†Warwick Mathematics Institute, University of Warwick, ‡School of Mathematical Sciences, University of Nottingham

Overview

- ▶ We are interested the determination of the hydraulic permeability of a porous medium given noisy piezometric head measurements, using a Bayesian approach to the inverse problem.
- In particular we are interested in the recovery of interfaces between different media in the subsurface, using a level set approach.
- ► Treating the length scale of the permeability hierarchically allows for more accurate recovery than non-hierarchical methods.

The forward problem (Darcy model for groundwater flow)

- ▶ Piezometric head h.
- ▶ Hydraulic permeability κ .
- ▶ Given $\kappa \in L^{\infty}_+$ and $f \in H^{-1}$, plus appropriate boundary conditions, find $h \in H^1_0$ satisfying the PDE

$$-\nabla \cdot (\kappa \nabla h) = f$$

▶ Define $\mathcal{G}(\kappa) \in \mathbb{R}^J$ to be some measurements of h

The inverse problem

Let $\eta \sim N(0, \Gamma)$ be some Gaussian noise on \mathbb{R}^J . We observe data y,

$$y = \mathcal{G}(\kappa) + \eta$$

- Given y, find the permeability κ .
- ▶ Problem is underdetermined: y is finite dimensional, but κ is infinite dimensional.
- ▶ Data is noisy: y may not even lie in the image of \mathcal{G} due to the noise term.

Bayesian inversion: the idea

Probability delivers missing information and accounts for observational noise.

The level set approach

- ▶ Often the permeability of interest is approximately piecewise constant. It can then be expressed as a thresholded continuous function, termed the level set function
- ▶ The problem now concerns recovery of the level set function.

Figure: (Top) Examples of level set functions. (Bottom) The result of thresholding these functions at two levels.

The prior distribution

- \triangleright We place a probability distribution upon the level set function u, representing our prior beliefs before data is collected.
- ▶ This prior distribution may for example be taken to be a Gaussian with Whittle-Matérn covariance function:

$$c(x,y) = \sigma^2 \frac{1}{2^{\nu-1}\Gamma(\nu)} (\tau |x - y|)^{\nu} K_{\nu}(\tau |x - y|).$$

- ▶ The parameter ν controls the regularity of samples, σ controls the amplitude, and τ controls the (inverse) length scale.
- ► These parameters can be assumed to be known a priori, though reconstruction of permeabilities may be poor if they are chosen inappropriately.
- ▶ To improve reconstruction we treat the parameter τ hierarchically.
- For technical reasons (absolute continuity) the covariance must be rescaled by $\tau^{-\nu}$; the thresholding levels are then given this same scaling to compensate.
- ▶ The prior μ_0 is now on both u and τ

$$\mu_0(\mathrm{d}u,\mathrm{d} au) \propto \mathbb{P}(\mathrm{d}u| au)\mathbb{P}(\mathrm{d} au)$$

The likelihood

- ightharpoonup Due to the scaling issue above we must pass the length scale parameter au to the thresholding map.
- ▶ We have that $\kappa = \kappa(u, \tau)$ via this map, and so we write $\mathcal{G}(u, \tau)$ in place of $\mathcal{G}(\kappa)$.
- Since $y = \mathcal{G}(u,\tau) + \eta$ and $\eta \sim N(0,\Gamma)$, then $y|(u,\tau) \sim N(\mathcal{G}(u,\tau),\Gamma)$. The model-data misfit Φ is the negative log-likelihood:

$$\left| \mathbb{P}(y|u,\tau) \propto \exp(-\Phi(u,\tau;y)), \quad \Phi(u,\tau;y) = \frac{1}{2} |\Gamma^{-1/2}(y - \mathcal{G}(u,\tau))|^2 \right|$$

The posterior distribution

- ▶ The posterior distribution μ^y represents information about u and τ after data is collected.
- ▶ It can be characterized in terms of Φ and μ_0 using Bayes' theorem:

$$\mu^{y}(du, d\tau) \propto \exp(-\Phi(u, \tau; y)) \mu_{0}(du, d\tau)$$

▶ We have the following result concerning well-posedness of the inverse problem:

The map $y \mapsto \mu^y(du, d\tau)$ is Lipschitz in the Hellinger metric. Furthermore, if S is a separable Banach space, and the map $(u, \tau) \mapsto f(u, \tau) \in S$ is square integrable with respect to μ_0 , then

$$\|\mathbb{E}^{\mu^{y_1}}f(u,\tau)-\mathbb{E}^{\mu^{y_2}}f(u,\tau)\|_{S}\leq C|y_1-y_2|.$$

Numerical example

Figure: The true log-permeability used to create the data

- ▶ We define a channelized permeability.
- ► This does not come from the prior, and so there is no 'true' value of the length scale parameter τ .
- Nonetheless there is an intrinsic length scale associated with the field that we aim to recover.
- Data arises from smoothed point observations of the hydraulic head on a uniform grid of 64 points. Noise on the measurements is approximately 2%.
- ▶ We perform MCMC simulations to sample from the posterior μ^{y} arising from both hierarchical and non-hierarchical methods, with τ initialised or fixed at $\tau = 1, 10, 30, 50, 70$ and 90.

Numerics: posterior means

Figure: Approximations of $\kappa(\mathbb{E}(u), \mathbb{E}(\tau))$ under the **hierarchical** posterior, when MCMC is initialized at each value of τ .

Figure: Approximations of $\kappa(\mathbb{E}(u), \mathbb{E}(\tau))$ under the **non-hierarchical** posteriors, with each fixed value of τ .

Numerics: posterior samples

Figure: Typical samples of $\kappa(u,\tau)$ under the **hierarchical** posterior, when MCMC is initialized at each value of τ .

Figure: Typical samples of $\kappa(u,\tau)$ under the **non-hierarchical** posteriors, with each fixed value of τ .

Numerics: trace of length-scale parameter

- ▶ The chains for τ all converge within 10^6 samples, to be centred around the value $\tau \approx 18$.
- ► This can be observed in the hierarchical means, which look essentially identical for each chain. This is in contrast to the non-hierarchical means, wherein the short length scales have allowed for the creation of artifacts towards the top of the domain.
- The effect of length scale is even more stark when comparing the hierarchical and non-hierarchical samples.

References

- Matthew M Dunlop, Marco A Iglesias, and Andrew M Stuart. Hierarchical Bayesian level set inversion. Submitted.
- Marco A Iglesias, Yulong Lu, and Andrew M Stuart. A Bayesian level set method for geometric inverse problems.
- Andrew M Stuart. Inverse problems: a Bayesian perspective. Acta Numerica, 19(1):451–559, 2010.