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A coupled parabolic-elliptic MHD system

We consider the following modified system of equations for
magnetohydrodynamics on a bounded domain Q C R?:

—Au+Vp=(B-V)B
OB —eAB+ (u-V)B=(B-V)u,
with V- u = V - B = 0 and Dirichlet boundary conditions. This is like the
standard MHD system, but with the terms d:u + (u - V)u removed.
Theorem

Given ug,Bo € L*(Q) with V - ug = V - Bo = 0, for any T > 0 there exists a
unique weak solution (u, B) with

u e L>®(0,T;L>*°)NL*(0,T;H")
and

B e L>™(0,T;L*) N L*(0,T;H").

We prove this using both a generalisation of Ladyzhenskaya’s inequality, and
some elliptic regularity theory for L! forcing.



Weak solutions of the Navier—Stokes equations

Consider the Navier-Stokes equations on a domain Q C R", n =2 or 3:
du+ (u-Vyu—Au+ Vp =0,
with V - u = 0, and Dirichlet boundary conditions.

Theorem (Leray, 1934, and Hopf, 1951)

Given ug € L*(Q) with V - uo = 0, there exists a weak solution u of the
Navier-Stokes equations satisfying

u e L™(0,T;L*) NL*(0,T;H").
Moreover, if n = 2, this weak solution is unique.

The same is true if Q@ = R", or if Q = [0, 1]" with periodic boundary
conditions.



Weak solutions of NSE: existence

Let u™ be the mth Galerkin approximation: i.e., the solution of
ou™ + P [(u™ - V)u™] — Au™ + Vp™ = 0.
Taking the L? inner product with u™, we get

O™ U™y + (W™ - VU U™y — (Au™, U™y + (VP u™) = 0.

N——
=0

If V-u=0,and u,v,w = 0 on 91, then

(- Vyy,w) = —((u-V)w,v).

Hence 14
5 g Iu"P + v =o,
so integrating in time yields

t
lu™ (0)]* +/0 V™ (9)]* ds = [|u™ (0)|* < fJuol|*.

Hence u™ are uniformly bounded in L>°(0, T; L*) N L*(0, T; H').



Ladyzhenskaya’s inequality

To get uniform bounds on d.u™ = Au™ — P"[(u™ - V)u™], one uses:

Ladyzhenskaya’s inequality in 2D (1958)

1/2 1/2
l[ulls < cllull}2(IVull}1>.

Ladyzhenskaya’s inequality yields a priori bounds on the nonlinear term
™ - Vu™:

‘/(u’"V)umw‘:‘—/(u"’V)qs.u’"

< (21 V iz,

SO
@™ V)™ g < ™l < cllu™ [l Ve,

and thus (u™ - V)u™ € L*(0, T;H™'), and hence d,u™ € L*(0, T;H™').
Theorem (Aubin, 1963, and Lions, 1969)

Ifu™ € L*(0, T; H') and du™ € L*(0, T; H ') uniformly, then a subsequence
u™ — u € L2(0, T; L?) (strongly).



Magnetic relaxation (Moffatt, 1985)

Aim to construct stationary solutions of the Euler equations with non-trivial
topology: (u-V)u+ Vp =0.
Consider the MHD equations with zero magnetic resistivity

u—Au+ (u-V)u+Vp=(B-V)B
Bi+(u-V)B=(B-V)u

and assume that smooth solutions exist for all t > 0 (open even in 2D).

Energy equation

1d
5 3¢ (Iull* + IBIP) + [ vall® = o.

So ||B|| decreases while ||Vu|| # 0.
Since the ‘magnetic helicity’ ## = [ A - B is preserved, where B =V x A and
V -A =0, ||B]| is bounded below:

2
B > B2 Al > ( / A~B) — .

“So” u(t) — 0 as t — oo (Nuilez, 2007) and B(t) — B with Vp = (B - V)B.



Magnetic relaxation (Moffatt, 2009)

The dynamics are arbitrary, so consider instead the ‘simpler’ model

—Au+Vp=(B-V)B
Bi+ (u-V)B=(B-V)u.

The new energy equation is

——|B Vu|”* =0.

> 3 IBI2+ 1 vu

“So” ||Vul* = 0 “ = "u(t) — 0 and B(t) — B* ast — co.

Open: does u(t) — 0 as t — oo in this case?

To address existence of solutions we make two simplifications: we consider
2D, and regularise the B equation:

—Au+Vp=B-V)B
Bi—eAB+ (u-V)B=(B-V)u.



A priori estimates

We consider the 2D system

—Au+Vp=(B-V)B V-u=0

Bi—eAB+ (u-V)B=(B-V)u V-B=0.
‘Toy version’ of 3D Navier-Stokes, which in vorticity form (w = V X u) is
w —vAw+ (u- V)w = (w- V)u.

