we have not identified all necessary outputs; existence
of no solutions may suggest that the problem is overconstrained - meaning that we have identified
too many outputs.

7This assumes the existence of two neutral points.
8This is the first time when this assumption is used. For more general inner models, arguments might have to be

adapted.
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We were not able to implement the coupling numerically - perhaps it could be done using, for
example, a black box solver such as fmincon in MATLAB - but we did lay some groundwork for
future work to be done. For the rest of this section, we will make the input space V explicit and try
to identify what we thought were the necessary outputs to achieve coupling.

6.1 Identifying the Input and Output spaces
The inputs for the inner model are the four contact points, two neutral points, the entry horizontal
stresses at the top and bottom of the roller, and the entry average shear stress. Note that we also
need to know the yield stress, the coefficient of friction of the rolls, the minimum separation of the
rolls and the radii of the rolls. We do not seek to optimise these values; they are kept constant in
the rolling problem. Hence, we do not include them in the input space. Moreover, knowing the
ratio of the roll speeds allows us to determine one neutral point from the other, reducing the input
variables by 1. This leads the input space for the inner model being R8.

The inputs for the outer model are the two end point angular displacements, the parametrisation
of the centreline, the thickness profile of the ring and the forces and moment at one end of the beam.
Held fixed in the outer model are the the cross-sectional profile of the ring, Young’s modulus and
the shear modulus. The outer model can then calculate the displacements between the ends under
these forces. These displacements, together with the thickness profile can then be used to calculate
the contact points. Our input space for the outer model is therefore R3 × T× T× C2(T)× C0(T).
Here T refers to the torus on [0, 2π], C2(T) is the space of twice continuously differentiable functions
on the torus9, C0(T) is the space of continuous functions on the torus. These correspond with the
three forces, the two angles giving where the beam hits the roll gap, the parametrisation of the
beam and the corresponding thickness profile, respectively.

We noted before that specifying the ring geometry and forces gives us the contact points for
the inner model, meaning that 4 real variables in the inner model input space are not needed in
the combined input space. Moreover from these forces we can deduce the horizontal stresses at the
top and bottom, and the average shear stress from this, so we take them as inputs instead. This
consideration means that the total input space for both problems is R3×R×T×T×C2(T)×C0(T),
corresponding to the three forces, the neutral point, the two angular displacements of the end points,
the centreline parametrisation and the width profile.

Identifying the necessary outputs that need to be matched in order to achieve coupling is by no
means a simple task and we do not claim to have fully solved this. First, let us treat forces and
moments. On the one hand, by assumption of force balance on the beam, the forces and moment at
the ends of the beam must balance. On the other hand, since we know the forces and moment on
entry, we can calculate the horizontal stresses and the average shear stress at the point of entry10.
By solving the ODEs and integrating the stresses we can find the forces and moment on the other

9We need at least two derivatives for the parametrisation of the centreline so that curvatures could be calculated
10Note that there is a slight error here because we take the start point of the outer model as the midpoint of the

entry points of the inner model. This can be circumvented by taking 0 entry conditions on the horizontal stresses and
average shear stress, which uses the assumption that elastic forces in the outer model are much smaller than the
forces in the inner model. With this modelling assumption, however, it seems unreasonable to impose the agreement
of entry and exit forces as a hard constraint; rather, a soft constraint should be used.

21



end. Coupling says that these should be equal, modulo hard or soft constraint:

Fhoz = ∆h(A)σt(A) + σb(A)
2 = ∆h(B)σt(B) + σb(B)

2 , (8)

Fver = ∆h(A)τ(A) = ∆h(B)τ(B), (9)

M = ∆h(A)−σt(A) + σb(A)
2 = ∆h(B)−σt(B) + σb(B)

2 . (10)

Given the ring geometry and given a neutral point. Combining this with the geometric constraint
on the outer model we get the output space W = R3 × R4, corresponding to the forces and the 4
contact points.

The lack of other constraints may be a manifestation of the fact that asking to optimise over ring
geometries is too broad. Indeed, this involves optimisation over infinite dimensional vector spaces
and it may not be straightforward to implement numerically. This suggests further assumptions
should be made on the shape of the outer ring to get a practical numerical scheme. The hope would
be to turn it into an optimisation problem over a finite dimensional vector space. Minton suggests
REFERENCE that matching input and output curvatures could be used as a further constraint but
we were not able to further pursue this.

