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A coupled parabolic-elliptic MHD system

We consider the following modified system of equations for
magnetohydrodynamics on a bounded domain Ω ⊂ R2:

−∆u +∇p = (B · ∇)B

∂tB− ε∆B + (u · ∇)B = (B · ∇)u,

with ∇ · u = ∇ · B = 0 and Dirichlet boundary conditions. This is like the
standard MHD system, but with the terms ∂tu + (u · ∇)u removed.

Theorem
Given u0,B0 ∈ L2(Ω) with ∇ · u0 = ∇ · B0 = 0, for any T > 0 there exists a
unique weak solution (u,B) with

u ∈ L∞(0, T; L2,∞) ∩ L2(0, T; H1)

and
B ∈ L∞(0, T; L2) ∩ L2(0, T; H1).

We prove this using both a generalisation of Ladyzhenskaya’s inequality, and
some elliptic regularity theory for L1 forcing.



Weak solutions of the Navier–Stokes equations

Consider the Navier–Stokes equations on a domain Ω ⊂ Rn, n = 2 or 3:

∂tu + (u · ∇)u−∆u +∇p = 0,

with ∇ · u = 0, and Dirichlet boundary conditions.

Theorem (Leray, 1934, and Hopf, 1951)
Given u0 ∈ L2(Ω) with ∇ · u0 = 0, there exists a weak solution u of the
Navier–Stokes equations satisfying

u ∈ L∞(0, T; L2) ∩ L2(0, T; H1).

Moreover, if n = 2, this weak solution is unique.

The same is true if Ω = Rn, or if Ω = [0, 1]n with periodic boundary
conditions.



Weak solutions of NSE: existence
Let um be the mth Galerkin approximation: i.e., the solution of

∂tum + Pm[(um · ∇)um]−∆um +∇pm = 0.

Taking the L2 inner product with um, we get

〈∂tum, um〉+ 〈(um · ∇)um, um〉 − 〈∆um, um〉+ 〈∇pm, um〉︸ ︷︷ ︸
=0

= 0.

Fact
If ∇ · u = 0, and u, v,w = 0 on ∂Ω, then

〈(u · ∇)v,w〉 = −〈(u · ∇)w, v〉.

Hence
1
2

d
dt
‖um‖2 + ‖∇um‖2 = 0,

so integrating in time yields

‖um(t)‖2 +

∫ t

0
‖∇um(s)‖2 ds = ‖um(0)‖2 ≤ ‖u0‖2.

Hence um are uniformly bounded in L∞(0, T; L2) ∩ L2(0, T; H1).



Ladyzhenskaya’s inequality

To get uniform bounds on ∂tum = ∆um − Pm[(um · ∇)um], one uses:

Ladyzhenskaya’s inequality in 2D (1958)

‖u‖L4 ≤ c‖u‖1/2
L2 ‖∇u‖1/2

L2 .

Ladyzhenskaya’s inequality yields a priori bounds on the nonlinear term
(um · ∇)um:∣∣∣∣∫ (um · ∇)um · φ

∣∣∣∣ =

∣∣∣∣− ∫ (um · ∇)φ · um
∣∣∣∣ ≤ ‖um‖2

L4‖∇φ‖L2 ,

so
‖(um · ∇)um‖H−1 ≤ ‖um‖2

L4 ≤ c‖um‖L2‖∇u‖L2 ,

and thus (um · ∇)um ∈ L2(0, T; H−1), and hence ∂tum ∈ L2(0, T; H−1).

Theorem (Aubin, 1963, and Lions, 1969)
If um ∈ L2(0, T; H1) and ∂tum ∈ L2(0, T; H−1) uniformly, then a subsequence
umk → u ∈ L2(0, T; L2) (strongly).