Take inner product with u in the first equation, with B in the second equation

I Vul* = ((B- V)B,u) = —((B- V)u,B)

S S IBIP + =lVBI* = (B~ V)u.B)

and add: 1d
2 2 2
5 5 IBI” + <l VBIP + [ Vu|* = .
We get:

B € L>(0,T;L*) N L*(0,T;H"), ueL*0,T;H").



A priori estimates

What can we say about u? We know that B € L>°(0, T;L?).
Note that [(u - V)v]; = wojv; = dj(wjvi) =: V- (u®V), since V- v = 0.
We can write the equation for u as
—Au+Vp=(B-V)B=V-(B®B).
p=(B-V) (BeB)

Il
Elliptic regularity works for p > 1:
~Au+ Vp =f, ferr = uew??

(e.g. Temam, 1979).

If we could take p = 1 then we would expect, for RHS of with f € L!, to get
uewht crI?

In fact for RHS Of with f € L' we get u € L>*, where L>* is the weak-L>
space.



LP~>°: weak L spaces

For f: R" — R define
di(a) = pfx: f(x)] > a}.
Note that
Wit = [ peor= [ er > wdie)
8 {x: f()[>a}
For1 <p < oo set

. cP
If |00 = mf{C: di(a) < 5} = sup{ydf(y)l/p :y >0}

The space LP>>°(R") consists of all those f such that ||f]|p.cc < 00.
o [P CIP™
o |x|™VP € [P>°(R") but ¢ IP(R").
o iff € [P°(R") then df(a) < |If|[fr.cc®.



LP~>°: weak L spaces

Just as with strong I? spaces, we can interpolate between weak LP spaces:

Weak [? interpolation

Takep <r < q.Iff € [P*° NLY* thenf € L and

Fllr < corallFIEE P A7,
Recall Young’s inequality for convolutions: if 1 < p,q,r < oo and
5 +1=+1then

[E * flleo < I|E[[callfler-
There is also a weak form, which requires stronger conditions on p, q,r:

Weak form of Young’s inequality for convolutions

If1<r<ooand1<p,q<oo,and:+1=1+1then

IE  fllupco < [|E]|a.co [|f]]er-



Elliptic regularity in L1

Fundamental solution of Stokes operator on R? is

Ej(x) = —

; XXy
' p2”
i.e. solution of —Au+ Vp =fisu =E «f.

Solution of —Au + Vp = df isu = E * (9f) = (9E) * f. Note that

5ikxj 0 XXk 1

OEj = 05 —~ ~
’ ”I |2 Ix? * ]

Thus OE € L** and so
fel' = u=0Ex«fel*>>.

If we consider the problem in a bounded domain we have the same regularity.
We replace the fundamental solution E by the Dirichlet Green’s function G
satisfying

—AGI(S(X—)/) G|aQ =0.

Mitrea & Mitrea (2011) showed that in this case we still have G € L?°°.
So on our bounded domain, u € L>(0, T; L**).



Estimates on time derivatives: 9,B € L*(0, T; H1)?

Take v € H' with ||v|;n = 1. Then

(0B, v)| = [(¢AB — (u- V)B + (B V)u,v)|
< el VBI[I[VVI| + 2[[ullps 1B+ [ VY]l 2

SO

| 19:Blly—1 < e[| VBI| + 2lJulla|Bll- |

Standard 2D Ladyzhenskaya inequality gives
1Bl < cl|BII"*(IVB] %

but we only have uniform bounds on u in L%°°.
IF [+ < clIfll;2 [ VF]|/? then

12,00

19:Blls—1 < el VBI| + cllull;2% [1BI/2[[Vul /2| VB2

12,00

which would yield
B e L*(0,T;H™ ).



Generalised Ladyzhenskaya inequality

In 2D,
IF17 < cllfllzz 1VFllze-
Proof:
(i) write f*> = 2 [ f8f dx; and integrate (f*)*.
(ii) use the Sobolev embedding H'/? ¢ L* and interpolation in H':
flles < €llfllznre < ellfll2 1142

In fact, using the theory of interpolation spaces:

1/2 1/2
Fllze < clIfI1122 I 3o

Since H!  BMO in 2D, this yields

1/2 1/2
IFlls < cllfll 22 A2

Besides the proof using interpolation spaces, we can also prove this directly
using Fourier transforms.



Bounded mean oscillation

Let fo := IQI fQ x) dx denote the average of f over a cube Q C R". Define

1
llavo = sup o /Q F() — fal dx,

where the supremum is taken over all cubes Q C R". Let BMO(RR") denote the
set of functions f: R" — R for which ||f||smo < oo.

|IflleMo = 0 = f is constant (almost everywhere).

