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Introduction

• The Navier–Stokes equations and the Euler equations
• Regularity and stationary solutions
• Magnetohydrodynamics and magnetic relaxation
• Limits of the velocity field and the magnetic field
• “Stokes” dynamics
• Two dimensions?



The Navier–Stokes equations

Given a smooth bounded domain Ω ⊂ Rn (for n = 2 or 3), the
Navier–Stokes equations for Ω are:

∂u
∂t

+ (u · ∇)u = ν∆u−∇p + f , (1a)

∇ · u = 0. (1b)

Here:
• u : Ω× [0,∞)→ Rn is the (time-dependent) velocity field,
• p : Ω× [0,∞)→ R is the (time-dependent) pressure,
• f : Ω× [0,∞)→ Rn is the (time-dependent) forcing, and
• ν is the fluid viscosity.



The Navier–Stokes equations

Rather than consider specific boundary conditions, we insist
only that the following boundary integrals vanish:∫

∂Ω
u · ∂u

∂n
dS =

∫
∂Ω
|u|2 (u · n) dS =

∫
∂Ω

p(u · n) dS = 0. (2)

Energy evolution law

A smooth solution u of the Navier–Stokes equations (1), subject
to boundary conditions (2), satisfies

1
2

d
dt
‖u‖22 = −ν‖∇u‖22 + 〈f ,u〉.



The Navier–Stokes equations

Rather than consider specific boundary conditions, we insist
only that the following boundary integrals vanish:∫

∂Ω
u · ∂u

∂n
dS =

∫
∂Ω
|u|2 (u · n) dS =

∫
∂Ω

p(u · n) dS = 0. (2)

Energy evolution law

A smooth solution u of the Navier–Stokes equations (1), subject
to boundary conditions (2), satisfies

1
2

d
dt
‖u‖22 = −ν‖∇u‖22 + 〈f ,u〉.



The Euler equations

The Euler equations are the special case of the Navier–Stokes
equations when the viscosity ν = 0:

∂u
∂t

+ (u · ∇)u = −∇p + f , (3a)

∇ · u = 0. (3b)

Energy conservation

A smooth solution u of the Euler equations (3), subject to
boundary conditions (2), satisfies

1
2

d
dt
‖u‖22 = 〈f ,u〉.
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Regularity of solutions of the Euler equations

No global existence or uniqueness results for the Euler
equations in 3D. The most important “conditional regularity”
theorem is as follows:

Beale–Kato–Majda Theorem (1984)

There exists a global solution of the 3D Euler equations
u ∈ C([0,∞),Hs) ∩ C1([0,∞),Hs−1) for s ≥ 3 if, for every T > 0,∫ T

0
‖∇ × u(τ)‖∞ dτ <∞.



Stationary solutions of the Euler equations

We study the long-time behaviour of the Euler equations by
considering stationary solutions of the Euler equations (3),
which satisfy

(u · ∇)u +∇p = 0, (4a)

∇ · u = 0. (4b)

In particular, we consider the approach of magnetic relaxation:
formally, magnetic fields arising as stationary solutions of the
magnetohydrodynamics (MHD) equations ought to solve the
stationary Euler equations.
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Magnetohydrodymanics

The MHD equations for a perfectly conducting fluid in a domain
Ω ⊂ R3 can be written in the following form:

∂u
∂t

+ (u · ∇)u− ν∆u +∇p∗ = (B · ∇)B + f , (5a)

∂B
∂t

+ (u · ∇)B = (B · ∇)u, (5b)

∇ · u = 0, (5c)

∇ · B = 0. (5d)

Here:
• u,B : Ω× [0,∞)→ Rn are the velocity and magnetic fields;
• p : Ω× [0,∞)→ R is the pressure, and p∗ = p + 1

2 |B|
2;

• f : Ω× [0,∞)→ Rn is the forcing, and
• ν is the fluid viscosity.



Magnetohydrodymanics

Again we assume the following boundary integrals vanish:∫
∂Ω

u · ∂u
∂n

dS =

∫
∂Ω

(B · u)(B · n) dS =

∫
∂Ω
|u|2 (u · n) dS =∫

∂Ω
|B|2 (u · n) dS =

∫
∂Ω

p(u · n) dS = 0. (6)

Energy evolution law

A smooth solution u, B of equations (5), subject to boundary
conditions (6), satisfies

1
2

d
dt
(
‖u(t)‖22 + ‖B(t)‖22

)
= −ν‖∇u‖22 + 〈f ,u〉.



