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Introduction

The Malliavin calculus is a variational calculus for Lp functions on a space of paths which
are not differentiable in the classical sense, for example functions on C0([0, T ];Rm), the space
of continuous paths in Rm starting from the origin. The aim of this essay is to present the
main elements of Malliavin calculus, and then use them to analyse the law of the Ornstein-
Uhlenbeck (OU) process.

In the first chapter we introduce the Malliavin derivative operator D in terms of isonormal
Gaussian processes and look at some of its properties, in particular its action on diffusion
processes. We then proceed to define the divergence, which leads to an extension of the Itô
integral to non-adapted integrands. This in turn leads to the Clark-Ocone theorem, which
gives a more explicit form for the martingale representation theorem for differentiable L2

functions on C0([0, T ]).

One of the important applications of Malliavin calculus, and the original motivation for de-
veloping the theory, is to provide a probabilistic proof of Hörmander’s theorem regarding the
existence and smoothness of a density with respect to the Lebesgue measure of the law of
solutions to a class of hypoelliptic SDEs. In the second chapter we supply a proof of a version
of this theorem following Hairer’s recent paper [5], after discussing the problem of existence
and smoothness of densities for the law of more general random variables.

Finally in the third chapter we analyse the laws of the one-dimensional OU process Z defined
by the SDE

dZt = dBt − Ztdt

and the associated two-dimensional process (X, Y ) defined by the SDE{
dXt = Vtdt
dVt = dBt − Vtdt

More specifically, we look at the Cameron-Martin space associated with the law of Z using
a classical approach and then using Malliavin calculus, before looking for its associated di-
vergence operator in terms of the Itô integral. We then look at the problem of existence and
smoothness of the density of the law of (X, V ) using the tehniques covered in the second
chapter.

Sufficient prerequisites would be undergraduate courses in functional analysis and measure
theory (Riesz representation theorems, unbounded/closable operators, adjoints) and a first
course in stochastic analysis (stochastic integrals, Itô’s formula, existance and uniqueness
of solutions to SDEs, Girsanov’s theorem). Some knowledge of differential geometry and
Sobolev spaces would be beneficial in parts. Knowledge of chaos expansions and infinite
dimensional Gaussian measures is also assumed, but the relevant details can be found in the
appendices.
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1 Malliavin calculus

1.1 The derivative operator

In this section we define the Malliavin derivative operator and give some of its key properties.

1.1.1 Definitions

Central to our definition of the Malliavin derivative operator will be the notion of an isonormal
process, which is a family of L2 Gaussian random variables indexed by a Hilbert space. For
examples and more details, see Appendix A.1.

Definition 1.1. Let H be a real separable Hilbert space, and let W : H → L2(Ω,F ,P). We
say that W is an isonormal Gaussian process if

(i) W is a linear isometry

(ii) W (h) is normally distributed with mean zero and variance ‖h‖2

Let C∞p (Rn) be the space of all infinitely differentiable functions on Rn whose derivatives have
at most polynomial growth. Let W be an isonormal Gaussian process on a real separable
Hilbert space H, and define the space S of smooth cylindrical random variables by

S := {F = ψ(W (h1), . . . ,W (hn)) |ψ ∈ C∞p (Rn), hi ∈ H,n ∈ N}

The polynomial growth ensures existence of all moments of elements of S, hence S ⊆ Lp(Ω)
for all p. We define the derivative of elements of S as follows.

Definition 1.2. The (Malliavin) derivative DF of a function F ∈ S is an H-valued random
element given by

DF :=
n∑
i=1

∂ψ

∂xi
(W (h1), . . . ,W (hn))hi

when F is given by ψ(W (h1), . . . ,W (hn)).

It can be shown that this definition is independent of the choice of representation of F by
basic linear algebra, see for example [10, p. 29].

Example 1.3. D(W (h)) = h. In particular, in the case where H = L2([0, T ]) and W (h) =∫ T
0
hsdBs is the Itô integral, we have

D

(∫ t

0

hsdBs

)
= D(W (h1[0,t])) = h1[0,t]

Similarly, we have that DBs = 1[0,s], and Df(Bs) = f ′(Bs)1[0,s] for suitable smooth f .
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One can easily check that D is a linear operator on S and that it satisfies the product rule

D(FG) = FDG+GDF

Since the derivative of a function F is valued in H, 〈DF, h〉H makes sense for h ∈ H, and if
DF is given as in Definition 1.2, then

〈DF, h〉H :=
n∑
i=1

∂ψ

∂xi
(W (h1), . . . ,W (hn))〈hi, h〉H

This is the derivative of F in the direction1 h, so the derivative operator D is comparable to
the gradiant operator ∇ in the finite dimensional case. The derivative of F in direction h
can be thought of in the same variational way as in the finite dimensional case. For example,
suppose that F ∈ S has representation ψ(W (k)), then

lim
ε→0

ψ(W (k) + ε〈k, h〉H)− ψ(W (k)))

ε
= lim

ε′→0

ψ(W (k) + ε′)− ψ(W (k)))

ε′
· 〈k, h〉H

= ψ′(W (k))〈k, h〉H
= 〈DF, k〉H

A similar result holds for when F is of the more general form ψ(W (h1), . . . ,W (hn)). Note that
when we are in the situation of Example 1.3, the perturbation W (k) + ε〈k, h〉H corresponds
to the addition of a determininstic drift,

W (k) + ε〈k, h〉H =

∫ 1

0

ktdBt + ε

∫ 1

0

kthtdt

and so we have that 〈
D

(∫ 1

0

ktdBt

)
, h

〉
H

=

∫ 1

0

kthtdt

= 〈k, h〉H

Hence by the Riesz representation theorem we again obtain that

D

(∫ 1

0

ktdBt

)
= k

An important property of the derivative operator is the integration by parts formula, which
is used to prove its closability:

Proposition 1.4. Let F ∈ S and h ∈ H, then E〈DF, h〉H = E(FW (h))

1The ‘directions’ should technically be elements of tangent spaces of H, however due to the linear structure
of H we can identify its tangent spaces with H itself.
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Proof. (Following [6, pp. 25-26]) By linearity and Gram-Schmidt, we lose no generality in
assuming that there exist orthonormal elements e1, . . . en of H such that e1 = h and

F = f(W (e1), . . . ,W (en))

where f ∈ C∞p (Rn). From the definition of W and orthogonity of the (ei) we have that the
random vector (W (e1), · · · ,W (en)) has standard normal distribution in Rn, and so

E〈DF, h〉H = E
(
∂ψ

∂x1

(W (e1), · · · ,W (en))

)
=

1

(2π)n/2

∫ n

R

∂ψ

∂x1

(x1, . . . , xn)e−‖x‖
2/2dx

=
1

(2π)n/2

∫ n

R
x1ψ(x1, . . . , xn)e−‖x‖

2/2dx

= E(FW (h))

Remark. We will often write DhF := 〈DF, h〉H . DF is sometimes viewed an an H∗-valued
random variable by the identification DF (h) := DhF . Viewing DF as valued in H∗, the
relation between the above integration by parts formula and the formula (A.1) given in Ap-
pendix A.1 is clear when W is given by the Paley-Wiener integral. Indeed by approximating
F ∈ S by BC1 functions, a variational proof of the above proposition is obtained.

An immediate consequence of the above proposition, using the product rule, is the following:

Corollary 1.5. Suppose F,G ∈ S and h ∈ H, then

E(G〈DF, h〉H) = E(−F 〈DG, h〉H + FGW (h))

We are now able to show that the derivative operator is closable. The closability of D is
a useful property: it tells us that if Fn → F and DFn → η, then η = DF , once we have
settled on notions of convergence. Since we have that S ⊆ Lp(Ω) for all p, Lp convergence
would seem appropriate for the Fn. For the DFn, we use convergence in the Bochner spaces
Lp(Ω;H).

Proposition 1.6. For p ∈ [1,∞), the operator D is closable from Lp(Ω) to Lp(Ω;H).

Proof. (Following [11]) By linearity, it is enough to show this for the case F = 0. Let
(Fn)n∈N ⊆ S be a sequence of smooth random variables such that Fn → 0 in Lp(Ω) and
DFn → η in Lp(Ω;H). We need to show that η = 0.