L*° ¢ BMO and ||f|lsmo < 2||f||; log|x| € BMO but is unbounded.
H"? < BMO and ||f||smo < cl|f]|zm/2 in R", even though H"/? ¢ L>°.
W' C BMO, by Poincaré’s inequality: let B be a ball of radius r, then

i [ —placs & [ipar<c( [ o a) < el

so [Ifllsmo < c|lf[[wr.n-



Interpolation spaces

For 0 < 0 < 1 one can define an interpolation space Xy := [XO,Xl]g in such a
way that ||f[|x, < cl[f|lo °Ilfll%:- (Note that [[f|lx, < c||f]lx:.)

Theorem (Bennett & Sharpley, 1988)
IP>° = [L',BMO]1_(1/p) for 1 < p < oo; so L>> = [L', BMO] .

Write 8 = [L', BMO]; and note that ||f||s < c||f||emo-

Reiteration Theorem
Ion S [)(Q,Xl]go andA1 = P(Q,Xl]gl thenfor0 <6 <1

[Ao,A1]e = [Xo,X1](1—0)0,+006; -

So L3 = [L*™, B]1/3 and Lo = (L%, B],/3, and hence
1/2 1/2
flls < cllfl2 N2

2/3 1/371/2 1/3 2/311/2
< clellfIP2 T 2 elFI 2 3T
1/2 1/2 1/2 1/2

= clIfll 2 112 < cllf 122 I lsao-



Generalised Ladyzhenskaya inequality: direct method

There exists a Schwartz function ¢ such that if f is supported in B(0,R),
f=0""xf,  where ¢"/"(x) = R"¢(Rx).

(Take ¢ with ¢ = 1 on B(0, 1); then .Z[¢'/% « f] = Z[¢"/R]f =f.)

Suppose that supp(f‘) C B(O,R). Thenfor 1 <p < q< o

fllze < R™ P D)[f] 19,00

Using the weak form of Young’s inequality, for 1 + % = % + %,

fllzzoe = 116" # fllzace < el ler[Ifl|ze o,

and noting that ||¢*/||;r = cR*~/7) it follows that
-1 _
[l < R Vffllpco and 2000 < R PTHV ]l 00

Finally interpolate L between L'> and L2,



Generalised Ladyzhenskaya inequality: direct method

To show
Ifllee < cllFll 22 112
write
flx) = fk)e*™ > dk + Fk)e*™* dk .
k| <R Ik|>R
f fr

Now using the weak-strong Bernstein inequality
1/2
I~ llzs < RY2[[f 2,00,

and using the embedding H'/? C L*,
Ifllzs < cllfilifnse = C/ K[ [f (Fc)|* dk
k>R
LG
|k|>R

[ 2
< ZIFIE-

Thus
Iflles < cRY2|Ifll 200 + Rl

and choosing R = ||f || /|If|;2. yields the inequality.



Generalised Gagliardo-Nirenberg inequalities

It is not hard to generalise this direct proof to prove the following:

Take 1 < qg<p<ooands>n (% - %) There exists a constant ¢, q,s such that
if f € L9 N K then f € IP and

) 1-6
IFllee < €p,gsllfllza.o= IIF Il e

for every f € LY N H°, where el =g =2

With a little work, in the case s = n/2 we can generalise this:

Take 1 < q < p < oc. There exists a constant ¢y q such that if f € L%>° N BMO
then f € IP and
1—
Wl < co.alf 1P 1w

for every f € LY°° N BMO.



Global existence of weak solutions

Take B™(0) = P™B(0) and consider the Galerkin approximations:
—Au" +Vp=P"(B" -V)B"
OB™ — eAB™ + P"(u™ - V)B™ = P"(B" - V)u™.
The B™ equation is a Lipschitz ODE on a finite-dimensional space, so it has a

unique solution. By repeating the a priori estimates on these smooth
equations (now rigorous) we can obtain estimates uniform in n:

B™ € L™(0,T;L*) NL*(0,T;H"), &B™ € L*(0,T;H ")

and
u™ € L=(0,T;L>*>°) NL*(0, T;H").
By Aubin-Lions, a subsequence of the Galerkin approximations B™ — B
strongly in L?(0, T; L?). Hence, by elliptic regularity,
[u™ = ullj2.0c < |[B" @ B" —B®B||;2 < ||B" = Bll2 (IB" [l:2 + [IBlls2),

hence u™ — u strongly in L2(0, T; L*°°). This is enough to show the nonlinear
terms converge weak- in L2(0, T; H~'), and hence that (u, B) is a weak
solution (i.e. a solution with equality in L2(0, T; H™1)).



Conclusion

Similar arguments to the a priori estimates show uniqueness of weak
solutions, and so:

Theorem

Given uo,Bo € Lz(Q) with V -up = V - Byp = 0, for any T > 0 there exists a
unique weak solution (u, B) with

u e L™(0,T;L**)NL*(0,T;H")
and

B e L>(0,T;L*) N L*(0,T;H").
What about € = 0?

e Try looking at more regular solutions and taking the limit ¢ — O to get
local existence

e Assume regularity and show that u(t) — 0 as t — oo (Moffatt)?
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