6.2 A Possible Alternative
Coupling of the inner and outer model arises from the fact that we treat the physics governing the
two models as fundamentally different: the inner model is governed by plastic deformation and the
outer model is governed by elastic deformation. This may not be the case. The general equations
for the inner model that we derived made no assumption about the physics of the roll gap. Indeed,
instead of assuming the contact surface with the rollers were at yield, we could use the equations of
elasticity throughout. It would be interesting to investigate whether Timoshenko’s beam theory
is obtained in this limit. This would mean that the outer model and inner model are governed by
the same equations but with different boundary conditions. This would circumvent the problem of
coupling but would involve more complicated boundary conditions; however, it may be the case
that there are more tools available to deal with this case. Indeed, adding extra layers to the model -
for example, a transition layer between the elastic and plastic regions - could be implemented by
changing boundary conditions as opposed to achieving a simultaneous coupling of three models.
Continuing in this vein, such an approach would also be more viable to model a series of rollers.

7 Concluding Remarks
The main contributions of this report are: a very general inner model, with consistent sign convention
and no assumption on the physics except basic laws of continuum mechanics; the beginnings of a
numerical investigation of the inner model, and produced force effects on the otuer model, on the
assumptions of plastic deformation at the roll surfaces, friction laws and linear variation of horizontal
stress through thickness in the roll gap; and, although we did not achieve coupling, we outlined the
beginnings of a mathematical approach to coupling the two models as well as a possible alternative.

The equations (EQ1), (EQ2) and (EQ3) presented in Section 4 follow from force and moment
balances on slabs (infinitesimal wedges in the roll gap). There are no other assumptions on the
physics of the roll gap, and neither are there any major assumptions on the geometry (other than
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explicit, global parametrisations of the rollers). We derive differential equations for three averaged
quantities, ∫ ht

hb

σx dx,

∫ ht

hb

τ dy,

∫ ht

hb

σxy dy (11)

and we need to know the behaviour of σx(ht), σx(hb), σy(ht), σy(hb), τ(ht), τ(hb). The point is that
they can be adapted to different physical rolling systems so long as the above quantities are specified,
and it would be fascinating to see whether it is possible to adapt our model to thick-sheet rolling,
elastic rolling and clad-sheet rolling.

Although our equations are general, the system is underconstrained: in order to provide the
right amount of constraints, we assumed linear variation of stress through the thickness, friction
laws and that the material was at yield on contact with the roll surface. Our main failing was that
we were not able to justify the linear variation of stress assumption: indeed, it is not likely that this
is true for large aspect ratios. We were, however, able to successfully run numerical simulations of
the inner model. The beginnings of an investigation into dependence of the force production at the
end of the roll gap on the aspect ratio was presented, along with our surprising findings of shear
stress and horizontal stress oscillations for small aspect ratios. A rigorous numerical investigation
into our model is the next obvious step in this vein. We would find it very interesting to numerically
investigate whether the stress oscillations are a numerical error or an intrinsic part to nonlinear
rolling problems.

Our work towards coupling the model was less successful. The main failing of this investigation
into ring rolling was the failure to achieve a coupling of the two models. This being said, we
rephrased the coupling problem in terms of a constrained optimisation problem. We identified the
inputs for both the inner and outer models, and suggested some contraints. Future work would
naturally be to continue working on identifying the correct constraints.

We briefly described a possible alternative approach11 to ring rolling that circumvents the issue of
coupling. The idea is to see whether the general inner model that we have would yield Timoshenko’s
beam theory if this inner model was coupled with the laws of elasticity theory. If correct, then
this would be an intriguing point of departure to consider ring rolling as governed by the same
equations - that is, our general inner model equations - but with complicated boundary conditions.
One could argue that this is swapping one difficult issue (the coupling) for another (the boundary
condition), but we feel that, due to the sensitivity of both models to changes in input data, the
boundary condition issue could be easier to deal with. We end this report, then, with the hope that
this idea is explored further at some point in the future.

11This was suggested to us by one of our supervisors, Ed Brambley.
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Appendices
A Inner Model Derivations
A.0.1 An Alternate Equation For σb
For the numerics, we require to eliminate the dependence of ∂xσb on ∂xσt. This can be achieved by
substituting the differential equation that we had obtained for ∂xσt. Explicitly:(

1 + ρt
ρb

)
∂xσb = 6

ρb
(∆h τ − htτt + hbτb) +

(
−ρt
ρb
σt + σb

)
1

∆h
d∆h
dx
−

− 3
ρb

(σbh′t − σth′b) (ht + hb) + ρt
ρb

2
∆h (−τt + τb − h′tσb + h′bσt) + ρt

ρb

σt + σb
∆h

d∆h
dx

.