First note that for any h ∈ H we have that 〈DFn, h〉H → 〈η, h〉H in Lp(Ω), because

E [|〈DFn, h〉H − 〈η, h〉H |p] = E [|〈DFn − η, h〉H |p]
≤ E [(‖DFn − η‖H‖h‖H)p]

= ‖h‖pH‖DFn − η‖
p
Lp(Ω;H) → 0
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So given any bounded G ∈ S with GW (h) also bounded, Corollary 1.5 gives

E(〈η, h〉HG) = lim
n→∞

E(〈DFn, h〉HG)

= lim
n→∞

E(−Fn〈DG, h〉H + FnGW (h))

= 0

Thus for all h ∈ H, 〈η, h〉H = 0 a.s. and so η = 0

By the above proposition the operator D can be extended to a maximal closed operator with
domain D1,p ⊆ Lp(Ω). It follows that the space D1,p is a Banach space under the graph norm

‖F‖1,p :=
[
‖F‖pLp(Ω) + ‖DF‖pLp(Ω;H)

]1/p

= [E|F |p + E‖DF‖pH ]1/p

Let F ∈ S. The kth derivative operator Dk is defined by iteration: D1F := DF and
DkF := D(Dk−1F ) for k ≥ 2. DkF is hence a random variable with values in H⊗k. Using
this we can define some more spaces that D can act on. Define a norm2 on S by

‖F‖k,p :=

[
E|F |p +

k∑
i=1

E‖DiF‖p
H⊗i

]1/p

This makes sense as the polynomial growth of all derivatives of ψ in the definition of S
ensures that all moments of all derivatives of elements of S exist. The space Dk,p is defined
as the closure of S with respect to the norm ‖ · ‖k,p. Note that we clearly have Dk,p ⊆ Dl,p for
k > l, and by Jensen’s inequality we have that Dk,p ⊆ Dk,q for p > q. We can hence define
three final spaces:

D∞,p :=
⋂
k

Dk,p, Dk,∞ :=
⋂
p

Dk,p, D∞ :=
⋂
k,p

Dk,p

The spaces Dk,p can be thought of as infinite dimensional analogues to Gaussian Sobolev
spaces, see for example [11]. It is worth noting that the spaces Dk,2 are Hilbert spaces, with
inner products

〈F,G〉k,2 := E(FG) +
k∑
i=1

E〈DiF,DiG〉H⊗i

The space D1,2 is of particular importance, as will be seen later.

We haven’t shown that Dk is well-defined on Dk,p for k ≥ 2: the closability of Dk from Lp(Ω)
to Lp(Ω;H⊗k) follows from the same arguments as Proposition 1.6.

It will perhaps be helpful to see some examples of functions which lie in the above spaces,
and examples of those that don’t.

2This is technically a seminorm, but if we identify elements of S that agree P-almost everywhere it is a
true norm
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Example 1.7. (i) Clearly S ⊆ Dk,p for all k, p ∈ [1,∞].

(ii) An indicator function 1A of a measurable set A is in D1,p if and only if P(A) = 0 or
P(A) = 1, see Corollary 1.10.

(iii) Let (Bt)t∈[0,T ] be a one-dimensional Brownian motion on the interval [0, T ] and suppose
X = (Xt)t∈[0,T ] is the process defined by the SDE

dXt = a(Xt)dBt + b(Xt)dt

where a, b : R → R are continuously differentiable and globally Lipschitz. Then Xt ∈
D1,∞ for all t ∈ [0, T ], see Proposition 1.21.

The above can be extended to the case where the random variables take values in a separable
Hilbert space V . We define the set SV of V -valued smooth cylindrical random variables by

SV :=

{
F =

m∑
j=1

Fjvj

∣∣∣∣Fj ∈ S, vj ∈ V
}
⊆ Lp(Ω;V ) for all p

Now the derivative of an element F =
∑m

j=1 Fjvj of SV is given by

DF :=
m∑
j=1

vj ⊗DFj

and it can be checked similarly to the real valued case that that D defined in this way is a
closable operator. Then we define the space Dk,p(V ) ⊆ Lp(Ω;V ) as the closure of SV with
respect to the norm

‖F‖k,p,V =

[
E(‖F‖pV ) +

k∑
i=1

E
(
‖DiF‖p

V⊗H⊗i
)]1/p

Thus we have that D : Dk,p(V )→ Lp(Ω;V ⊗H), and Di : Dk,p(V )→ Lp(Ω;V ⊗H⊗i), etc

Remark. Some authors define the derivative first on the space

S ′V := {F = ψ(W (h1), . . . ,W (hn)) |ψ ∈ C∞p (Rn;V ), hi ∈ H,n ∈ N}

by

DF :=
n∑
i=1

∂ψ

∂xi
(W (h1), . . . ,W (hn))⊗ hi

One can check that this agrees with the above definition on SV ⊆ S ′V , and that both spaces
of smooth cylinder functions have the same closure Dk,p(V ) under the ‖ · ‖k,p,V -norm.

Before moving on we extend the product rule given earlier to a formula for the directional
derivative of the inner product of two elements of D1,p(V ):
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Proposition 1.8. Let h ∈ H and let F,G ∈ D1,p(V ) be two differentiable V -valued random
variables. Then

Dh〈F,G〉V = 〈DhF,G〉V + 〈F,DhG〉V (1.1)

Proof. (A similar statement is given in [1] without proof). We first prove it for F,G ∈ S ′V .
Let F = ψ(W (h1), . . . ,W (hn)) and G = ϕ(W (hn+1), . . . ,W (hn+m)) where ψ ∈ C∞p (Rn;V ),
ϕ ∈ C∞p (Rm;V ) and hi ∈ H. F = 〈η, ξ〉V is a real-valued random variable, we calculate its
directional derivative:

Dh〈F,G〉V =
n+m∑
i=1

∂

∂xi
〈ψ(x1, . . . , xn), ϕ(xn+1, . . . , xn+m)〉V

∣∣∣∣
xj=W (hj),j=1,...,n+m

〈hi, h〉H

=
n∑
i=1

〈
∂ψ

∂xi
(W (h1), . . . ,W (hn)), ϕ(W (hn+1), . . . ,W (hn+m))

〉
V

〈hi, h〉H

+
n+m∑
i=n+1

〈
ψ(W (h1), . . . ,W (hn)),

∂ϕ

∂xi
(W (hn+1), . . . ,W (hn+m))

〉
V

〈hi, h〉H

=

〈
n∑
i=1

∂ψ

∂xi
(W (h1), . . . ,W (hn))〈hi, h〉H , ϕ(W (hn+1), . . . ,W (hn+m))

〉
V

+

〈
ψ(W (h1), . . . ,W (hn)),

n+m∑
i=n+1

∂ϕ

∂xi
(W (hn+1), . . . ,W (hn+m))〈hi, h〉H

〉
V

= 〈DhF,G〉V + 〈F,DhG〉V

So the result is true for F,G ∈ S ′V . For general F,G ∈ D1,p, take sequences (Fn), (Gn) ⊆ S ′V
converging to F,G in D1,p respectively and use standard approximation arguments to get the
result.

