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Ladyzhenskaya’s inequality

In proving existence and uniqueness of weak solutions to the 2D
Navier-Stokes equations, one uses:

Ladyzhenskaya’s inequality

1/2 1/2
s < ellully4?||Dull 42

Ladyzhenskaya’s inequality yields a priori bounds on the nonlinear term
(u-V)u: ifu € L(0,T;L*) and Du € L*(0, T;L?), then

‘/(u~V>u-¢’:’—/(u~V>¢-u

(- V)l < 7 < cllulllDullz2,
and thus (u - V)u € L*(0,T; H™'), and hence du € L*(0, T; H™?).
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A coupled parabolic-elliptic MHD system

We consider the following modified system of equations for
magnetohydrodynamics on a bounded domain Q C R?:

—Au+Vp=(B-V)B
OB —eAB+ (u-V)B=(B-V)u,
with V- u = V - B = 0 and Dirichlet boundary conditions. This is like the
standard MHD system, but with the terms d:u + (u - V)u removed.
Theorem

Given ug,Bo € L*(Q) with V - ug = V - Bo = 0, for any T > 0 there exists a
unique weak solution (u, B) with

u e L>®(0,T;L>*°)NL*(0,T;H")
and

B e L>™(0,T;L*) N L*(0,T;H").

We prove this using both a generalisation of Ladyzhenskaya’s inequality, and
some elliptic regularity theory for L! forcing.



A priori estimates

Take inner product with u in the first equation, with B in the second equation
[ Vul* = ((B- V)B,u) = —((B- V)u,B)
1d 0 2
——||B B||" = ((B- B
5 3t |BI + I VBI” = (B V)u, B)

and add:
1d

29812 B2 2_.
5 57 IBIP + €l VBI* + |Vul® = 0
We get:

B e L>(0,T;L?), VB € L*(0,T;L?), Vu € L*(0, T;L%).
We still need elliptic regularity for u:

~Au+Vp=(B-V)B=V-(B®B
u+Vp=(B-V) (B®B)
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LP~>°: weak L spaces

For f: R" — R define
di(a) = pfx: f(x)] > a}.
Note that
Wit = [ peor= [ er > wdie)
8 {x: f()[>a}
For1 <p < oo set

. cP
If |00 = mf{C: di(a) < 5} = sup{ydf(y)l/p :y >0}

The space LP>>°(R") consists of all those f such that ||f]|p.cc < 00.
o [P CIP™
o |x|™VP € [P>°(R") but ¢ IP(R").
o iff € [P°(R") then df(a) < |If|[fr.cc®.



LP~>°: weak L spaces

Just as with strong I? spaces, we can interpolate between weak LP spaces:

Weak [? interpolation

Takep <r < q.Iff € [P*° NLY* thenf € L and

Fllr < corallFIEE P A7,
Recall Young’s inequality for convolutions: if 1 < p,q,r < oo and
5 +1=+1then

[E * flleo < I|E[[callfler-
There is also a weak form, which requires stronger conditions on p, q,r:

Weak form of Young’s inequality for convolutions

If1<r<ooand1<p,q<oo,and:+1=1+1then

IE  fllupco < [|E]|a.co [|f]]er-



Elliptic regularity in L1

Fundamental solution of Stokes operator on R? is

Ej(x) = —

; XXy
' p2”
i.e. solution of —Au+ Vp =fisu =E «f.

Solution of —Au + Vp = df isu = E * (9f) = (9E) * f. Note that

5ikxj 0 XXk 1

OEj = 05 —~ ~
’ ”I |2 Ix? * ]

Thus OE € L** and so
fel' = u=0Ex«fel*>>.

If we consider the problem in a bounded domain we have the same regularity.
We replace the fundamental solution E by the Dirichlet Green’s function G
satisfying

—AGI(S(X—)/) G|aQ =0.

Mitrea & Mitrea (2011) showed that in this case we still have G € L?°°.
So on our bounded domain, u € L>(0, T; L**).



Estimates on time derivatives: 9,B € L*(0, T; H1)?

Take v € H' with ||v|;n = 1. Then

(0B, v)| = [(¢AB — (u- V)B + (B V)u,v)|
< el VBI[I[VVI| + 2[[ullps 1B+ [ VY]l 2

SO

| 19:Blly—1 < e[| VBI| + 2lJulla|Bll- |

Standard 2D Ladyzhenskaya inequality gives
1Bl < cl|BII"*(IVB] %

but we only have uniform bounds on u in L%°°.
IF [+ < clIfll;2 [ VF]|/? then

12,00

19:Blls—1 < el VBI| + cllull;2% [1BI/2[[Vul /2| VB2

12,00

which would yield
B e L*(0,T;H™ ).



Generalised Ladyzhenskaya inequality and interpolation spaces

For 0 < 0 < 1 one can define an interpolation space Xy := [XO,Xl]g in such a
way that ||f[|x, < cl[f]l °Ilfll$:- (Note that [[f|lx, < c||f]lx:.)

Theorem (Bennett & Sharpley, 1988)
IP*° = [L',BMO];_(1/p) for 1 < p < o0; so L*> = [L', BMO]; .

Reiteration Theorem

If Ao = [Xo,X1]6,, A1 = [Xo,X1]e, then [Ao,A1]g = [Xo,X1](1—6)6,+60, Provided
that 6 € (0,1).

Write 8 = [L', BMO]; and note that ||f||s < c||f|/emo. Then
L3 = [L**, 98], /3 and L>*® = [L**°,B],/3, and hence

1/2 1/2
flle < cllfIl22 IFIR2
2/3 1/371/2 1/3 2/3711/2
< clellfIP2 ST 2 elFI 2 13T
1/2 1/2 1/2 1/2
= clIfll} 72 IF 12 < cllf 122 I lsao-

Since H* ¢ BMO (see Evans, for example) this yields

1/2 1/2
IFlles < cllfll2 2 1R




Estimates on time derivatives 2: du € L*(0, T; H™!)

We have now obtained 9B € L*(0, T; H™').
Now from —Au + Vp = (B- V)B we have

—Au;+ Vpr = (B.- V)B+ (B- V)B;
Take v € H! let ¢ satisfy

—A¢+Vp=v = 6]l < clvilg-
[(ue, v)| = [(ue, —A¢ + V)|
= <Aut,¢>|

\
\
< (Bt V)B,¢)| + [{(B- V)Bt, )|
< CHBtHH 1BV
< cl|Bellg-1 1Bl [ 6]l
< cl|Bellg—1 1Bl [V

SO
u € L'0,T;H ™).



Conclusion

By using Galerkin approximations, we can make the previous a priori
estimates rigorous, and using a variant of the Aubin-Lions compactness
lemma (Temam, 1979; Simon, 1987) we obtain a weak solution (u, B) of the
equations; similar arguments to the a priori estimates show uniqueness of
weak solutions, and so:

Theorem

Given ug,Bo € L*(Q) with V - up = V - Bo = 0, for any T > 0 there exists a
unique weak solution (u, B) with

u e L®(0,T;L>*°)NL*(0,T;H")
and

B € L*(0,T;L*) NL*(0, T; H").
What about € = 0?

e Try looking at more regular solutions and taking the limit ¢ — 0 to get
local existence

e Assume regularity and show that u(t) — 0 as t — oo (Moffatt)?



