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1 Introduction

In a crystalline solid, the intermolecular forces act on the constituent molecules so that their motion

is restricted and they have to lie, on average, in a regular array. When the substance is heated, the

molecules gain the necessary kinetic energy to break the crystal structure with large molecular vibra-

tions, leading to a liquid phase.

In certain materials, typically consisting of elongated molecules, the properties are determined by

the translational motion and the orientation of the elongated molecules. In an isotropic liquid, the

orientation of the molecule is random. However, in the region between the isotropic liquid and crystal

states, the orientation of the material is not random, but it exhibits an averaged orientation. Liquid

crystals are materials which exhibits such orientational order.

One can define a unit vector n as the average molecular orientation direction or the director. To

measure the amount of orientational order in a small ball B, we can construct a probability distribution

of the molecular orientations and look at the mean and variation of the distribution. The usual measure

of this variation is via the scalar order parameter, denoted by S, defined as the weighted average of

the molecular orientation angles θm between the long molecular axes and the director:

S =
1

2

∫
B

(3 cos2(θm)− 1)f(θm)dV, (1.1)

where f(θm) is the statistical distribution function of the molecular angle θm. This function is even

and periodic due to the head-tail symmetry of the molecules.

When the material is crystalline and all the molecules align exactly with the director, θm = 0

for all molecules and thus S = 1. When the material is an isotropic liquid, which means that the

molecules are randomly oriented , then f(θm) is a constant and equal to 1/(2π). Using spherical polar

coordinates we find that, after integrating by parts, S = 0. We note that when the molecules are

randomly oriented in the plane perpendicular to the director, the order parameter is S = −1/2 and

hence it is possible to achieve a configuration where −1/2 < S < 0. But it is more usual that the

equilibrium liquid crystal state has a positive order parameter 0 < S < 1.
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Experiments have confirmed the existence of at least three configurations for liquid crystals: a

uniaxial configuration (where the molecules are shaped like a cylinder or a rod), a biaxial configuration

(where the molecule are rectangular in shape) and the isotropic state.

2 A simple model

Let the director be a non-zero unit vector n. Denote n⊗n as the tensor product of n with itself and

define the tensor

Q := S(n⊗ n− 1

3
I), (2.1)

where I is the identity tensor. The tensor Q is useful as it is able to characterise the configuration of

the material based on the information about its eigenvalues. When Q has three distinct eigenvalues,

the configuration is biaxial, when Q has a two degenerate non-zero eigenvalues (i.e. one repeating

eigenvalue), the configuration is uniaxial. When Q = 0, the configuration is isotropic.

Let τ ,µ be two vectors such that (n, τ ,µ) forms an orthonormal basis of R3. Then

Qn = S(n− 1

3
n) =

2

3
Sn,

Qτ = −1

3
Sτ ,

Qµ = −1

3
Sµ.

Hence the eigenvalues of Q are λ1 = 2
3S, λ2 = λ3 = −1

3S, with corresponding eigenvectors v1 =

n,v2 = τ ,v3 = µ. Consequently, the matrix Q has zero trace and is symmetric.

By the theory of symmetric matrices, there exists orthogonal matrix P such that P−1QP = D

where D is the diagonal matrix with λ1, λ2, λ3 in its main diagonal. Then for any k ∈ N, we have

Qk = (PDP−1)k = P (D)kP−1 and tr
(
Qk
)

= tr
(
P (D)kP−1

)
= tr

(
Dk
)

=
3∑
i=1

λki .

We refer the reader to [3] for an introduction to the Q-tensor theory and its applications to liquid

crystals.

2.1 Free energy

Within the liquid crystal, there are many forms of energy that make up the total free energy of the

material. Examples include the elastic energy of any distortion to the material, the thermotropic en-

ergy (that dictates the preferred phase of the material) and the surface energy between the bounding

surface and the liquid crystal molecules at the surface. Our main focus in this model is to look for

configurations that minimises the thermotropic energy.

From above, we have two degenerate non-zero eigenvalues, hence the equilibrium configurations

we expect are the isotropic configuration and the uniaxial configuration. To account for the existence
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of two stable minima, we choose the simplest form of the thermotropic energy density, which is the

following quartic potential:

f(Q(S)) =
A

2
tr
(
Q2
)
− B

3
tr
(
Q3
)

+
C

2
tr
(
Q4
)
, (2.2)

where A,B,C are terms that might depend on the temperature of the system. We consider A as a

temperature control and we will assume that B,C > 0.