1.1.2 Properties

Now that most of the definitions are out of the way we can look at some of the properties
of the derivative operator. The first will be a simple version of the chain rule for smooth
cylindrical functions:

Proposition 1.9 (Chain rule I). Let ϕ ∈ C∞p (Rm). Suppose that F = (F 1, . . . , Fm) is a
random vector whose components belong to the space S. Then ϕ(F ) ∈ S, and

D(ϕ(F )) =
m∑
i=1

∂ϕ

∂xi
(F )DF i

Proof. For simplicity we assume that m = 1. Let F = F 1 have representation F =
ψ(W (h1), . . . ,W (hn)), where ψ ∈ C∞p (Rn) and hi ∈ H. Then ξ = ϕ ◦ ψ ∈ C∞p (Rn) and
we have ϕ(F ) = ξ(W (h1), . . . ,W (hn)). So by the definition of D on S and the ordinary
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chain rule for derivatives we have

D(ϕ(F )) =
n∑
i=1

∂ξ

∂xi
(W (h1), . . . ,W (hn))hi

=
n∑
i=1

∂(ϕ ◦ ψ)

∂xi
(W (h1), . . . ,W (hn))hi

=
n∑
i=1

∂ϕ

∂x
(ψ(W (h1), . . . ,W (hn)))

∂ψ

∂xi
(W (h1), . . . ,W (hn))hi

=
∂ϕ

∂x
(F )DF

Corollary 1.10. Let p ≥ 1 and A ∈ F . Then the indicator function 1A belongs to D1,p if
and only if P(A) = 0 or P(A) = 1

Proof. (From [7, p. 8]) Let ϕ ∈ C∞p (R) be such that ϕ(x) = x2 for x ∈ [0, 1]. Apply the
above proposition to get (using that 1A = (1A)2),

D1A = D(1A)2 = 21AD1A

Now if ω ∈ A, the above says that D1A(ω) = 2D1A(ω) and so D1A(ω) = 0. If ω /∈ A then
clearly D1A(ω) = 0. Thus D1A = 0 everywhere hence3 1A = E1A = P(A).

By approximation we get a stronger version of the chain rule:

Proposition 1.11 (Chain rule II). Let ϕ : Rm → R be a continously differentiable function
with bounded partial derivatives, and fix p ≥ 1. Suppose that F = (F 1, . . . , Fm) is a random
vector whose components belong to the space D1,p. Then ϕ(F ) ∈ D1,p, and

D(ϕ(F )) =
m∑
i=1

∂ϕ

∂xi
(F )DF i (1.2)

Proof. (Statement and idea of proof given in [7, p.5]) Assume first that F i ∈ S for all i. Let
ηε be an approximation to the identity so that ϕ ∗ ηε ∈ C∞p (Rm). Then (ϕ ∗ ηε)(F ) satisfies
(1.2) for all ε > 0 by the previous proposition. Using that the derivative can be brought
inside the convolution, we have

E‖D((ϕ ∗ ηε)(F ))−D(ϕ(F ))‖pH ≤ Cp

m∑
i=1

E
∥∥∥∥( ∂ϕ∂xi ∗ ηε

)
(F )DF i − ∂ϕ

∂xi
(F )DF i

∥∥∥∥p
H

= Cp

m∑
i=1

E
∣∣∣∣( ∂ϕ∂xi ∗ ηε

)
(F )− ∂ϕ

∂xi
(F )

∣∣∣∣p ‖DF i‖pH

≤ Cp

m∑
i=1

∥∥∥∥( ∂ϕ∂xi ∗ ηε
)
− ∂ϕ

∂xi

∥∥∥∥p
∞
E‖DF i‖pH

→ 0 as ε→ 0

3The fact that DF = 0 implies F = EF will be proved later. This is an expected result: if the derivative
of a function vanishes, then the function is constant.
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Using the closability of D gives that ϕ(F ) satisfies (1.2).

Now assume that F i ∈ D1,p for each i. Then there exists a sequence (F i
n)n∈N ⊆ S such

that F i
n → F i in Lp(Ω) and DF i

n → DF i in Lp(Ω;H) for each i. Now ϕ(F n
i ) → ϕ(F i) in

Lp(Ω) as the boundedness of the partial derivatives of ϕ mean that it’s Lipschitz:

E|ϕ(Fn)− ϕ(F )|p ≤ Kp E‖Fn − F‖pRm
≤ CpKp E‖Fn − F‖p`∞

= CpKp E
(

max
i
|F i
n − F i|p

)
→ 0 as n→∞

where the second inequality comes from the equivalence of norms on Rm. The convergence
D(ϕ(Fn)) → D(ϕ(F )) in Lp(Ω;H) also follows from the boundedness of the partial deriva-
tives:

E‖D(ϕ(Fn))−D(ϕ(F ))‖pH ≤ Cp

m∑
i=1

E
∥∥∥∥ ∂ϕ∂xi (Fn)DF i

n −
∂ϕ

∂xi
(F )DF i

∥∥∥∥p
H

≤ CpK
p

m∑
i=1

E
∥∥DF i

n −DF i
∥∥p
H

→ 0 as n→∞

Thus, by the closability of D, D(ϕ(F )) exists and satisfies (1.2).

To extend the chain rule further to Lipschitz functions of D1,2 random variables we’ll need
the following result. This result is useful in its own right to decide whether a given random
variable is in D1,2 or not, see [7, p. 7] for details.

Lemma 1.12. Let (Fn)n∈N be a sequence in D1,2 such that Fn → F in L2(Ω). If

sup
n∈N
‖DFn‖L2(Ω;H) <∞

then F ∈ D1,2 and DFn → DF in the weak topology of L2(Ω;H)

We can now give a final version of the chain rule:

Proposition 1.13 (Chain rule III). Let ϕ : Rm → R be Lipschitz, i.e. there exists a K > 0
such that

|ϕ(x)− ϕ(y)| ≤ K‖x− y‖Rm

for all x, y ∈ Rm. Suppose that F = (F 1, . . . , Fm) is a random vector whose components be-
long to the space D1,2. Then ϕ(F ) ∈ D1,2, and there exists a random vector G = (G1, . . . , Gm)
bounded by K such that

D(ϕ(F )) =
m∑
i=1

GiDF
i
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Remark. Note that this chain rule only applies to random vectors in D1,2(Rm), whereas the
previous chain rule applies to random vectors in D1,p(Rm) for any p ≥ 1.

Proof. (Following idea of [7, p. 8] and [11]) We approximate ϕ by smooth functions. Let ηε
be an approximation to the identity and define ϕn = ϕ ∗ η1/n so that ϕn ∈ C∞(Rm), ϕn → ϕ
uniformly and ‖∇ϕn‖Rm < K for all n. Now the uniform convergence of the ϕn gives that
ϕm(F )→ ϕ(F ) in L2(Ω). From the previous proposition we know that

D(ϕn(F )) =
m∑
i=1

∂ϕn
∂xi

(F )DF i

and so the sequence D(ϕn(F )) is uniformly bounded in L2(Ω;H). We can now apply Lemma
1.12 to get that ϕ(F ) ∈ D1,2 and D(ϕn(F ))→ D(ϕ(F )) in the weak topology of L2(Ω;H).

Now since the sequence (∇ϕn(F ))n∈N is bounded byK, there exists a subsequence (∇ϕnk(F ))k∈N
that converges to some random vector G = (G1, . . . , Gm) in the weak topology of L2(Ω;Rm),
with G bounded by K. Now we can take (weak) limits in the above expression for D(ϕn(F ))
to get that

D(ϕnk(F ))→
m∑
i=1

GiDF
i

weakly in L2(Ω;H). By uniqueness of weak limits, we have that

D(ϕ(F )) =
m∑
i=1

GiDF
i

Example 1.14. A nice application of Lemma 1.12 and the chain rule above is given in [8,
p. 19]: let H = L2([0, 1]) and let W be the Itô integral with respect to some Brownian
motion B on [0, 1]. Define

M = sup
t∈[0,1]

Bt

The claim is that M ∈ D1,2, and DM = 1[0,T ], where T is the (random) time where
B attains its maximum on [0, 1]. The proof involves taking a countable dense subset
(tk)k∈N of [0, 1] and considering an approximation of M ,

Mn = max{Bt1 , . . . , Btn}

Then Mn is a Lipschitz function of D1,2 random variables, and hence by the previous
proposition is in D1,2 for all n ∈ N. The result follows by showing that Mn → M in
L2(Ω) and that DMn is uniformly bounded in L2(Ω;H).
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1.1.3 The white noise case

(Proofs of the statements given in this subsection are found in [6]). We now consider the case
when the underlying Hilbert space is of the form H = L2(T, T , µ) for some σ-finite measure
space without atoms (T, T , µ). The definition of white noise is found in Appendix A.1, and
that of its associated multiple integral is found in Appendix A.2.