The stationary MHD equations

• Suppose the magnetic fluid is unforced — i.e., f = 0.
• The energy evolution law tells us that, as long as u is not

identically zero, the energy should decay.

• We thus expect that the fluid should settle down to an
equilibrium state, and that u→ 0 in some sense as t→∞.

• Formally, we should thus be left with a stationary magnetic
field, and equations (5) should reduce to the following
equations for B:

(B · ∇)B−∇p∗ = 0, (7a)

∇ · B = 0. (7b)

This “analogy” is originally due to Moffatt (1985).
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Kinetic energy decay

• Energy evolution law tells us that ∇u ∈ L2((0,∞), L2(Ω)),
but that doesn’t guarantee that ‖u(t)‖2 → 0 as t→∞.

• Núñez (2007) showed that the kinetic energy does indeed
decay to zero:

Kinetic energy decay (Núñez, 2007)

Suppose we have a smooth solution u, B of equations (5),
subject to boundary conditions (6), such that ‖B(t)‖∞ ≤ M for
all t > 0. If f ∈ L2((0,∞), L2(Ω)), then

lim
t→∞
‖u(t)‖2 = 0.



Sketch of proof

A Gronwall-type argument shows that

d
dt

(ert‖u(t)‖22) ≤ 2ert‖∇u(t)‖2(‖B(t)‖∞‖B(t)‖2︸ ︷︷ ︸
≤M

+cp‖f (t)‖2)

so integrating between s and t yields

‖u(t)‖22 − er(s−t)‖u(s)‖22

≤ 2Me−rt
(∫ t

s
e2rτ dτ

)1/2(∫ t

s
‖∇u(τ)‖22 dτ

)1/2

+ 2cp

(∫ t

s
‖f (τ)‖22 dτ

)1/2(∫ t

s
‖∇u(τ)‖22 dτ

)1/2

.



Weak limits of the magnetic field

• As ‖u(t)‖2 → 0 as t→∞, the energy evolution law tells us
that ‖B(t)‖2 converges to a limit as t→∞.

• Hence {B(t) : t ≥ 0} is weakly precompact (by the
Banach–Alaoglu theorem): for every sequence tn →∞,
there exists a subsequence tnj →∞ such that
B(tnj) ⇀ B∞ ∈ L2(Ω).

• We would like the limit to be unique: if tn, t′n →∞, then we
want B(tn) and B(t′n) to tend to the same weak limit; if so,
the whole function B(t) ⇀ B∞.



Weak limits of the magnetic field

If u ∈ L1((0,∞), L1(Ω)), then weak limits are unique: for a
time-independent test function w ∈ C∞c (Ω),

d
dt
〈B,w〉 =

〈
∂B
∂t
,w
〉

= 〈∇ × (u× B),w〉 = 〈u× B,∇×w〉.

Integrating in time from tn to t′n yields

〈B(t′n)− B(tn),w〉 =

∫ t′n

tn

〈u× B,∇×w〉dτ.

If u ∈ L1((0,∞), L1(Ω)), then by Hölder’s inequality,

〈B(t′n)−B(tn),w〉 ≤ ‖∇×w‖∞

(
sup

t∈(0,∞)

‖B(t)‖∞

)∫ t′n

tn

‖u(τ)‖1 dτ.



Non-existence of weak limits

• But we only know that u ∈ L2((0,∞), L2(Ω))!

• Consider the following example due to Núñez (2007):
consider Ω = U × (0,R), a plane velocity field
u = (u1(x, y, t), u2(x, y, t),0), and a vertical magnetic field
B = (0,0, b(x, y, t)). The equations reduce to

∂u
∂t

+ (u · ∇)u− ν∆u +∇p∗ = f ,

∂b
∂t

+ (u · ∇)b = 0.

• So b is just transported around by u, and u solves the 2D
Navier–Stokes equations.