Magnetic relaxation (Moffatt, 1985)

Aim to construct stationary solutions of the Euler equations with non-trivial
topology: (u · ∇)u +∇p = 0.
Consider the MHD equations with zero magnetic resistivity

ut −∆u + (u · ∇)u +∇p = (B · ∇)B

Bt + (u · ∇)B = (B · ∇)u

and assume that smooth solutions exist for all t ≥ 0 (open even in 2D).
Energy equation

1
2

d
dt

(
‖u‖2 + ‖B‖2

)
+ ‖∇u‖2 = 0.

So ‖B‖ decreases while ‖∇u‖ 6= 0.
Since the ‘magnetic helicity’ H =

∫
A · B is preserved, where B = ∇× A and

∇ · A = 0, ‖B‖ is bounded below:

c‖B‖4 ≥ ‖B‖2‖A‖2 ≥
(∫

A · B
)2

= H 2.

“So” u(t)→ 0 as t→∞ (Nuñez, 2007) and B(t)→ B with ∇p = (B · ∇)B.



Magnetic relaxation (Moffatt, 2009)

The dynamics are arbitrary, so consider instead the ‘simpler’ model

−∆u +∇p = (B · ∇)B

Bt + (u · ∇)B = (B · ∇)u.

The new energy equation is

1
2

d
dt
‖B‖2 + ‖∇u‖2 = 0.

“So” ‖∇u‖2 → 0 “ =⇒ ” u(t)→ 0 and B(t)→ B∗ as t→∞.
Open: does u(t)→ 0 as t→∞ in this case?
To address existence of solutions we make two simplifications: we consider
2D, and regularise the B equation:

−∆u +∇p = (B · ∇)B

Bt − ε∆B + (u · ∇)B = (B · ∇)u.



A priori estimates

We consider the 2D system

−∆u +∇p = (B · ∇)B ∇ · u = 0

Bt − ε∆B + (u · ∇)B = (B · ∇)u ∇ · B = 0.

‘Toy version’ of 3D Navier–Stokes, which in vorticity form (ω = ∇× u) is

ωt − ν∆ω + (u · ∇)ω = (ω · ∇)u.

Take inner product with u in the first equation, with B in the second equation

‖∇u‖2 = 〈(B · ∇)B, u〉 = −〈(B · ∇)u,B〉
1
2

d
dt
‖B‖2 + ε‖∇B‖2 = 〈(B · ∇)u,B〉

and add:
1
2

d
dt
‖B‖2 + ε‖∇B‖2 + ‖∇u‖2 = 0.

We get:
B ∈ L∞(0, T; L2) ∩ L2(0, T; H1), u ∈ L2(0, T; H1).



A priori estimates

What can we say about u? We know that B ∈ L∞(0, T; L2).
Note that [(u · ∇)v]i = uj∂jvi = ∂j(ujvi) =: ∇ · (u⊗ v), since ∇ · v = 0.
We can write the equation for u as

−∆u +∇p = (B · ∇)B = ∇ · (B⊗ B︸ ︷︷ ︸
L1

).

Elliptic regularity works for p > 1:

−∆u +∇p = f , f ∈ Lp =⇒ u ∈ W2,p

(e.g. Temam, 1979).
If we could take p = 1 then we would expect, for RHS ∂f with f ∈ L1, to get
u ∈ W1,1 ⊂ L2.
In fact for RHS ∂f with f ∈ L1 we get u ∈ L2,∞, where L2,∞ is the weak-L2

space.



Lp,∞: weak Lp spaces

For f : Rn → R define
df (α) = µ{x : |f(x)| > α}.

Note that
‖f‖p

Lp =

∫
Rn
|f(x)|p ≥

∫
{x: |f(x)|>α}

|f(x)|p ≥ αpdf (α).

For 1 ≤ p <∞ set

‖f‖Lp,∞ = inf
{

C : df (α) ≤ Cp

αp

}
= sup{γdf (γ)1/p : γ > 0}.

The space Lp,∞(Rn) consists of all those f such that ‖f‖Lp,∞ <∞.

• Lp ⊂ Lp,∞

• |x|−n/p ∈ Lp,∞(Rn) but /∈ Lp(Rn).