Let F ∈ D1,2, then its Malliavin derivative DF is valued in L2(Ω,F ,P) ⊗ L2(T, T , µ). This
space is naturally isomorphic to L2(Ω×T,F⊗T ,P⊗µ), and as such we think of DF as being
valued in L2(Ω × T ). We denote by DtF the evaluation of DF at t ∈ T , so DtF ∈ L2(Ω)
can be thought of as a stochastic process. Higher derivatives are treated similarly, with
Dk
t1,...,tk

F := DkF (·, t1, . . . , tk) ∈ L2(Ω) being thought of as a random field.

Suppose now that F has chaos expansion

F =
∞∑
n=0

In(fn) (1.3)

where the fn are symmetric (and hence the decomposition is unique). It turns out that the
derivative process of F has a very nice representation in terms of this expansion.

Proposition 1.15. Let f ∈ L2(T n) be symmetric. Then In(f) ∈ D1,2 and

DtIn(f) = nIn−1(f(·, t)) (1.4)

By linearity the following result is immediate:

Corollary 1.16. Let F ∈ D1,2 have chaos expansion given by (1.3). Then

DtF =
∞∑
n=1

nIn−1(fn(·, t)) (1.5)

Compare this with how the one-dimensional derivative operator acts on Taylor series!

Example 1.17. Let H = L2([0, 1]) and let W be the Itô integral with respect to some
Brownian motion B, se we are in the white noise case. Let g ∈ H and consider the
function F = exp(W (g)). In Appendix A.2 we calculate the chaos expansion of F :

F = exp

(∫ 1

0

g(s)dBs

)
=
∞∑
n=0

In

(
e‖g‖

2/2 g
⊗n

n!

)

11



We use the above corollary to calculate its derivative at time t:

DtF =
∞∑
n=1

nIn−1

(
e‖g‖

2/2 g
⊗(n−1)g(t)

n!

)
= g(t)

∞∑
n=1

In−1

(
e‖g‖

2/2 g
⊗(n−1)

(n− 1)!

)
= g(t)

∞∑
n=0

In

(
e‖g‖

2/2 g
⊗n

n!

)
= g(t) exp

(∫ 1

0

g(s)dBs

)
This is what would be expected from using the chain rule.

We now see how the derivative operator behaves on certain conditional expectations.

Proposition 1.18. Let F ∈ D1,2 have chaos expansion given by (1.3) and let A ∈ T . Then

E(F |FA) =
∞∑
n=0

In(fn1
⊗n
A )

Proposition 1.19. Let F ∈ D1,2 and A ∈ T with finite measure. Then E(F |FA) ∈ D1,2 and

Dt(E(F |FA)) = E(DtF |FA)1A(t)

Corollary 1.20. Let F ∈ D1,2 and suppose that F is FA measurable for some A ∈ T . Then
DtF = 0 µ⊗ P-a.e. on Ac × Ω

Proof. F is FA measurable, so E(F |FA) = F . Applying the previous proposition gives that
DtF = E(DtF |FA)1A(t) = 0 for a.e. t ∈ Ac, i.e. DtF = 0 µ⊗ P-a.e on Ac × Ω.

Remark. This is called the local property of the derivative operator.

We can now take a moment to look about what the above results are saying in the case where
T = [0, 1] equipped with the Lebesgue measure and W is the usual Itô integral. In this case,
for symmetric f ∈ L2([0, 1]n) the map In is given by the multiple Itô integral:

In(f) = n!

∫ 1

0

∫ tn

0

· · ·
∫ t2

0

f(t1, . . . , tn)dBt1 . . . dBtn

(The factor n! accounts for the fact that we are only integrating over the simplex

{(t1, . . . , tn) | 0 ≤ t1 ≤ t2 ≤ . . . ≤ tn ≤ 1}
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which occupies 1/n! of the volume of the whole cube [0, 1]n, see Appendix A.2). From
Corollary 1.16 we then have that

Dt

(∫ 1

0

∫ tn

0

· · ·
∫ t2

0

f(t1, . . . , tn)dBt1 . . . dBtn

)
= Dt

(
1

n!
In(f)

)
=

1

(n− 1)!
In−1(f(·, t))

=

∫ 1

0

∫ tn−1

0

· · ·
∫ t2

0

f(t1, . . . , t)dBt1 . . . dBtn−1

and so the outer integral is effectively stripped away.

Proposition 1.18 gives that, in the case where A = [0, t] so that FA = Ft,

E
(∫ 1

0

∫ tn

0

· · ·
∫ t2

0

f(t1, . . . , tn)dBt1 . . . dBtn

∣∣∣∣Ft) =

∫ t

0

∫ tn

0

· · ·
∫ t2

0

f(t1, . . . , tn)dBt1 . . . dBtn

This is indeed what would be expected from the martingale property of Itô integrals!

Now suppose that F is an F[s,t]-measurable D1,2 random variable, where [s, t] ⊆ [0, 1]. The
local property says that DtF vanishes on [s, t]c, but this is what is to be expected - perturbing
the paths outside of [s, t] isn’t going to have any effect on the value of F , so its derivative is
going to vanish there.

1.1.4 Diffusion processes

To get a feel for how the derivative operator should act on a diffusion, we first take an
(unrigourous) look at a one-dimensional diffusion driven by a one-dimensional Brownian
motion, following [3, pp. 25-26]. We work in the white noise case H = L2([0, T ]). Let B be
a one-dimensional Brownian motion on [0, T ] with natural filtration (Ft)t∈[0,T ] and consider
the SDE

Xt = X0 +

∫ t

0

a(Xs)dBs +

∫ t

0

b(Xs)ds (1.6)

where a, b : R→ R are regular enough to ensure existence and uniqueness of a strong solution
X = (Xt)t∈[0,T ]. We assume that Xt ∈ D1,∞ for all t ∈ [0, T ], and differentiate both sides of
the SDE. We need to see first however how the derivative operator will act on each of the
integrals.

By the linearity and closedness of D, it can be argued that D can be brought under the
Lebesgue integral to give, for u : [0, T ]× Ω→ R some F·-adapted D1,∞ process and r ≤ t,

Dr

∫ t

0

usds =

∫ t

0

Drusds =

∫ t

r

Drusds

13



by the local property of D. The stochastic integral isn’t as easy. Let u : [0, T ] × Ω → R
be an elementary adapted process of the form ut = F1(s1,s2] where s1 < s2 and F ∈ D1,∞ is
Fs1-measurable. Then for r ≤ t,

Dr

∫ t

0

usdBs = Dr

(∫
[0,r)

F1(s1,s2](s)dBs +

∫
[r,t]

F1(s1,s2](s)dBs

)
= Dr

∫ T

0

F1(s1,s2](s)1[r,s](s)dBs (by local property of D)

= Dr(FW (1(s1,s2]1[r,s])

= (DrF )W (1(s1,s2]1[r,s]) + F1(s1,s2](r) (by the product rule)

=

∫ T

0

1[r,t](s)Dr(F1(s1,s2](s))dBs + ur (by linearity of D)

=

∫ t

r

DrusdBs + ur

By linearity this holds for all adapted D1,∞ elementary processes, and so by approximation
it can be seen to hold for general adapted D1,∞ processes. We can apply this to the SDE
(1.6) to get that

DrXt = a(Xr) +

∫ t

r

Dra(Xs)dBs +

∫ t

r

Drb(Xs)ds

= a(Xr) +

∫ t

r

a′(Xs)DrXsdBs +

∫ t

r

b′(Xs)DrXsds

by the chain rule. Thus, for fixed r the derivative process DrXt satisfies the SDE

dYt = a′(Xt)YtdBt + b′(Xt)Ytdt, Y0 = a(Xr)

for t > r.