Consider a test volume Vc of the crystal and the thermotropic energy in Vc is defined as

E(S) =

∫
Vc

f(Q(S))dV =

∫
Vc

A

2
tr
(
Q2
)
− B

3
tr
(
Q3
)

+
C

2
tr
(
Q4
)
dV

=

∫
Vc

A

3
S2 − 2B

27
S3 +

C

9
S4dV. (2.3)

Taking the first variation of E(S) in direction of the function h leads to

lim
δ→0

E(S + δh)− E(S)

δ
= lim

δ→0

∫
Vc

1

δ

(
A

3
((S + δh)2 − S2)− 2B

27
((S + δh)3 − S3) +

C

9
((S + δh)4 − S4)dV

)
=

∫
Vc

2A

3
Sh− 2B

9
S2h+

4C

9
S3hdV.

Since h is arbitrary, this implies that the minimisers of E(S) satisfy

2A

3
S − 2B

9
S2 +

4C

9
S3 = 0. (2.4)

Now assume that n, A,B,C are constant and S is time dependent and evolves according to the gradient

flow: ∫
Vc

dS

dt
hdV = −K lim

δ→0

E(S + δh)− E(S)

δ
,

where K > 0 is some kinetic rate. Then we have

dS

dt
= −2S(t)

9
(2CS2 −BS + 3A)K. (2.5)

Set K = 1 and introduce the following rescaled variables

S =
B

4C
S′, A′ =

24AC

B2
, t′ =

36C

B2
t

we can express (2.5) as

dS′

dt′
= −S′((S′ − 1)2 +A′ − 1). (2.6)

2.2 Stability analysis of the critical points

The critical points of (2.6) satisfy dS′

dt′ = 0, and hence we have

• If A′ > 1, then there is only one critical point: S′ = 0.

• If A′ = 1, then there are two critical points: S′ = 0 and S′ = 1.
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• If 0 < A′ < 1 and A′ < 0, then there are three critical points: S′ = 0, S+, S−, where

S± = 1±
√

1−A′.

We denote S+ as the upper nematic state and S− as the lower nematic state.

• If A′ = 0, then there are two critical points: S′ = 0 and S′ = 2.

The stability of the critical points of (2.6) can be found using the second derivative

d2S′

d(t′)2
= −3(S′)2 + 4S′ −A′.

We find that

• If A′ > 1, then S′ = 0 is globally stable;

• If A′ = 1′, then S′ = 0 is stable and S′ = 1 is a point of inflection;

• If 0 < A′ < 1, then S′ = 0, S+ are stable but S′ = S− is unstable;

• If A′ = 0, then S′ = 2 is stable and S′ = 0 is a point of inflection;

• If A′ < 0, then S′ = 0 is unstable and S′ = S± are stable.

This can be summarised in the following response diagram:

Figure 1: Response diagram of the gradient flow with stable (in green) and unstable (in red) critical

points.

3 Temperature controlled phase transitions

Suppose we let the temperature vary slowly with time so that

A′ = A0 + εt′, ε << 1,
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where A0 is some initial temperature. Dropping all the primes and we have

dS

dt
= −S((S − 1)2 +A0 + εt− 1), S(0) := SI . (3.1)

Then for small ε, we recover (2.6). Hence in the t-timescale, the gradient flow is too fast for us to

observe any transition. In the other words, given any initial starting point SI bounded away from the

critical points, (3.1) will only tell us the critical points in which our solution will end up. Thus we

need to slow down by rescaling time and set τ = εt, leading to

ε
dS

dτ
= −S((S − 1)2 +A0 − 1 + τ). (3.2)

There are three phase transitions we are interested in:

• Transition from Lower Nematic (LN) as temperature increases;

• Transition from Upper Nematic (UN) as temperature increases;

• Transition from Isotropic (I) as temperature decreases;

Figure 2: Phase transitions we will look at

3.1 Forward transition from Lower Nematic

We start near the lower nematic state SI ∼ S− with A0 < 0. For sufficiently small τ , the equilibria

of (3.2) will be only S = S− if we start close to S−. One can see this by considering an asymptotic

expansion of S:

S = S0 + εS1 +O(ε2). (3.3)

Plugging this into (3.2) and matching orders of ε we find that to order O(ε0)

0 = −S0(S2
0 − 2S0 + (A0 + τ)) (3.4)

and to order O(ε1)

dS0
dτ

= −S1(3S2
0 − 4S0 + (A0 + τ)). (3.5)
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(3.4) gives the leading term of S as one of the three possible equilibria. Since we started close to S−,

we have that S0 = 1−
√

1− (A0 + τ). Then substitute into (3.5) yields

S1 = − 1

4([1− (A0 + τ)]3/2 − [1− (A0 + τ)]
.

