
(Magnetic) Fluid Dynamics from a
PDE-Theoretical Point of View

Dave McCormick

Mathematics and Statistics Centre for Doctoral Training
University of Warwick

May 9th, 2012



Introduction

• What are the Navier–Stokes equations?
• Weak derivatives and Sobolev spaces
• Laplace’s equation
• Heat equation and the Galerkin method
• Navier–Stokes equations
• Magnetohydrodynamics (MHD)



The Navier–Stokes equations

Let u and p represent the velocity and pressure fields of a fluid.
By applying Newton’s second law to a small packet of fluid, we
obtain the following PDE:

d
dt

u(t, x(t)) =

∂u
∂t

+ (u · ∇)u = ν∆u−∇p + f ,

(1a)

∇ · u = 0.

(1b)

There are three forcing terms:
• ν∆u represents the viscous friction of the fluid “rubbing

against itself” (where the coefficient ν is the viscosity);
• ∇p ensures that fluid moves from areas of high pressure to

areas of low pressure, thus enforcing the divergence-free
condition ∇ · u = 0;

• f represents an external forcing.
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Complications

The Navier–Stokes equations are difficult to deal with
rigorously, due to a combination of two factors:

• the nonlinear term (u · ∇)u, and
• the pressure gradient ∇p.

So let’s start by considering a simplified equation without either
of these difficult terms:

∂u
∂t
−∆u = f ,

which is the heat equation. To study this, we must first study
the time-independent version of this equation:

−∆u = f ,

which is Laplace’s equation.



Complications

The Navier–Stokes equations are difficult to deal with
rigorously, due to a combination of two factors:
• the nonlinear term (u · ∇)u, and

• the pressure gradient ∇p.

So let’s start by considering a simplified equation without either
of these difficult terms:

∂u
∂t
−∆u = f ,

which is the heat equation. To study this, we must first study
the time-independent version of this equation:

−∆u = f ,

which is Laplace’s equation.



Complications

The Navier–Stokes equations are difficult to deal with
rigorously, due to a combination of two factors:
• the nonlinear term (u · ∇)u, and
• the pressure gradient ∇p.

So let’s start by considering a simplified equation without either
of these difficult terms:

∂u
∂t
−∆u = f ,

which is the heat equation. To study this, we must first study
the time-independent version of this equation:

−∆u = f ,

which is Laplace’s equation.



Complications

The Navier–Stokes equations are difficult to deal with
rigorously, due to a combination of two factors:
• the nonlinear term (u · ∇)u, and
• the pressure gradient ∇p.

So let’s start by considering a simplified equation without either
of these difficult terms:

∂u
∂t
−∆u = f ,

which is the heat equation.

To study this, we must first study
the time-independent version of this equation:

−∆u = f ,

which is Laplace’s equation.



Complications

The Navier–Stokes equations are difficult to deal with
rigorously, due to a combination of two factors:
• the nonlinear term (u · ∇)u, and
• the pressure gradient ∇p.

So let’s start by considering a simplified equation without either
of these difficult terms:

∂u
∂t
−∆u = f ,

which is the heat equation. To study this, we must first study
the time-independent version of this equation:

−∆u = f ,

which is Laplace’s equation.



Laplace’s equation

On regions with simple geometry, we can solve Laplace’s
equation explicitly. For example, Laplace’s equation on a ball of
radius r:

∆u = 0 in B(0, r)
u = g on ∂B(0, r)

has the solution formula

u(x) =
r2 − |x|2

r
Γ(n

2 + 1)

nπn/2

ˆ
∂B(0,r)

g(y)

|x − y|n
dS(y).



Laplace’s equation

What if the domain we want to solve the equation on looks like
this?



Laplace’s equation

What if the domain we want to solve the equation on looks like
this?



Laplace’s equation

We need a more general theory that can cope with any
(reasonable) domain Ω, and doesn’t depend on special
geometries.

Aim
We wish to use the language of functional analysis — Hilbert
and Banach spaces — to study PDEs. The first task is to find the
“right” spaces to work in.
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Weak derivatives

Let C∞c (Ω) denote the set of infinitely differentiable functions
φ : Ω→ R with compact support in Ω — that is,

spt(φ) := {x ∈ Ω : φ(x) 6= 0} ⊂ Ω◦.

