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Overview

I We are interested the determination of the hydraulic permeability of a porous
medium given noisy piezometric head measurements, using a Bayesian
approach to the inverse problem.

I In particular we are interested in the recovery of interfaces between different
media in the subsurface, using a level set approach.

I Treating the length scale of the permeability hierarchically allows for more
accurate recovery than non-hierarchical methods.

The forward problem (Darcy model for groundwater flow)

I Piezometric head h.
I Hydraulic permeability κ.
I Given κ ∈ L∞+ and f ∈ H−1, plus appropriate boundary conditions, find h ∈ H1

0
satisfying the PDE

−∇ · (κ∇h) = f

I Define G(κ) ∈ RJ to be some measurements of h.

The inverse problem

I Let η ∼ N(0,Γ) be some Gaussian noise on RJ. We observe data y,

y = G(κ) + η

I Given y, find the permeability κ.
I Problem is underdetermined: y is finite dimensional, but κ is infinite

dimensional.
I Data is noisy: y may not even lie in the image of G due to the noise term.

Bayesian inversion: the idea

I Probability delivers missing information and accounts for observational noise.
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The level set approach

I Often the permeability of interest is approximately piecewise constant. It can
then be expressed as a thresholded continuous function, termed the level set
function.

I The problem now concerns recovery of the level set function.

Figure: (Top) Examples of level set functions. (Bottom) The result of thresholding these
functions at two levels.

The prior distribution

I We place a probability distribution upon the level set function u, representing
our prior beliefs before data is collected.

I This prior distribution may for example be taken to be a Gaussian with
Whittle-Matérn covariance function:

c(x, y) = σ2 1
2ν−1Γ(ν)

(τ |x− y|)νKν(τ |x− y|).

I The parameter ν controls the regularity of samples, σ controls the amplitude,
and τ controls the (inverse) length scale.

I These parameters can be assumed to be known a priori, though reconstruction
of permeabilities may be poor if they are chosen inappropriately.

I To improve reconstruction we treat the parameter τ hierarchically.
I For technical reasons (absolute continuity) the covariance must be rescaled by
τ−ν; the thresholding levels are then given this same scaling to compensate.

I The prior µ0 is now on both u and τ

µ0(du, dτ ) ∝ P(du|τ )P(dτ )

The likelihood

I Due to the scaling issue above we must pass the length scale parameter τ to
the thresholding map.

I We have that κ = κ(u, τ ) via this map, and so we write G(u, τ ) in place of G(κ).
I Since y = G(u, τ ) + η and η ∼ N(0,Γ), then y|(u, τ ) ∼ N(G(u, τ ),Γ). The

model-data misfit Φ is the negative log-likelihood:

P(y|u, τ ) ∝ exp(−Φ(u, τ ; y)), Φ(u, τ ; y) =
1
2
|Γ−1/2(y− G(u, τ ))|2

The posterior distribution

I The posterior distribution µy represents information about u and τ after data is
collected.

I It can be characterized in terms of Φ and µ0 using Bayes’ theorem:

µy(du, dτ ) ∝ exp(−Φ(u, τ ; y))µ0(du, dτ )

I We have the following result concerning well-posedness of the inverse problem:

The map y 7→ µy(du, dτ ) is Lipschitz in the Hellinger metric. Furthermore,
if S is a separable Banach space, and the map (u, τ ) 7→ f (u, τ ) ∈ S is
square integrable with respect to µ0, then

‖Eµy1 f (u, τ )− Eµy2 f (u, τ )‖S ≤ C|y1 − y2|.

Numerical example
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Figure: The true log-permeability used
to create the data

I We define a channelized permeability.
I This does not come from the prior, and so

there is no ‘true’ value of the length scale
parameter τ .

I Nonetheless there is an intrinsic length scale
associated with the field that we aim to
recover.

I Data arises from smoothed point
observations of the hydraulic head on a
uniform grid of 64 points. Noise on the
measurements is approximately 2%.

I We perform MCMC simulations to sample
from the posterior µy arising from both
hierarchical and non-hierarchical methods,
with τ initialised or fixed at τ = 1, 10, 30, 50, 70
and 90.

Numerics: posterior means

Figure: Approximations of κ(E(u),E(τ)) under the hierarchical posterior, when MCMC is initialized at each value of τ .

Figure: Approximations of κ(E(u),E(τ)) under the non-hierarchical posteriors, with each fixed value of τ .

Numerics: posterior samples

Figure: Typical samples of κ(u, τ) under the hierarchical posterior, when MCMC is initialized at each value of τ .

Figure: Typical samples of κ(u, τ) under the non-hierarchical posteriors, with each fixed value of τ .

Numerics: trace of length-scale parameter

I The chains for τ all converge within 106 samples,
to be centred around the value τ ≈ 18.

I This can be observed in the hierarchical means,
which look essentially identical for each chain.
This is in contrast to the non-hierarchical means,
wherein the short length scales have allowed for
the creation of artifacts towards the top of the
domain.

I The effect of length scale is even more stark
when comparing the hierarchical and
non-hierarchical samples.

References

Matthew M Dunlop, Marco A Iglesias, and Andrew M Stuart.
Hierarchical Bayesian level set inversion.
Submitted.

Marco A Iglesias, Yulong Lu, and Andrew M Stuart.
A Bayesian level set method for geometric inverse problems.
Submitted.

Andrew M Stuart.
Inverse problems: a Bayesian perspective.
Acta Numerica, 19(1):451–559, 2010.

MASDOC CDT, University of Warwick Mail: masdoc.info@warwick.ac.uk WWW: http://www2.warwick.ac.uk/fac/sci/masdoc/