Hence we see that the solution S of (3.2) that started close to S− will look like

S = 1−
√

1− (A0 + τ)− ε

4([1− (A0 + τ)]3/2 − [1− (A0 + τ)])
+O(ε2). (3.6)

However, as τ increases to −A0, the two equilibria (S = 0, S = S−) merge into an unstable critical

point and it is unclear which critical point the solution will go to. Moreover, the above asymptotic

expansion for S no longer holds when τ = −A0, as the order O(ε) term is no longer negligible.

To explore the dynamics near A = 0, we perform a formally matched asymptotic analysis. When

we are sufficiently away from A = 0, we know from above that the solution S is close to S−. To

investigate what happens when A passes through zero, we undergo a rescaling in time and space. This

leads to a new differential equation describing the dynamics of the system under the new scales. We

now have two ordinary differential equations describing the dynamics for two regions. We expect that

in an intermediate region, with A small and negative, the solutions to the two ordinary differential

equations should match (see Figure 3).

Figure 3: Away from A = 0 we have a solution S(τ) from (3.1) and we have another solution S̃(τ̃)

in the rescaled (dashed) region close to A = 0. The behaviour of both solutions should agree in an

intermediate region.

Near the origin A = 0, we introduce a new rescaling to zoom in:

τ +A0 = εατ̃ , S = εβS̃, α > 0, β > 0.

Then substituting these new variables into (3.2) leads to

dS̃

dτ̃
= −S̃(ε2α−1τ̃ − 2εα+β−1S̃ + εα+2β−1S̃2) (3.7)

To allow for a transition from the lower nematic state under this rescaling, we would like to keep the

S̃2 term and the τ̃ S̃ term. This requires 2α − 1 = α + β − 1 = 1 and amounts to setting α = β = 1
2 .

So our rescaled variables are

τ +A0 =
√
ετ̃ , S =

√
εS̃.
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Then, under this rescaling, (3.2) to least order in ε is

dS̃

dτ̃
= −S̃(−2S̃ + τ̃). (3.8)

The matching condition requires that S̃ matches to the lower nematic state S− as τ̃ → −∞. The

equilibria of (3.8) are S̃ = 0 corresponding to the isotropic state and S̃ = τ̃
2 corresponding to the lower

nematic state. Hence we need S̃ → τ̃
2 as τ̃ → −∞.

We observe that (3.8) is a Bernoulli equation. We can substitute W = S̃−1 and solve for S̃ =: SI ,

the inner solution:

S̃ = − exp(−τ̃2/2)

/(
2

∫ τ̃

−∞
exp(−η2/2)dη

)
. (3.9)

We note that S̃ → 0 as τ̃ → +∞ at an exponential rate. In other words, we have switched from the

lower nematic state to the isotropic state on a timescale τ = O(
√
ε) or t = O(1/

√
ε).

3.2 Forward transition from Upper Nematic

We start near the upper nematic state SI ∼ S+ with A0 < 1. With the same asymptotic expansion

(3.3), we see that the solution S can be expressed as

S = 1 +
√

1− (A0 + τ) +
ε

4([1− (A0 + τ)]3/2 + [1− (A0 + τ)])
+O(ε2).

This expansion breaks down when A0 + τ approaches 1 and so we consider the following rescaling to

explore the dynamics near A = 1:

τ +A0 − 1 = εατ̃ , S − 1 = εβS̃,

then we have

dS̃

dτ̃
= −εβ+α−1S̃2 − ε2α−β−1τ̃ − ε2β+α−1S̃3 − ε2α−1τ̃ S̃.

We choose α = 2
3 and β = 1

3 to obtain, to lowest order of ε:

dS̃

dτ̃
= −(S̃2 + τ̃). (3.10)

(3.10) is a Riccati equation and we use the ansatz S̃ = u′/u for some function u to obtain the following

Airy equation:

d2u

dτ̃2
+ τ̃u = 0. (3.11)

The solution to (3.11) is

u(τ̃) = C1Ai(−τ̃) + C2Bi(−τ̃), (3.12)

where C1, C2 are constants and

Ai(x) =
1

π

∫ ∞
0

cos(13 t
3 + xt)dt, Bi(x) =

1

π

∫ ∞
0

[exp(−1
3 t

3 + xt) + sin(13 t
3 + xt)]dt
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Figure 4: Plots of Ai(−η) and Bi(−η).

are the Airy functions of the first and second kind. We choose C1 = 1 and C2 = 0 to give