• If f = 0, then u will decay as rapidly as we like.
• However, if we take f ∈ L2((0,∞), L2(Ω) (but

f /∈ L1((0,∞), L1(Ω)), we may construct a magnetic
field with no weak limit.
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“Stokes” dynamics

In some ways, the specific model that we use for magnetic
relaxation doesn’t matter, as long as it dissipates energy. Moffatt
(2009) proposed neglecting Du

Dt and using:

−ν∆u +∇p∗ = (B · ∇)B + f (8a)
∂B
∂t

+ (u · ∇)B = (B · ∇)u (8b)

∇ · u = 0 (8c)

∇ · B = 0 (8d)

where once again p∗ = p + 1
2 |B|

2 is the total pressure, and
f ∈ L2((0,∞), L2(Ω)).



“Stokes” dynamics

Good news: the kinetic energy still decays to zero.

Bad news: we need more hypotheses on B.

Worse news: we can adapt the same example to show that B
need not have a weak limit here either.

Kinetic energy decay (DMcC)

Suppose we have a smooth solution u, B of equations (8),
subject to boundary conditions (6), such that for all t ∈ (0,∞),

‖B‖∞ ≤ M1, ‖∇B‖∞ ≤ M2,

∥∥∥∥∂2B
∂t2

∥∥∥∥
1
≤ M3.

If f ∈ L2((0,∞), L2(Ω)), then lim
t→∞
‖u(t)‖2 = 0.



“Stokes” dynamics

Good news: the kinetic energy still decays to zero.

Bad news: we need more hypotheses on B.

Worse news: we can adapt the same example to show that B
need not have a weak limit here either.

Kinetic energy decay (DMcC)

Suppose we have a smooth solution u, B of equations (8),
subject to boundary conditions (6), such that for all t ∈ (0,∞),

‖B‖∞ ≤ M1, ‖∇B‖∞ ≤ M2,

∥∥∥∥∂2B
∂t2

∥∥∥∥
1
≤ M3.

If f ∈ L2((0,∞), L2(Ω)), then lim
t→∞
‖u(t)‖2 = 0.



Sketch of proof

The proof uses the following estimates:

ν‖∇u‖2 ≤ ‖B‖∞‖B‖2 + cp‖f‖2,∥∥∥∥∂B
∂t

∥∥∥∥
2
≤ ‖∇u‖2

(
‖B‖∞ + cp‖∇B‖∞

)
,

ν

2
d
dt
‖∇u‖22 ≤ ‖B‖∞

(∥∥∥∥∂2B
∂t2

∥∥∥∥
1

+ ‖∇u‖2
∥∥∥∥∂B
∂t

∥∥∥∥
2

)
+ cp‖∇B‖∞

∥∥∥∥∂B
∂t

∥∥∥∥
2
‖∇u‖2 + cp‖f‖2‖∇u‖2.

Then, since ∇u ∈ L2((0,∞), L2(Ω)) and d
dt‖∇u‖22 is uniformly

bounded, ‖∇u(t)‖22 → 0 as t→∞.
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What happens in two dimensions?

• So far, we have focussed on three dimensions, where we
have no regularity theory.

• Natural question: what happens in two dimensions?

• It is known that global solutions exist for the diffusive MHD
equations:

∂u
∂t

+ (u · ∇)u− ν∆u +∇p∗ = (B · ∇)B + f , (9a)

∂B
∂t

+ (u · ∇)B− µ∆B = (B · ∇)u, (9b)

∇ · u = 0, (9c)

∇ · B = 0. (9d)
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What happens in two dimensions?

• In the case µ = 0, we are only guaranteed local existence of
solutions. Fan and Ozawa (2009) and Zhou and Fan (2011)
proved two conditional regularity results, which say that

∇u ∈ L1(0,T; L∞(Ω)) or ∇B ∈ L1(0,T; BMO(Ω))

are both sufficient conditions to guarantee the existence of
a solution on time [0,T].

• However, when µ > 0 but ν = 0, Kozono (1989) proved the
existence of weak solutions for all time; a natural question
is whether these techniques can be adapted to the case
ν > 0 but µ = 0 to prove global existence of (weak)
solutions.
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Conclusions

While the idea of magnetic relaxation as a means of studying
stationary solutions of the Euler equations is important, there
are a number of unresolved issues:
• Can we prove that ∂u

∂t or (u · ∇)u→ 0 as t→∞— i.e., does
the limit state actually solve the stationary Euler equations?

• Does an example of a magnetic field with no weak limit as
t→∞ exist in the absence of a (decaying) forcing?

• Can we reduce the hypotheses needed to ensure decay of
the kinetic energy in the “Stokes” model?

• Can it all be made rigorous in two dimensions?
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