Suppose we are given a function u ∈ C1(Ω), and φ ∈ C∞c (Ω).
Then we may integrate by parts as follows:

ˆ
Ω

u
∂φ

∂xi
= −
ˆ

Ω

∂u
∂xi

φ.

More generally, if α = (α1, . . . , αn) ∈ Nn
0 and u ∈ Ck(Ω), then we

may integrate by parts |α| = α1 + · · ·+ αn times to obtain:
ˆ

Ω
u(Dαφ) = (−1)|α|

ˆ
Ω

(Dαu)φ.
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Weak derivatives

Notice that the left-hand side of this formula makes sense even
if u is not Ck. The problem is that if u is not Ck then Dαu has no
obvious meaning. We circumvent this by using the above
expression to define Dαu:

Definition
Suppose u, v ∈ L1

loc(Ω), and α ∈ Nn
0 is a multi-index. We say that

v is the αth weak partial derivative of u, written Dαu, provided
that ˆ

Ω
u(Dαφ) = (−1)|α|

ˆ
Ω

vφ

for all φ ∈ C∞c (Ω).
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Sobolev spaces

Definition
Given k ∈ N and 1 ≤ p ≤ ∞, the Sobolev space Wk,p(Ω) is
defined by

Wk,p(Ω) :=

{
u ∈ L1

loc(Ω) :
for all α ∈ Nn

0 such that
|α| ≤ k, Dαu ∈ Lp(Ω)

}
,

where we identify functions which agree almost everywhere.

The Wk,p norm is defined by

‖u‖Wk,p(Ω) :=

∑
|α|≤k

ˆ
Ω
|Dαu|p

1/p

if 1 ≤ p <∞

‖u‖Wk,∞(Ω) :=
∑
|α|≤k

ess sup
Ω
|Dαu|
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Sobolev spaces

Lemma
Wk,p(Ω) is a separable Banach space.

Definition
When p = 2, we write Hk(Ω) := Wk,p(Ω), and define the Hk

inner product by

(u, v)Hk(Ω) :=
∑
|α|≤k

ˆ
Ω

(Dαu)(Dαv).

Lemma
Hk(Ω) is a separable Hilbert space.
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Sobolev spaces with zero trace

It often proves useful to approximate Sobolev functions by
smooth test functions. It is an easy fact from measure theory
that C∞c (Ω) is dense in Lp(Ω).

One might think, therefore, that
C∞c (Ω) is dense in Wk,p(Ω) for k ≥ 1, but this is in fact not true:
in fact, the closure of C∞c (Ω) is a new, smaller space:

Definition
For 1 < p <∞, Wk,p

0 (Ω) is defined to be the completion of
C∞c (Ω) in Wk,p(Ω); i.e., u ∈ Wk,p

0 (Ω) if and only if there exist
functions um ∈ C∞c (Ω) such that um → u in Wk,p(Ω).

Heuristically, Wk,p
0 (Ω) comprises those functions u ∈ Wk,p(Ω)

such that “Dαu = 0 on ∂Ω” for all |α| ≤ k− 1. Again, we write
Hk

0(Ω) := Wk,2
0 (Ω).
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Sobolev spaces with zero trace

Poincaré’s inequality

Let 1 < p <∞, and suppose Ω is bounded. Then there exists a
constant cp such that

‖u‖Lp(Ω) ≤ C‖u‖Wk,p
0 (Ω)

for all u ∈ Wk,p
0 (Ω).

In other words, on Wk,p
0 (Ω), the norms ‖ · ‖Wk,p

0 (Ω)
and ‖ · ‖Wk,p(Ω)

are equivalent.
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Laplace’s equation

We can now reformulate Laplace’s equation in Sobolev spaces.
Take Laplace’s equation with Dirichlet boundary conditions:

∆u = f in Ω

u = 0 on ∂Ω

Suppose we have a smooth solution u of Laplace’s equation, and
let v ∈ C∞c (Ω) be a smooth test function. Multiplying the
equation by v and integrating over Ω, we get

−
ˆ

Ω
(∆u)v =

ˆ
Ω

f v.