S̃(τ̃) =
−Ai′(−τ̃)

Ai(−τ̃)
. (3.13)

We refer to [1] (pages 448–449) for the asymptotic formulae for Ai(z),Ai′(z) for |z| large. For τ̃ large

and negative, the solution S̃ behaves like

S̃(τ̃) ∼
√
−τ̃ , as τ̃ → −∞,

which matches with the upper nematic state as τ̃ → −∞. We observe that (3.13) is valid until

τ̃ = τ∗, where −τ∗ is the first zero of the Airy function (τ∗ ≈ +2.338). This motivates us to look at

A = 1 + ε2/3τ∗ + ετ̃ , then we have

dS̃

dτ̃
= −S̃((S̃ − 1)2 + τ∗ε2/3 + ετ̃)

and to lowest order we obtain

dS̃

dτ̃
= −S̃(S̃ − 1)2.

Using separation of variables, we arrive at the implicit solution

τ̃ ∼ − 1

1− S̃
+ log

(
1− S̃
S̃

)
.

As τ̃ → +∞ we must have S̃ → 0. Hence we observed a transition from the upper nematic state to

the isotropic state on a timescale of τ = O(ε2/3).

3.3 Backward transition from Isotropic

Starting with SI arbitrary but small (so that the dynamics of (3.1) will drive it to the isotropic state)

and 0 < A0 < 1. We want to investigate the transition from the isotropic state when we bring the
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temperature down. We consider A = A0 − τ, τ = εt and look at the following rescaling

τ = εατ̃ , S = εβS̃.

Here we have decided not to include A0 into the rescaling of τ as we also want to investigate the effects

of A0 on the transition. Substituting these into (3.2) yields

dS̃

dτ̃
= −S̃(ε2β+α−1S̃2 − 2εβ+α−1S̃ +A0ε

α−1 − τ̃ ε2α−1).

From the earlier stability analysis (Section 2.2), we know that the isotropic state is stable for A > 0,

this motivates us to keep the last two terms and discard the first two terms. Then the resulting ODE

will only have a critical point at S̃ = 0. However, there is no value of α such that α − 1 and 2α − 1

can both equal to zero. Hence we set α = 0 and β > 1 and look at the resulting ODE up to order

O(1), which is

dS̃

dτ̃
= S̃

(
τ̃ −A0

ε

)
.

This yields a solution

S̃(τ̃) = S̃(0) exp

(
τ̃2

2ε
− A0τ̃

ε

)
and we observe the following: 

S̃ ∼ 0, if 0 < τ̃ < 2A0,

S̃ → +∞, if τ̃ →∞, S̃(0) > 0,

S̃ → −∞, if τ̃ →∞, S̃(0) < 0.

So, once τ̃ goes above 2A0, or equivalently, A goes below −A0, S̃ either jumps up to +∞ or jumps to

−∞ depending on the sign of S̃(0).

4 Conclusion and Future research

In this report, we have derived a simple model for the dynamics of liquid crystals via Q-tensor the-

ory, which avoids the problems of angle representation. Instead, the variation in orientation of the

molecules in the liquid crystal is summarised by the scalar order parameter S. Applying a gradient

flow to the thermotropic energy, which we take as a quartic potential, we derived an ordinary differ-

ential equation for S, and analysed the stability of its critical points. Moreover, we use the method of

formally matched asymptotics to formally deduce the phase transitions from one equilibrium state to

another when the temperature is varied. Our main results are summarised in Figure 5. Namely the

forward transitions from nematic states to isotropic state as the temperature increases. However, we

observed a delayed bifurcation for the backward transition from the isotropic state, where the order

parameter S′ stayed close to zero for values of A′ where the isotropic state is unstable.

In our model, we only considered the case where the director n and the scalar order parameter S

are spatially independent. One could have considered the following spatially varying energy functional

9



Figure 5: Full response diagram with phase transitions.

as opposed to (2.3):

E1 =

∫
Vc

η

2
|∇S|2 + f(Q(S)), (4.1)

where η > 0 is some constant. The gradient flow of this energy would then lead to the following partial

differential equation:

∂tS = η∇2S − 2S

9
(2CS2 −BS + 3A(T (x, t)), (4.2)

where T (x, t) is the temperature. The one-dimensional version of the above PDE have been considered

in [2]. Another possible research direction is to extend the energy E to include the electromagnetic

energy and the surface energy as done in [3]. A third direction is to consider the phase transitions in

the context of optimal control and inverse problems, i.e. what is the temperature control is needed

for a desired pattern of phases.
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