• if f ∈ Lp,∞(Rn) then df (α) ≤ ‖f‖p
Lp,∞α

−p.



Lp,∞: weak Lp spaces

Just as with strong Lp spaces, we can interpolate between weak Lp spaces:

Weak Lp interpolation
Take p < r < q. If f ∈ Lp,∞ ∩ Lq,∞ then f ∈ Lr and

‖f‖Lr ≤ cp,r,q‖f‖p(q−r)/r(q−p)
Lp,∞ ‖f‖q(r−p)/r(q−p)

Lq,∞ .

Recall Young’s inequality for convolutions: if 1 ≤ p, q, r ≤ ∞ and
1
p + 1 = 1

q + 1
r then

‖E ∗ f‖Lp ≤ ‖E‖Lq‖f‖Lr .

There is also a weak form, which requires stronger conditions on p, q, r:

Weak form of Young’s inequality for convolutions
If 1 ≤ r <∞ and 1 < p, q <∞, and 1

p + 1 = 1
q + 1

r then

‖E ∗ f‖Lp,∞ ≤ ‖E‖Lq,∞‖f‖Lr .



Elliptic regularity in L1

Fundamental solution of Stokes operator on R2 is

Eij(x) = −δij log |x|+ xixj

|x|2 ,

i.e. solution of −∆u +∇p = f is u = E ∗ f .
Solution of −∆u +∇p = ∂f is u = E ∗ (∂f) = (∂E) ∗ f . Note that

∂kEij = δij
xk

|x|2 +
δikxj + δjkxi

|x|2 − xixjxk

|x|4 ∼
1
|x| .

Thus ∂E ∈ L2,∞ and so

f ∈ L1 =⇒ u = ∂E ∗ f ∈ L2,∞.

If we consider the problem in a bounded domain we have the same regularity.
We replace the fundamental solution E by the Dirichlet Green’s function G
satisfying

−∆G = δ(x − y) G|∂Ω = 0.

Mitrea & Mitrea (2011) showed that in this case we still have ∂G ∈ L2,∞.
So on our bounded domain, u ∈ L∞(0, T; L2,∞).



Estimates on time derivatives: ∂tB ∈ L2(0,T;H−1)?

Take v ∈ H1 with ‖v‖H1 = 1. Then

|〈∂tB, v〉| = |〈ε∆B− (u · ∇)B + (B · ∇)u, v〉|
≤ ε‖∇B‖‖∇v‖+ 2‖u‖L4‖B‖L4‖∇v‖L2 .

so
‖∂tB‖H−1 ≤ ε‖∇B‖+ 2‖u‖L4‖B‖L4 .

Standard 2D Ladyzhenskaya inequality gives

‖B‖L4 ≤ c‖B‖1/2‖∇B‖1/2;

but we only have uniform bounds on u in L2,∞.
If ‖f‖L4 ≤ c‖f‖1/2

L2,∞‖∇f‖1/2 then

‖∂tB‖H−1 ≤ ε‖∇B‖+ c‖u‖1/2
L2,∞‖B‖

1/2‖∇u‖1/2‖∇B‖1/2

which would yield
∂tB ∈ L2(0, T; H−1).



Generalised Ladyzhenskaya inequality

In 2D,
‖f‖2

L4 ≤ c‖f‖L2‖∇f‖L2 .

Proof:
(i) write f 2 = 2

∫
f∂jf dxj and integrate (f 2)2.

(ii) use the Sobolev embedding Ḣ1/2 ⊂ L4 and interpolation in Ḣs:

‖f‖L4 ≤ c‖f‖Ḣ1/2 ≤ c‖f‖1/2
L2 ‖f‖

1/2
Ḣ1 .

In fact, using the theory of interpolation spaces:

‖f‖L4 ≤ c‖f‖1/2
L2,∞‖f‖

1/2
BMO.

Since Ḣ1 ⊂ BMO in 2D, this yields

‖f‖L4 ≤ c‖f‖1/2
L2,∞‖f‖

1/2
Ḣ1 .