Using the fact that v = 0 on ∂Ω, we may integrate by parts and
obtain

(u, v)H1
0(Ω) =

ˆ
Ω
∇u · ∇v =

ˆ
Ω

f v.
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Laplace’s equation

Let H−1(Ω) denote the dual space to H1
0(Ω) (that is, the space of

all bounded linear functionals from H1
0(Ω) into R), and let 〈·, ·〉

denote the duality pairing between H−1(Ω) and H1
0(Ω).

Definition
Given f ∈ H−1(Ω), u ∈ H1

0(Ω) is a weak solution of Laplace’s
equation if it satisfies

(u, v)H1
0(Ω) = 〈f , v〉 (2)

for all v ∈ H1
0(Ω).

If f ∈ H−1(Ω) then, by the Riesz representation theorem applied
to the linear functional `(v) :=

´
Ω f v, there exists a unique

u ∈ H1
0(Ω) such that (2) holds. Furthermore, if f is more regular,

then so is u.
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Eigenfunctions of the Laplacian

By the Hilbert–Schmidt theorem we may prove the following:

Theorem
Given a domain Ω, there exists a countably infinite sequence of
C∞(Ω) eigenfunctions (wn)n∈N satisfying

−∆wn = λnwn in Ω

wn = 0 on ∂Ω

where λn →∞ as n→∞. These eigenfunctions (wn form an
orthonormal basis of L2(Ω).



Heat equation

We now consider the heat equation:

∂u
∂t
−∆u = f(t),

subject to the boundary condition u = 0 on ∂Ω and the initial
condition u(x,0) = u0(x).

Energy evolution law

A smooth solution u of the heat equation, subject to Dirichlet
boundary conditions, satisfies

1
2

d
dt
‖u‖22 = −ν‖∇u‖22 + (f , u).
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Heat equation

Multiplying the equation by a fixed v ∈ C∞c (Ω) and integrating
(in space) yields(

∂u
∂t
, v
)

L2(Ω)

+ (∇u,∇v)L2(Ω) = 〈f(t), v〉.

This motivates the following definition:

Definition
Given u0 ∈ L2(Ω) and f ∈ L2(0,T; H−1(Ω)), u is a weak solution
of the heat equation if:
• u ∈ L2(0,T; H1

0(Ω);
• its weak time derivative u̇ ∈ L2(0,T; H−1(Ω)); and
• u satisfies

(u̇, v)L2(Ω) + (∇u,∇v)L2(Ω) = 〈f(t), v〉

for all v ∈ H1
0(Ω) and almost every t ∈ (0,T).
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Galerkin approximations

To show existence (and uniqueness) of weak solutions of the
heat equation, we will use the Galerkin method:
• take the infinite-dimensional PDE problem,
• approximate by a sequence of finite-dimensional ODE

problems,
• then take the limit.

Let (wn)n∈N be the eigenfunctions of the Laplacian, which as
above form an orthonormal basis of L2(Ω). Given u ∈ L2(Ω), we
can approximate it in the space spanned by the first n
eigenfunctions as follows:

Pnu =
n∑

j=1

(u,wj)wj.
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Galerkin approximations

Let un(t) be contained in the span of {w1, . . . ,wn}:

un(t) =

n∑
j=1

un,j(t)wj.

We try to solve

(u̇n,wj)L2(Ω) + (∇un,∇wj)L2(Ω) = 〈f(t),wj〉

with un(0) = Pnu0, for j = 1, . . . ,n. There are two ways of
thinking of this:

1 as a system of n ODEs for un,j, j = 1, . . . ,n:

u̇n,j + λjun,j = fj(t) := 〈f(t),wj〉;

2 as a truncated PDE for un:

∂un

∂t
−∆un = Pnf(t).
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Galerkin approximations

• Standard ODE theory gives a unique solution to the system
of ODEs

u̇n,j + λjun,j = fj(t) := 〈f(t),wj〉;

at least for some short time interval.