By rewriting 1 + ρt

ρb
as ρb+ρt

ρb
, we get a nice form for ∂xσb:

∂xσb = 6
ρb + ρt

(∆h τ − htτt + hbτb) + ρb
ρb + ρt

(
−ρt
ρb
σt + σb

)
1

∆h
d∆h
dx
−

− 3
ρb + ρt

(σbh′t − σth′b) (ht + hb) + ρt
ρb + ρt

2
∆h (−τt + τb − h′tσb + h′bσt) + ρt

ρb + ρt

σt + σb
∆h

d∆h
dx

.

A.0.2 Eliminating Unknowns

The unknowns are τt, τb, σ(ht) and σ(hb). To eliminate them, we use the friction law and yield
conditions at the top and at the bottom.

First, let us use the friction laws to obtain expressions for τt and τb in terms of σt and σy:

τt =
µ
(
h′2t σt + σy

)
sgnt − (σy − σt)h′t

1− h′2t + 2µh′tsgnt
,

τb =
−µ
(
h′2b σb + σy

)
sgnb − (σy − σb)h′b

1− h′2b − 2µh′bsgnb
.

Splitting this up into coefficients for σy and σt, we can rewrite the above as

τt = Ctσy +Dtσt, τb = Cbσy +Dbσb,

where

Ct = µsgnt − h′t
1− h′2t + 2µh′tsgnt

,

Cb = −µsgnb − h′b
1− h′2b − 2µh′bsgnb

,

Dt = µh′2t sgnt + h′t
1− h′2t + 2µh′tsgnt

,

Db = −µh′2b sgnb + h′b
1− h′2b − 2µh′bsgnb

.
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Putting this into the yield equation and rearranging, we obtain:(
1
4 + C2

t

)
σ2
y +

(
2CtDt −

1
2

)
σtσy +

(
1
4 +D2

t

)
σ2
t − k2 = 0,(

1
4 + C2

b

)
σ2
y +

(
2CbDb −

1
2

)
σbσy +

(
1
4 +D2

b

)
σ2
b − k2 = 0.

We make the ansatz that σy � σx, so that we take the largest root of the quadratic:

σy(ht) =
−
(
2CtDt − 1

2
)
σt +

√(
2CtDt − 1

2
)2
σ2
t − 4

( 1
4 + C2

t

) (σ2
t

4 +D2
t σ

2
t − k2

)
2
( 1

4 + C2
t

) ,

σy(hb) =
−
(
2CbDb − 1

2
)
σb +

√(
2CbDb − 1

2
)2
σ2
b − 4

( 1
4 + C2

b

) (σ2
b

4 +D2
bσ

2
b − k2

)
2
( 1

4 + C2
b

) .

A.0.3 Derived Quantities

Due to the lack of assumptions on the physics away from the rollers, manifesting in the fact that
from our inner model we do not know the whole stress tensor across the thickness, there are few
quantities that we can derive from our model. It is straightforward to derive the pressure at the roll
surfaces, since the σx + σy yields twice the pressure (this follows from the fact that the deviatoric
stress tensor is traceless). More interesting quantities to consider, considering that our ambient aim
is a coupling with the outer model, are the horizontal and vertical forces, as well as the moments
(anti-clockwise about the zero-line), across the roll gap.

Fh =
∫ ht

hb

σx dy = ∆hσt + σb
2 ,

Fv = ∆h τ,

M = −
∫ hb

ht

σxy dy = ∆h−σt + σb
2 .

A.1 Summary Of Equations
We now summarise all equations for the inner model relevant for the numerics.

A.1.1 Easing Notation

ρt = −2h2
t + hthb + h2

b

ρb = −2h2
b + hthb + h2

t

sgnt(x) = sgn(x− xnt ) hvsd(x− xint ) hvsd(xoutt − x)
sgnb(x) = sgn(x− xnb ) hvsd(x− xinb ) hvsd(xoutb − x)
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A.1.2 Reducing Degrees Of Freedom

Ct = µsgnt − h′t
1− h′2t + 2µh′tsgnt

Cb = −µsgnb − h′b
1− h′2b − 2µh′bsgnb

Dt = µh′2t sgnt + h′t
1− h′2t + 2µh′tsgnt

Db = −µh′2b sgnb + h′b
1− h′2b − 2µh′bsgnb

σy(ht) =
−
(
2CtDt − 1

2
)
σt +

√(
2CtDt − 1

2
)2
σ2
t − 4

( 1
4 + C2

t

) (σ2
t

4 +D2
t σ

2
t − k2

)
2
( 1

4 + C2
t

)
σy(hb) =

−
(
2CbDb − 1

2
)
σb +

√(
2CbDb − 1

2
)2
σ2
b − 4

( 1
4 + C2

b

) (σ2
b

4 +D2
bσ

2
b − k2

)
2
( 1

4 + C2
b

)
τt = Ctσy +Dtσt

τb = Cbσy +Dbσb

A.1.3 Differential Equations

∂xσb = 6
ρb

(∆h τ − htτt + hbτb) +
(
−ρt
ρb
σt + σb

)
1

∆h
d∆h
dx
− 3(σbh′t − σth′b)(ht + hb)