Now we proceed to look at the general case rigourously. Let (Ω,F ,P) be the canonical
probability space associated with an m-dimensional Brownian motion B = (B1, . . . , Bm)
on a finite interval [0, T ], thus Ω = C0([0, T ];Rm), P is the Wiener measure and F is the
completion of the σ-algebra generated by B. We let H = L2([0, T ];Rm) and let W be the
Itô integral, i.e. for h ∈ H we have

W (h) =

∫ T

0

〈hs, dBs〉Rm =
m∑
i=1

∫ T

0

hisdB
i
s

In this case, the derivative DF of a random variable F ∈ D1,2 will be an m-dimensional
process (D1

tF, . . . , D
m
t F )t∈[0,T ]. We are interested in the diffusion defined by the SDE

Xt = X0 +
m∑
i=1

∫ t

0

Vi(Xs)dB
i
s +

∫ t

0

V0(Xs)ds (1.7)
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where Vi : Rn → Rn, i = 0, . . . ,m, are measurable vector fields. If we assert that the Vis are
globally Lipschitz then we know that (1.7) has a unique strong solution X = (Xt)t∈[0,T ]. If
we assume that these vetor fields are continuously differentiable also, we get the Malliavin
differentiability of the solution:

Proposition 1.21. Suppose that the vector fields Vi in the SDE (1.7) are continuously dif-
ferentiable and globally Lipschitz. Then for all t ∈ [0, T ] and all i = 1, . . . ,m we have
X i
t ∈ D1,∞, and the derivative process Dj

rXt satisfies the following linear SDE for r ≤ t:

Dj
rXt = Vj(Xr) +

m∑
i=1

∫ t

r

∂Vi(Xs)D
j
rXsdB

i
s +

∫ t

r

∂V0(Xs)D
j
rXsds (1.8)

where ∂Vk denotes the Jacobian matrix of Vk, i.e. (∂Vk)
i
j = ∂jV

i
k .

The proof uses Picard iterations and can be found in [6].

Remarks. (i) If we only assume that the vector fields are Lipschitz then we still have
X i
t ∈ D1,∞, and (1.8) holds with the ∂Vi(Xs) processes replaced by some bounded

adapted processes. The proof of this uses the final version of the chain rule proved
earlier.

(ii) An analogous result holds for diffusions defined by Stratonovich integrals. If X =
(Xt)t∈[0,T ] satisfies the SDE

Xt = X0 +
m∑
j=1

∫ t

0

Vj(Xs) ◦ dBj
s +

∫ t

0

V0(Xs)ds

with the same conditions on the vector fields Vi as in the above proposition, then
X i
t ∈ D1,∞ for all t ∈ [0, T ] and all i = 1, . . . ,m, and for r ≤ t the derivative process

Dj
rXt satisfies the linear SDE

Dj
rXt = Vj(Xr) +

m∑
i=1

∫ t

r

∂Vi(Xs)D
j
rXs ◦ dBi

s +

∫ t

r

∂V0(Xs)D
j
rXsds

We aim to get a simpler expression for the derivative. We follow [7, pp. 47-48]. Let J be the
n× n matrix-valued process defined by

Jt = I +
m∑
k=1

∫ t

0

∂Vk(Xs)JsdB
k
s +

∫
∂V0(Xs)Jsds

This process is the Jacobian of the solution map of the SDE (1.7), see (2.2) later for a
derivation (in the Stratonovich case). We claim that Jt is invertible for all t ∈ [0, T ] and its
inverse is given by the n× n matrix-valued process Z defined by

Zt = I −
m∑
k=1

∫ t

0

Xs∂Vk(Xs)dB
k
s −

∫ t

0

Zs

(
∂V0(Xs)−

m∑
k=1

∂Vk(Xs)∂Vk(Xs)

)
ds
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This is checked by using Itô’s formula to see that ZtJt = JtZt = I. We hence write Zt = J−1
t .

Now let DrXt be the n×m matrix given by (DrXt)
i
j = Dj

rX
i
t . We claim that

DrXt = JtJ
−1
r V (Xr) (1.9)

where V (Xs) is the n × m matrix obtained by concatenating the m vectors Vi(Xs), i =
1, . . . ,m. This is checked by verifying that the process (JtJ

−1
r V (Xr))t>r satisfies the SDE

(1.7).

We use (1.9) to get an expression for the Malliavin matrix of the process X.

Definition 1.22. Let F = (F 1, . . . , Fm) be a random vector whose components belong to
D1,2. Then the Malliavin matrix of F is the random symmetric non-negative definite matrix
M given by

Mi
j = 〈DF i, DF j〉H

So for the process X, we have for fixed t ∈ [0, T ],

(Mi
j)t = 〈DX i

t , DX
j
t 〉H

=
m∑
k=1

∫ T

0

Dk
rX

i
tD

k
rX

j
t dr

=
m∑
k=1

∫ t

0

(DrXt)
i
k((DrXt)

∗)kjdr

using the local property of D, and so

Mt =

∫ t

0

(DrXt)(DrXt)
∗dr (1.10)

Using (1.9) we see that

Mt =

∫ t

0

JtJ
−1
r V (Xr)V

∗(Xr)(J
−1
r )∗J∗t dr

= Jt CtJ∗t

where

Ct =

∫ t

0

J−1
r V (Xr)V

∗(Xr)(J
−1
r )∗dr (1.11)

is the reduced Malliavin matrix. This form can be useful since the integrand is adapted.

We later use Malliavin calculus to look at the problems of existence and regularity of a density
with respect to the Lebesgue measure of the law of a diffusion process.
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1.2 The divergence operator and Skorokhod integral

In Appendix A.1, in the case where the isonormal Gaussian process is given by the Paley-
Wiener integral, a prototype for a ’divergence operator’ is introduced for certain constant
vector fields. It’s characterised by the integration by parts formula, in which it is viewed
as the adjoint operator of the derivative operator analogously to the Euclidean divergence
operator. We use this idea to define it in the more general case, that is for possibly non-
deterministic vector fields and general isonormal Gaussian processes.

1.2.1 The divergence operator

Definition 1.23. : The divergence operator δ is an unbounded operator on L2(Ω;H) with
values in L2(Ω) whose domain is given by

Dom δ := {u ∈ L2(Ω;H) | |E〈DF, u〉H | ≤ Cu‖F‖1,2 for all F ∈ D1,2}

If u ∈ Dom δ, then δ(u) is the element of L2(Ω) characterised by the duality relationship

E(Fδ(u)) = E〈DF, u〉H (1.12)

Remark. Notes that (1.12) can be rewritten as

〈F, δ(u)〉L2(Ω) = 〈DF, u〉L2(Ω;H)

which makes it clear that δ = D∗, the adjoint of the derivative operator.

Proposition 1.24. (Properties of the divergence operator)

(i) For any u ∈ Dom δ, E(δ(u)) = 0

(ii) δ is a linear and closed operator on Dom δ

(iii) Let u ∈ SH be an H-valued smooth cylindrical random variable of the form u =∑n
j=1 Fjhj where Fj ∈ S and hj ∈ H. Then u ∈ Dom δ and

δ(u) =
n∑
j=1

FjW (hj)−
n∑
j=1

〈DFj, hj〉H

In particular, δ(h) = W (h) for h ∈ H.

(iv) Let u ∈ SH and h ∈ H, then4

Dh(δ(u)) = δ(Dhu) + 〈h, u〉H
4Recall that we can identify H ⊗H with LHS(H,H), the space of Hilbert-Schmidt operators from H to

itself. Thus, as u =
∑n

j=1 Fjhj is H-valued and hence Du =
∑n

j=1 hj ⊗DFj is H ⊗H-valued, we define Dhu

as the H valued element (Du)(h) :=
∑n

j=1 DFj(h)hj =
∑n

j=1 DhFj · hj
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(v) Let u, v ∈ SH and let (ei)i∈N be a complete orthonormal system in H, then

E(δ(u)δ(v)) = E〈u, v〉H + E

[
∞∑

i,j=1

Dej〈u, ei〉HDei〈v, ej〉H

]
= E〈u, v, 〉H + ETr(DuDv)

(vi) Let u ∈ SH and F ∈ S, then

δ(Fu) = Fδ(u)− 〈DF, u〉H

Proofs of the above properties are found in [7] and [8].