Besides the proof using interpolation spaces, we can also prove this directly
using Fourier transforms.



Bounded mean oscillation

Let fQ := 1
|Q|

∫
Q f(x) dx denote the average of f over a cube Q ⊂ Rn. Define

‖f‖BMO := sup
Q

1
|Q|

∫
Q
|f(x)− fQ| dx,

where the supremum is taken over all cubes Q ⊂ Rn. Let BMO(Rn) denote the
set of functions f : Rn → R for which ‖f‖BMO <∞.

• ‖f‖BMO = 0 =⇒ f is constant (almost everywhere).

• L∞ ( BMO and ‖f‖BMO ≤ 2‖f‖∞; log |x| ∈ BMO but is unbounded.

• Ḣn/2 ⊂ BMO and ‖f‖BMO ≤ c‖f‖Ḣn/2 in Rn, even though Ḣn/2 6⊂ L∞.

• W1,n ⊂ BMO, by Poincaré’s inequality: let B be a ball of radius r, then

1
|B|

∫
B
|f(x)− fB| dx ≤ cr

rn

∫
B
|Df | dx ≤ c

(∫
B
|Df |n dx

)1/n

≤ c‖f‖W1,n ,

so ‖f‖BMO ≤ c‖f‖W1,n .



Interpolation spaces

For 0 ≤ θ ≤ 1 one can define an interpolation space Xθ := [X0, X1]θ in such a
way that ‖f‖Xθ ≤ c‖f‖1−θ

X0 ‖f‖θX1 . (Note that ‖f‖X1 ≤ c‖f‖X1 .)

Theorem (Bennett & Sharpley, 1988)
Lp,∞ = [L1,BMO]1−(1/p) for 1 < p <∞; so L2,∞ = [L1,BMO]1/2.

Write B = [L1,BMO]1 and note that ‖f‖B ≤ c‖f‖BMO.

Reiteration Theorem
If A0 = [X0, X1]θ0 and A1 = [X0, X1]θ1 then for 0 < θ < 1

[A0,A1]θ = [X0, X1](1−θ)θ0+θθ1 .

So L3,∞ = [L2,∞,B]1/3 and L6,∞ = [L2,∞,B]2/3, and hence

‖f‖L4 ≤ c‖f‖1/2
L3,∞‖f‖

1/2
L6,∞

≤ c[c‖f‖2/3
L2,∞‖f‖

1/3
B ]1/2[c‖f‖1/3

L2,∞‖f‖
2/3
B ]1/2

= c‖f‖1/2
L2,∞‖f‖

1/2
B ≤ c‖f‖1/2

L2,∞‖f‖
1/2
BMO.



Generalised Ladyzhenskaya inequality: direct method

There exists a Schwartz function φ such that if f̂ is supported in B(0,R),

f = φ1/R ∗ f , where φ1/R(x) = Rnφ(Rx).

(Take φ with φ̂ = 1 on B(0, 1); then F [φ1/R ∗ f ] = F [φ1/R ]̂f = f̂ .)

Lemma (Weak-strong Bernstein inequality)
Suppose that supp(f̂) ⊂ B(0,R). Then for 1 ≤ p < q <∞

‖f‖Lq ≤ cRn(1/p−1/q)‖f‖Lp,∞ .

Using the weak form of Young’s inequality, for 1 + 1
q = 1

r + 1
p ,

‖f‖Lq,∞ = ‖φ1/R ∗ f‖Lq,∞ ≤ c‖φ1/R‖Lr‖f‖Lp,∞ ,

and noting that ‖φ1/R‖Lr = cRn(1−1/r), it follows that

‖f‖L1,∞ ≤ cRn(1/p−1)‖f‖Lp,∞ and ‖f‖L2q,∞ ≤ cRn(1/p−1/2q)‖f‖Lp,∞ .

Finally interpolate Lq between L1,∞ and L2q,∞.