ρb
+ ρt
ρb
∂xσt

∂xτ = 1
∆h

(
h′tτt − σy(ht)− h′bτb + σy(hb)− τ

d∆h
dx

)
∂xσt = 2

∆h (−τt + τb − h′tσb + h′bσt) + σt + σb
∆h

d∆h
dx
− ∂xσb

A.1.4 Derived Quantities

Fh =
∫ ht

hb

σx dy = ∆hσt + σb
2 ,

Fv = ∆h τ,

M = −
∫ hb

ht

σxy dy = ∆h−σt + σb
2 .

B Numerics
For users of our package, the master file which synthesises all inner and outer model code in pproc.m.
In this m-file, the function inner_model yields the horizontal stress and average shear stress data
across the roll gap. These are then post-processed to obtain horizontal and vertical forces, as well
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as moments. The data is then plotted against the displacement across the roll gap. The function
plotdisplacements then plots a ring profile subject to the forces and moments obtained at the end
of the roll gap. The geometry of the model is encoded in the function initGeom. In order to
change the model, these functions - and their associated files - should be changed; it should not be
necessary to change much in the master file pproc.m, except material properties and some outer
model simplifications. The datasets, contained in run.m, are then fully specified by created a struct
in MATLAB that contains the following variables12:

• w0 - Minimum point of separation of the rolls;

• Rt- Radius of the top roll;

• Rb- Radius of the bottom roll;

• entryt - Roll gap entry point at the top;

• entryb - Roll gap entry point at the bottom;

• exitb - Roll gap exit point at the top;

• neutt - Roll gap neutral point at the top;

• neutb - Roll gap neutral point at the bottom;

• name - Name of rolling configuration.

The material properties that have to be specified in pproc.m13 are:

• mu - The coefficient of friction;

• k - The yield stress;

• E - Young’s modulus;

• G - Shear modulus.

B.1 Numerical Data

12The labels for these variables are those used in the MATLAB code. They do not always agree with the labels we
have used in this report, but we hope it is clear when there is disagreement.

13Material properties should not have to be in this file, and this can be achieved by using parent classes in run.m.
We hold these fixed throughout our testing, so this is why we decided not to do this.
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Figure 6: Flat, Symmetric, Thin-Sheet Rolling
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Figure 7: Flat, Symmetric, Thick-Sheet Rolling
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Figure 8: Curved, Symmetric Rolling
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Figure 9: Curved, Asymmetric Rolling
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Figure 10: Very Small Aspect Ratio
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Figure 11: Small Aspect Ratio
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Figure 12: Moderate Aspect Ratio
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Figure 13: Large Aspect Ratio
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B.1.1 Rolling Configurations

Figure 6: w0 = 0.05, Rt = 1.5, Rb = 1.5, entryt = −0.2, entryb = −0.2, exitt = 0.1, exitb = 0.1,
neutt = −0.025, neutb = −0.025.
Figure 7: w0 = 1, Rt = 1.5, Rb = 1.5, entryt = −0.2, entryb = −0.2, exitt = 0.1, exitb = 0.1,
neutt = −0.025, neutb = −0.025.
Figure 8: w0 = 0.3, Rt = 1.5, Rb = 1.5, entryt = −0.23, entryb = −0.18, exitt = 0.16, exitb = 0.15,
neutt = −0.025, neutb = −0.025.
Figure 9: w0 = 0.3, Rt = 1.5, Rb = 0.5, entryt = −0.23, entryb = −0.15, exitt = 0.16, exitb = 0.14,
neutt = −0.025, neutb = −0.045.
Figure 10: w0 = 0.05, Rt = 1.5, Rb = 0.5, entryt = −0.23, entryb = −0.15, exitt = 0.16,
exitb = 0.14, neutt = −0.025, neutb = −0.045.
Figure 11: w0 = 0.1, Rt = 1.5, Rb = 0.5, entryt = −0.23, entryb = −0.15, exitt = 0.16, exitb = 0.14,
neutt = −0.025, neutb = −0.045.
Figure 12: w0 = 0.5, Rt = 1.5, Rb = 0.5, entryt = −0.23, entryb = −0.15, exitt = 0.16, exitb = 0.14,
neutt = −0.025, neutb = −0.045.
Figure 13: w0 = 1, Rt = 1.5, Rb = 0.5, entryt = −0.23, entryb = −0.15, exitt = 0.16, exitb = 0.14,
neutt = −0.025, neutb = −0.045.
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