• Problems only occur if the norm blows up, i.e. if
∑n

j=1 |un,j|2

becomes infinite. This sum is equal to the L2 norm of the
function un, so it suffices to show that ‖un‖L2(Ω) remains
bounded independent of n (so that we can take the limit as
n→∞.
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Uniform boundedness

To see this, take the inner product of the PDE with un:

1
2

d
dt
‖un‖2L2(Ω) + ‖∇un‖2L2(Ω)

= 〈Pnf(t), un〉 = 〈f(t), Pnun〉 = 〈f(t), un〉
≤ ‖f(t)‖H−1(Ω)‖un‖H1

0(Ω) = ‖f(t)‖H−1(Ω)‖∇un‖L2(Ω)

By Young’s inequality we get

d
dt
‖un‖2L2(Ω) + ‖∇un‖2L2(Ω) ≤ ‖f(t)‖

2
H−1(Ω)

so integrating in time from 0 to t we get, for all t ∈ [0,T],

‖un(t)‖2L2(Ω) +

ˆ t

0
‖∇un(s)‖2L2(Ω) ds

≤ ‖un(0)‖2L2(Ω) +

ˆ t

0
‖f(s)‖2H−1(Ω) ds

≤ ‖u0‖2L2(Ω) +

ˆ t

0
‖f(s)‖2H−1(Ω) ds.



Uniform boundedness

To see this, take the inner product of the PDE with un:

1
2

d
dt
‖un‖2L2(Ω) + ‖∇un‖2L2(Ω)

= 〈Pnf(t), un〉 = 〈f(t), Pnun〉 = 〈f(t), un〉
≤ ‖f(t)‖H−1(Ω)‖un‖H1

0(Ω) = ‖f(t)‖H−1(Ω)‖∇un‖L2(Ω)

By Young’s inequality we get

d
dt
‖un‖2L2(Ω) + ‖∇un‖2L2(Ω) ≤ ‖f(t)‖

2
H−1(Ω)

so integrating in time from 0 to t we get, for all t ∈ [0,T],

‖un(t)‖2L2(Ω) +

ˆ t

0
‖∇un(s)‖2L2(Ω) ds

≤ ‖un(0)‖2L2(Ω) +

ˆ t

0
‖f(s)‖2H−1(Ω) ds

≤ ‖u0‖2L2(Ω) +

ˆ t

0
‖f(s)‖2H−1(Ω) ds.



Uniform boundedness

To see this, take the inner product of the PDE with un:

1
2

d
dt
‖un‖2L2(Ω) + ‖∇un‖2L2(Ω)

= 〈Pnf(t), un〉 = 〈f(t), Pnun〉 = 〈f(t), un〉
≤ ‖f(t)‖H−1(Ω)‖un‖H1

0(Ω) = ‖f(t)‖H−1(Ω)‖∇un‖L2(Ω)

By Young’s inequality we get

d
dt
‖un‖2L2(Ω) + ‖∇un‖2L2(Ω) ≤ ‖f(t)‖

2
H−1(Ω)

so integrating in time from 0 to t we get, for all t ∈ [0,T],

‖un(t)‖2L2(Ω) +

ˆ t

0
‖∇un(s)‖2L2(Ω) ds

≤ ‖un(0)‖2L2(Ω) +

ˆ t

0
‖f(s)‖2H−1(Ω) ds

≤ ‖u0‖2L2(Ω) +

ˆ t

0
‖f(s)‖2H−1(Ω) ds.



Uniform boundedness

This tells us that (un) is uniformly bounded in L∞(0,T; L2(Ω))
and L2(0,T; H1

0(Ω)).

To get a bound on the time derivative,
consider that

∂un

∂t
= ∆un + Pnf(t).