Remark. Taking u = v in part (v) of the above proposition yields

‖δ(u)‖2
L2(Ω) ≤ ‖u‖2

L2(Ω;H) + ‖Du‖2
L2(Ω;H⊗H)

for u ∈ SH . The right hand side of this inequality is precisely the D1,2(H) norm of u, and so
by an approximation argument we see that D1,2(H) ⊆ Dom δ

1.2.2 The Skorokhod integral

We now look at the divergence operator in a less abstract case: the white noise case. In
this case the divegence operator is called the Skorokhod integral. Let H = L2(T, T , µ) with
(T, T , µ) atomless and σ-finite as usual. For u ∈ dom δ we often use the notation

δ(u) =

∫
T

utδBt

which makes it clear the the divergence should be viewed as a sort of stochastic integral. We
will soon see that it is in fact a strict extension of the Itô integral to non-adapted integrands,
i.e. it coincides with the Itô integral when the integrand is adapted.

The results from Proposition 1.24 immediately apply in this case, for example part (v) of the
proposition can now be written

E
(∫

T

utδBt

∫
T

vtδBt

)
= E

(∫
T

utvtdµ(t)

)
+ E

(∫
T

∫
T

(Dsut)(Dtvs)dµ(s)dµ(t)

)
This is know as the Shigekawa-Nualart-Pardoux identity, and can be seen to be an extension
of the Itô isometry.

We now have chaos expansions at our disposal, and so we give the analogous result to
Corollary 1.16 for the Skorokhod integral, see [11] for a proof.

Proposition 1.25. Suppose that u ∈ L2(Ω× T ) has chaos expansion

u(t) =
∞∑
n=0

In(fn(·, t))
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for a sequence of functions fn ∈ L2(T n+1) which are symmetric in the first n variables. Then

u ∈ dom δ if and only if
∑∞

n=0 In+1(f̃n) converges in L2(Ω), and in this case

δ(u) =
∞∑
n=0

In+1(f̃n)

Example 1.26. We calculate a couple of Skorokhod integrals using the above proposition,
working in the case where T = [0, 1] and W is the Itô integral with respect to some
Brownian motion B.

(i) We again look at the random variable F = exp(W (g)) for some g ∈ H. Recall this had
chaos expansion

F = exp

(∫ 1

0

g(t)dBt

)
=
∞∑
n=0

In

(
e‖g‖

2/2 g
⊗n

n!

)
Note that F is not Ft measurable for any t < 1 so its Itô integral doesn’t make sense.
Since there is no time dependence, we don’t need to worry about the symmetrisation
of the integral kernels, and we just have∫ 1

0

exp

(∫ 1

0

g(t)dBt

)
δBt =

∞∑
n=0

In+1

(
e‖g‖

2/2 g
⊗n

n!

)
In particular, setting g = 1 yields∫ 1

0

eB1δBt =
∞∑
n=0

e1/2

n!
In+1(1)

=
√
e
∞∑
n=0

1

n!
Hn+1(B1)

where Hn+1 is the (n + 1)th Hermite polynomial. Note that even though there is no
time dependence, we can’t simply bring the integrand out of the integral like a constant.

(ii) Now we try a (non-adapted) process, (B1−t)t∈[0,1]. Its chaos expansion contains just one
term:

B1−t =

∫ 1

0

1[0,1−t](s)dBs = I1(1[0,1−t])

Thus we have f1(s, t) = 1[0,1−t](s) and fn = 0 for all n 6= 1. Symmetrising this we get

f̃1(s, t) =
1

2

(
1[0,1−t](s) + 1[0,1−s](t)

)
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and so ∫ 1

0

B1−tdBt = I2(f̃1)

=

∫ 1

0

∫ t

0

1[0,1−t](s)dBsdBt +

∫ 1

0

∫ t

0

1[0,1−s](t)dBsdBt

= 2

∫ 1

0

Bt∧(1−t)dBt

= 2

∫ 1
2

0

BtdBt + 2

∫ 1

1
2

B1−tdBt

= B2
1
2
− 1

2
+ 2

∫ 1

1
2

B1−tdBt

We now work in the case where H = L2([0, T ]) and W is given by the Itô integral with
respect to some Brownian motion B with filtration (Ft)t∈[0,T ]. Denote by L2

a([0, T ]) the space

of progressively measurable5 stochastic processes u such that E
∫ T

0
u2
tdt <∞. We finish this

section with the following result:

Proposition 1.27. L2
a([0, T ]) ⊆ Dom δ, and the Skorokhod integral of u ∈ L2

a([0, T ]) coin-
cides with its Itô integral, i.e. ∫ T

0

utδBt =

∫ T

0

utdBt

for all u ∈ L2
a([0, T ]).

Proof. (Following [7, pp. 16-17]) We prove it first for elementary processes. Let u ∈ L2
a([0, T ])

be given by

ut =
n−1∑
i=0

Fi1(ti,ti+1](t)

where 0 = t0 < . . . < tn ≤ T and each Fi is square integrable and Fti-measurable. Let
(F n

i )n∈N be a sequence of smooth cylindrical Fti-measurable random variables converging to
Fi in L2(Ω). By Proposition 1.24(vi) we have∫ T

0

F n
i 1(ti,ti+1](t)δBt = F n

i W ((ti, ti+1])− 〈DF n
i ,1(ti,ti+1]〉H

= F n
i (Wti+1

−Wti)−
∫ ti+1

ti

DtF
n
i dt

= F n
i (Wti+1

−Wti)

5We’re dealing only with sample continuous processes so ‘progressively measurable’ and ‘adapted’ are
interchangable
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by the local property of D. Now F n
i 1(ti,ti+1] → Fi1(ti,ti+1] in L2(Ω;H) and F n

i (Wti+1
−Wti)→

Fi(Wti+1
−Wti) in L2(Ω). Since δ is closed we therefore have that∫ T

0

utδBt =
n−1∑
i=0

Fi(Wti+1
−Wti)

=

∫ T

0

utdBt

The result is hence true for elementary processes. These processes are dense in L2
a([0, T ]), so

for general elements of L2
a([0, T ]) we can approximate and use the closedness of δ to get the

result.

1.3 Clark-Ocone theorem

Throughout this section we work in the white noise case H = L2([0, T ]). Let B be a one-
dimensional Brownian motion on [0, T ] and let (Ft)t∈[0,T ] be the completion of the filtration
generated by B. Again denote by L2

a([0, T ]) the space of progressively measurable stochastic

processes u such that E
∫ T

0
u2
tdt < ∞. By the martingale representation theorem, for any

FT -measurable square integrable random variable F there is the decomposition

F = EF +

∫ T

0

ϕt dBt (1.13)

for some almost surely unique process ϕ ∈ L2
a([0, T ]). However, we do not know what the

process ϕ is, we just know that it exists. Fortunately, if F ∈ D1,2 we can in fact get an
explicit formula for ϕ in terms of the Malliavin derivative of F :

Theorem 1.28 (Clark-Ocone). Let F ∈ D1,2 be FT -measurable. Then

F = E(F ) +

∫ T

0

E(DtF |Ft)dBt (1.14)

Remark. The above theorem also holds true for F ∈ D1,2(V ) for some separable Hilbert space
V , where the integral is with respect to a cylindrical Brownian motion on some separable
Hilbert space G. The proof is no more complicated than the one presented below, but since
we haven’t covered all of the requisite details we stick to the real-valued case. See [1] for
details.

Proof. This may be proved using chaos expansions, see for example [9, p. 44]. We give a
more direct proof, following [7, pp. 17-18]. F is square integrable and FT measurable, so
we know that there exists a process ϕ ∈ L2

a([0, T ]) such that (1.13) holds. Let u be any
element of L2

a([0, T ]), so that its Itô integral coincides with its Skorokhod integral. By the
Itô isometry, we have

E(δ(u)F ) =

∫ T

0

E(utϕt)dt (1.15)
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since the expectation of an Itô integral vanishes. On the other hand, the duality relationship
(1.12) for the Skorokhod integral gives

E(δ(u)F ) = E
(∫ T

0

utDtFdt

)
=

∫ T

0

E(utE(DtF |Ft))dt (1.16)

since u is adapted. Now (1.15) and (1.16) together tell us that

E〈u, ϕ〉H = E〈u,E(D.F |F.)〉H

for every u ∈ L2
a([0, T ]). It follows that ϕt = E(DtF |Ft) almost surely.

Corollary 1.29. If F ∈ D1,2 has DF = 0, then F = EF .