Generalised Ladyzhenskaya inequality: direct method
To show

‖f‖L4 ≤ c‖f‖1/2
L2,∞‖f‖

1/2
Ḣ1

write
f(x) =

∫
|k|≤R

f̂(k)e2πik·x dk︸ ︷︷ ︸
f−

+

∫
|k|≥R

f̂(k)e2πik·x dk︸ ︷︷ ︸
f+

.

Now using the weak-strong Bernstein inequality

‖f−‖L4 ≤ cR1/2‖f‖L2,∞ ,

and using the embedding Ḣ1/2 ⊂ L4,

‖f+‖2
L4 ≤ c‖f+‖2

Ḣ1/2 = c
∫
|k|≥R

|k||̂f(k)|2 dk

≤ c
R

∫
|k|≥R

|k|2 |̂f(k)|2 dk

≤ c
R
‖f‖2

Ḣ1 .

Thus
‖f‖L4 ≤ cR1/2‖f‖L2,∞ + cR−1/2‖f‖Ḣ1 ,

and choosing R = ‖f‖Ḣ1/‖f‖L2,∞ yields the inequality.



Generalised Gagliardo–Nirenberg inequalities

It is not hard to generalise this direct proof to prove the following:

Theorem
Take 1 ≤ q < p <∞ and s > n

(
1
2 −

1
p

)
. There exists a constant cp,q,s such that

if f ∈ Lq,∞ ∩ Ḣs then f ∈ Lp and

‖f‖Lp ≤ cp,q,s‖f‖θLq,∞‖f‖1−θ
Ḣs

for every f ∈ Lq,∞ ∩ Ḣs, where 1
p = θ

q + (1− θ)
( 1

2 −
s
n

)
.

With a little work, in the case s = n/2 we can generalise this:

Theorem
Take 1 ≤ q < p <∞. There exists a constant cp,q such that if f ∈ Lq,∞ ∩ BMO
then f ∈ Lp and

‖f‖Lp ≤ cp,q‖f‖q/p
Lq,∞‖f‖1−q/p

BMO

for every f ∈ Lq,∞ ∩ BMO.



Global existence of weak solutions

Take Bm(0) = PmB(0) and consider the Galerkin approximations:

−∆um +∇p = Pm(Bm · ∇)Bm

∂tBm − ε∆Bm + Pm(um · ∇)Bm = Pm(Bm · ∇)um.

The Bm equation is a Lipschitz ODE on a finite-dimensional space, so it has a
unique solution. By repeating the a priori estimates on these smooth
equations (now rigorous) we can obtain estimates uniform in n:

Bm ∈ L∞(0, T; L2) ∩ L2(0, T; H1), ∂tBm ∈ L2(0, T; H−1)

and
um ∈ L∞(0, T; L2,∞) ∩ L2(0, T; H1).

By Aubin–Lions, a subsequence of the Galerkin approximations Bm → B
strongly in L2(0, T; L2). Hence, by elliptic regularity,

‖um − u‖L2,∞ ≤ ‖Bm ⊗ Bm − B⊗ B‖L1 ≤ ‖Bm − B‖L2 (‖Bm‖L2 + ‖B‖L2 ),

hence um → u strongly in L2(0, T; L2,∞). This is enough to show the nonlinear
terms converge weak-∗ in L2(0, T; H−1), and hence that (u,B) is a weak
solution (i.e. a solution with equality in L2(0, T; H−1)).



Conclusion

Similar arguments to the a priori estimates show uniqueness of weak
solutions, and so:

Theorem
Given u0,B0 ∈ L2(Ω) with ∇ · u0 = ∇ · B0 = 0, for any T > 0 there exists a
unique weak solution (u,B) with

u ∈ L∞(0, T; L2,∞) ∩ L2(0, T; H1)

and
B ∈ L∞(0, T; L2) ∩ L2(0, T; H1).

What about ε = 0?

• Try looking at more regular solutions and taking the limit ε→ 0 to get
local existence

• Assume regularity and show that u(t)→ 0 as t→∞ (Moffatt)?
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