Since (as we showed above) un is bounded in L2(0,T; H1
0(Ω)),

∆un is bounded in L2(0,T; H−1(Ω)); since f ∈ L2(0,T; H−1(Ω)),
we see that ∂un

∂t is bounded in L2(0,T; H−1(Ω)) independently of
n. In summary, the sequence (un) of approximations satisfies:
• (un) is uniformly bounded in L∞(0,T; L2(Ω));
• (un) is uniformly bounded in L2(0,T; H1

0(Ω));
• (u̇n) is uniformly bounded in L2(0,T; H−1(Ω)).
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Taking the limit of the approximations

• The Banach–Alaoglu compactness theorem tells us that
there is a subsequence unj such that

unj ⇀ u in L2(0,T; H1
0(Ω))

unj

∗
⇀ u in L∞(0,T; L2(Ω))

u̇nj

∗
⇀ v in L2(0,T; H−1(Ω))

• It remains to check that u is actually a weak solution of the
equations, and that v is actually its weak time derivative!

• To show uniqueness, we can prove that u ∈ L2(0,T; H1
0(Ω))

and u̇ ∈ L2(0,T; H−1(Ω)) implies that u ∈ C([0,T]; L2(Ω).
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Navier–Stokes equations

We return now to the Navier–Stokes equations:

∂u
∂t

+ (u · ∇)u = ν∆u−∇p + f , (3a)

∇ · u = 0. (3b)

Energy evolution law

A smooth solution u of the Navier–Stokes equations (1), subject
to Dirichlet boundary conditions, satisfies

1
2

d
dt
‖u‖22 = −ν‖∇u‖22 + (f ,u).
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Navier–Stokes equations

We can again take Galerkin approximations, in which (un) is
uniformly bounded in L∞(0,T; L2(Ω)) and L2(0,T; H1

0(Ω)).
Bounding the time derivative u̇, however, now requires
bounding (u · ∇)u in H−1(Ω):

‖(u · ∇)u‖H−1(Ω) = sup
v∈H1

0(Ω),
‖v‖H1

0(Ω)
=1

〈(u · ∇)u, v〉 = − sup〈(u · ∇)v,u〉.

Now, 〈(u · ∇)v,u〉 ≤ ‖u‖2L4(Ω)
‖∇v‖L2(Ω), so

‖(u · ∇)u‖H−1(Ω) ≤ ‖u‖2L4(Ω)
.
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Navier–Stokes equations

Bounding ‖u‖2L4(Ω)
depends on the dimension!

• In two dimensions, we have

‖u‖2L4(Ω) ≤ ‖u‖L2(Ω)‖∇u‖L2(Ω),

so u̇ ∈ L2(0,T; H−1(Ω)).
• In three dimensions, however, we have

‖u‖2L4(Ω) ≤ ‖u‖
1/2
L2(Ω)
‖∇u‖3/2

L2(Ω)

so u̇ ∈ L4/3(0,T; H−1(Ω))!

This is the key difference that makes proving uniqueness (and
regularity) in 3D so hard.



The Euler equations

The Euler equations are the special case of the Navier–Stokes
equations when the viscosity ν = 0:

∂u
∂t

+ (u · ∇)u = −∇p + f , (4a)

∇ · u = 0. (4b)

Energy conservation

A smooth solution u of the Euler equations (4) satisfies

1
2

d
dt
‖u‖22 = (f ,u).
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Magnetohydrodymanics

The MHD equations for a conducting fluid in a domain Ω ⊂ R3

can be written in the following form:

∂u
∂t

+ (u · ∇)u− ν∆u +∇p∗ = (B · ∇)B + f , (5a)

∂B
∂t

+ (u · ∇)B− µ∆B = (B · ∇)u, (5b)

∇ · u = 0, (5c)

∇ · B = 0. (5d)

Here u, B, and p are the velocity, magnetic, and pressure fields
respectively, p∗ = p + 1

2 |B|
2, f is an external forcing, and ν and

µ are the fluid viscosity and magnetic resistivity respectively.



Magnetohydrodymanics

Energy evolution law

A smooth solution u, B of equations (5) satisfies

1
2

d
dt
(
‖u(t)‖22 + ‖B(t)‖22

)
= −ν‖∇u‖22 − µ‖∇B‖22 + (f ,u).

• In two dimensions there is existence and uniqueness theory
for the case where ν > 0 and µ > 0.

• Kozono (1989) proved global existence (but not
uniqueness) of solutions when ν = 0 (but µ > 0).

• When µ = 0, only existence results for short time or small
initial data have been proved.
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