Example 1.30. If (Mt)t∈[0,T ] is a uniformly integrable martingale, then we can apply Clark-
Ocone to MT and take conditional expectations to obtain

Mt = EM0 +

∫ t

0

E(DsMT |Fs)dBs

Consider for example the exponential martingale Mt = eBt−
1
2
t2 . Then by the chain rule

we have

DtMT = eBT−
1
2
T 2

1[0,T ](t)

= eBT−
1
2
T 2

= MT

Thus we have

Mt = 1 +

∫ t

0

MsdBs

which is what would be expected.

We can also use the Clark-Ocone theorem the other way around: if we don’t know what DtF
is, we may still be able to find E(DtF |Ft).

Example 1.31. (Following an exercise from [9]) Let X be the Itô diffusion given by

dXt = σ(Xt)dBt + b(Xt)dt, X0 = x ∈ R

where σ : R→ R and b : R→ R are Lipschitz functions of at most linear growth. This
ensures that there is a unique strong solution Xt = Xx

t , t ∈ [0, T ]. Suppose further that
there exists δ > 0 such that |σ(x)| ≥ δ for all x ∈ R, and let f ∈ C2(R) be such that
E|f(Xx

t )| <∞ for all x, t. Define

u(t, x) = Ptf(x) = Ef(Xx
t )
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By a standard result in stochastic analysis, u ∈ C1,2(R+ × R) and u satisfies the
Kolmogorov backward equation:

∂u

∂t
=

1

2
σ(x)2∂

2u

∂x2
+ b(x)

∂u

∂x
(1.17)

We are interested in the random variable f(XT ). Applying Itô’s formula to the process
g(t,Xt) where g(t, x) = PT−tf(x) and using (1.17) we obtain

f(XT ) = PTf(x) +

∫ T

0

σ(Xt)
∂

∂x

∣∣∣∣
x=Xt

PT−tf(x) dBt

So by the Clark-Ocone theorem, we see that

E(Dtf(XT )|Ft) = σ(Xt)
∂

∂x

∣∣∣∣
x=Xt

PT−tf(x)

This can be made more explicit in simple cases. Suppose now that Xt is a geometric
Brownian motion, so that σ(x) = αx and b(x) = ρx for some constants α, ρ, and let
f(x) = x. Then Ptf(x) = EXx

t satisfies the integral equation

EXx
t = x+

∫ t

0

ρEXx
s ds

and so EXx
t = xeρt. We hence have that

E(DtXT |Ft) = αXte
ρ(T−t)

= αx exp

(
ρT − 1

2
α2t+ αBt

)
using the explicit formula for the solution Xt.

An nice application of the Clark-Ocone theorem is in the proof of Sobolev inequalities. Since
these are not directly related to the project, the statements and proofs can be found in
Appendix A.3.

2 Applications

2.1 Absolute continuity of probability laws

(Proofs of statements in this section can be found in [6, §2]). Malliavin calculus can be
used to determine whether the law of a random variable admits a density with respect to the
Lebesgue measure. This is done by analysing the Malliavin matrixM of the random variable,
defined in the previous chapter. As usual, we let W be an isonormal Gaussian process with
associated real separable Hilbert space H, defined on a complete probability space (Ω,F ,P)
with F generated by W .

We state the following theorem without proof concerning the density of the law of F .
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Theorem 2.1. Let F = (F 1, . . . , Fm) be a random vector satisfying

(i) F i ∈ D1,2 for all i = 1, . . . ,m

(ii) The Malliavin matrix M of F is invertible almost surely

Then the law of F is absolutely continuous with respect to the Lebesgue measure.

When F ∈ D1,2 is a one dimensional random variable, we may be able to get a formula for
the density of the law of F :

Proposition 2.2. Let F ∈ D1,2 be such that DF/‖DF‖2
H ∈ Dom δ. Then the law of F has

a continuous and bounded density given by

p(x) = E
(

1{F>x}δ

(
DF

‖DF‖2
H

))
Theorem 2.1 gave sufficient conditions for the existence of a density, but didn’t tell us anything
about its regularity. If we have stronger conditions on the random vector F , we can deduce
that the density will be smooth.

Theorem 2.3. Let F = (F 1, . . . , Fm) be a random vector satisfying

(i) F i ∈ D∞ for all i = 1, . . . ,m

(ii) The Malliavin matrix M of F satisfies E(detM)−p <∞ for all p > 1

Then the law of F admits an infinitely differentiable density with respect to the Lebesgue
measure.

Remarks. (i) A random vector satisfying the hypotheses of the above theorem is said to
be non-degenerate.

(ii) IfM is invertible, a sufficient condition for condition (ii) to hold above is that E‖M−1‖p <
∞ for all p > 1. To see this, note that M is a symmetric positive definite matrix and
hence so is its inverse. Let (λi)

m
i=1 be the eigenvalues ofM, which are all postive. Then

it holds that

‖M−1‖ = max
i

1

λi

=
(

min
i
λi

)−1

Now since detM = Πm
i=1λi, we have

detM≥
(

min
i
λi

)m
and therefore

E(detM)−p/m ≤ E‖M−1‖p <∞
for all p > 1, which gives the result. This condition will be used in the following section.
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2.2 Hörmander’s theorem

An important application of the Malliavin calculus is proving the existence and smoothness
properties of the density of the law of solutions of certain hypoelliptic SDEs. We follow
Hairer’s paper [5] and fill in some details, especially those of Lemma 2.9 and Theorem 2.10.
As in section 1.1.4, let Ω = C0([0, 1];Rm), P be the Wiener measure and F be the completion
of the σ-algebra generated by the Brownian motion Bt(ω) = ω(t). Let H = L2([0, 1];Rm).
We will be interested in SDEs of the form

dXt = V0(Xt)dt+
m∑
i=1

Vi(Xt) ◦ dBi
t (2.1)

where each Vi : Rn → Rn is a smooth vector field. We will want to impose further conditions
on the vector fields in order to ensure the existence and smoothness of the densities. Recall
that the Lie Bracket of two smooth vector fields X, Y : Rn → Rn is the vector field [X, Y ] :
Rn → Rn given by

[X, Y ](x) = X(Y (x))− Y (X(x))

for x ∈ Rn. Because of the lack of curvature in Rn, we may rewrite this as

[X, Y ](x) = (∇XY )(x)− (∇YX)(x)

= ∂X(x) · Y (x)− ∂Y (x) ·X(x)

where ∂X, ∂Y are the Jacobian matrices of X, Y respectively. With this in mind we introduce
the following condition.

Definition 2.4 (Parabolic Hörmander condition). Given an SDE (2.1), define the collections
of vector fields Vk by

V0 = {Vi | i > 0}, Vk+1 = Vk ∪ {[U, Vj] |U ∈ Vk, j ≥ 0}

For x ∈ Rn, define also the vector spaces

Vk(x) = span{V (x) |V ∈ Vk}

The SDE (2.1) is said to satisfy the parabolic Hörmander condition if for every x ∈ Rn,

∞⋃
k=1

Vk(x) = Rn

Hörmander’s theorem basically states that if the parabolic Hörmander condition is satisfied
by the SDE (2.1), along with some other assumptions to be defined later, then the law of the
Xt has a smooth density with respect to the Lebesgue measure.

Let Φs,t : Rn → Rn be the two-parameter family of solution maps of the SDE (2.1), so
Xt = Φs,t(Xs) for s ≤ t and Φt,u ◦ Φs,t = Φs,u. Denote also Φt = Φ0,t. Now for a given
initial condition X0 denote by Js,t the Jacobian of Φs,t evaluated at Xs. By the chain rule
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we have that Js,u = Jt,uJs,t. Finally, denote by J
(k)
s,t the kth derivative of Φs,t evaluated at Xs.

We can obtain a SDE for Jt := J0,t by differentiating (2.1) with respect to X0:

dΦt(X0) = V0(Φt(X0))dt+
m∑
i=1

Vi(Φt(X0)) ◦ dBi
t, Φ0(X0) = X0

and so

dJt(X0) = ∂V0(Φt(X0))∂Φt(X0)dt+
m∑
i=1

∂Vi(Φt(X0))∂Φt(X0) ◦ dBi
t

= ∂V0(Xt)Jtdt+
m∑
i=1

∂Vi(Xt)Jt ◦ dBi
t, J0 = I (2.2)

where ∂F is used to denote the Jacobian of a vector field F . Js,t satisfies this same equation,
but with initial condition Js,s = I.

From the previous subsection, we know that

Dj
rXt = Vj(Xr) +

∫ t

r

∂V0(Xs)D
j
rXsds+

m∑
i=1

∫ r

t

∂Vi(Xs)D
j
rXs ◦ dBi

s

where Dj
rXt := (DrXt)

j. This is just the integral form of (2.2) with a different initial
condition, hence for s < t we have

Dj
sXt = Js,tVj(Xs) (2.3)

Because Jt = Js,tJs we get that Js,t = JtJ
−1
s , where J−1

t can be found by solving the SDE

dJ−1
t = −J−1

t ∂V0(Xt)dt−
m∑
i=1

J−1
t ∂Vi(Xt) ◦ dBi

t (2.4)

As in the previous chapter, this can be checked by verifying that JtJ
−1
t = J−1

t Jt = I using
Itô’s formula.

From now on the following assumptions will be in place.

Assumption 2.5. The vector fields Vi are C∞ and all of their derivatives grow at most
polynomially at infinity. Furthermore, they are such that the solutions to (2.1), (2.2) and
(2.4) satisfy

E
(

sup
t≤T
|Xt|p

)
<∞, E

(
sup
t≤T
|J (k)
t |p

)
<∞, E

(
sup
t≤T
|J−1
t |p

)
<∞

for every initial condition x0 ∈ Rn and every T, k, p > 0
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Remarks. (i) A sufficient condition for the above assumption to hold is that the Vi are
bounded with bounded derivatives of all orders.

(ii) Under the above assumption, Proposition 1.21 tells us that the solution Xt of SDE (2.1)
has X i

t ∈ D1,∞ for all t and all i, and provides us with an SDE for Dj
sXt. The coefficients

of this SDE again satisy the hypothesis of Proposition 1.21, and so Dj
sXt ∈ D1,∞, or

equivalently Xt ∈ D2,∞. Proceeding inductively we see that Xt ∈ Dk,∞ for all k, and so
Xt ∈ D∞.

Before moving on, we introduce the useful notion of ‘almost truth’.

Definition 2.6. Let X = (Xε)ε∈(0,1], Y = (Yε)ε∈(0,1] be families of events depending on some
parameter ε > 0.

(i) X is said to be almost true if for every p > 0 there exists a constant Cp such that
P(Xε) ≥ 1− Cpεp for all ε ∈ (0, 1]

(ii) X is said to be almost false if for every p > 0 there exists a constant Cp such that
P(Xε) ≤ Cpε

p for all ε ∈ (0, 1]

(iii) We say X almost implies Y and write X ⇒ε Y if X \ Y is almost false.

Lemma 2.7 (Norris). Let B be an m-dimensional Brownian motion and let K and L be
R- and Rm-valued adapted processes respectively such that, for α = 1

3
, one has E(‖K‖α +

‖L‖α)p <∞ for every p. Let Z be the process defined by

Zt = Z0 +

∫ t

0

Ksds+
m∑
k=1

∫ t

0

LksdB
k
s (2.5)

Then there exists a universal constant r ∈ (0, 1) such that one has

{‖Z‖∞ < ε} ⇒ε {‖K‖∞ < εr} and {‖L‖∞ < εr}

Lemma 2.8. Given a smooth vector field F on Rn and a unit vector η ∈ Rn, define the
process ZF by

ZF (t) = 〈η, J−1
t F (Xt)〉Rn

Then ZF satisfies the SDE

dZF (t) = Z[F,V0](t)dt+
m∑
k=1

Z[F,Vk](t) ◦ dBk
t (2.6)

In addition, we have that

〈η, C1η〉 =
m∑
k=1

∫ 1

0

|ZVk(t)|2dt ≥
m∑
k=1

(∫ 1

0

|ZVk(t)|dt
)2

(2.7)

where C1 is the reduced Malliavin matrix at time 1.
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Proof. (This statement of this lemma was given without proof) Write Qt for J−1
t and let

Qi
j(t) be its component processes. By (2.4) these satisfy the following SDE6

dQi
j(t) = −Qi

k(t)(∂V0(X(t)))kjdt−Qi
k(t)(∂Vα(X(t)))kj ◦ dBα(t)

= −Qi
k(t)∂jV

k
0 (X(t))dt−Qi

k(t)∂jV
k
α (X(t)) ◦ dBα(t)

We also have

dX i(t) = V i
0 (X(t))dt+ V i

α(X(t)) ◦ dBα(t)

Now

ZF (t) = 〈η, J−1
t F (Xt)〉Rn

=
n∑
i=1

ηi(Q(t)F (X(t))i

=
n∑
i=1

ηiQi
j(t)F

j(X(t))

Applying Itô’s formula gives, for each i = 1, . . . , n,

d(Qi
j(t)F

j(X(t))) = Qi
j(t) ◦ dF j(X(t)) + F j(X(t)) ◦ dQi

j(t)

= Qi
j(t)∂kF

j(X(t)) ◦ dXk(t)

+ F j(X(t))(−Qi
k(t)∂jV

k
0 (X(t))dt−Qi

k(t)∂jV
k
α (X(t)) ◦ dBα(t))

= Qi
j(t)∂kF

j(X(t))V k
0 (X(t))dt+Qi

j(t)∂kF
j(X(t))V k

α (X(t)) ◦ dBα(t)

−Qi
k(t)F

j(X(t))∂jV
k

0 (X(t))dt−Qi
k(t)F

j(X(t))∂jV
k
α (X(t)) ◦ dBα(t))

= {Qi
j(t)∂kF

j(X(t))V k
0 (X(t))−Qi

k(t)F
j(X(t))∂jV

k
0 (X(t))}dt

+ {Qi
j(t)∂kF

j(X(t))V k
α (X(t))−Qi

k(t)F
j(X(t))∂jV

k
α (X(t))} ◦ dBα(t)

But, for each α = 0, . . . ,m,

Z[F,Vα](t) = 〈η,Q(t)(∂F · Vα − ∂Vα · F )(X(t))〉Rn

=
n∑
i=1

ηiQi
j(t)((∂F )jkV

k
α − (∂Vα)jkF

k)(X(t))

=
n∑
i=1

ηi(Qi
j(t)∂kF

j(X(t))V k
α (X(t))−Qi

k(t)F
j(X(t))∂jV

k
α (X(t)))

Combining the above gives that ZF satisfies (2.6).

6Einstein’s summation convention is in use, and we are using that Roman indices are to be summed from
1 to n and Greek indices are to be summed to 0 to m
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Now we need to prove (2.7). The inequality follows straight from Jensen’s inequality after
noting that the interval [0, 1] equipped with the Lebesgue measure is a probability space. To
prove the equality, just note that both sides are equal to

m∑
α=1

n∑
i,l=1

∫ 1

0

ηiQi
j(s)V

j
α (Xs)V

k
α (Xs)Q

l
k(s)η

lds

Remark. With a little more work we obtain the Itô form of (2.6):

dZF (t) =

(
Z[F,V0](t) +

1

2

m∑
k=1

Z[[F,Vk],Vk](t)

)
dt+

m∑
k=1

Z[F,Vk](t)dB
k
t (2.8)

Theorem 2.9. Consider the SDE (2.1) and assume that Assumption 2.5 holds. If (2.1)
satisfies the parabolic Hörmander condition, then for every initial condition X0 ∈ Rn we
have the bound

sup
‖η‖=1

P(〈η, C1η〉 < ε) ≤ Cpε
p

for suitable constants Cp and all p ≥ 1.

Proof. Fix an initial condition X0 ∈ Rn and a unit vector η ∈ Rn. The result is true if

{〈η, C1η〉 < ε} ⇒ε ∅ (2.9)

i.e. that the statement 〈η, C1η〉 < ε is ’almost false’. Given a smooth vector field F on Rn,
define ZF as in the previous lemma. Then the conclusion of the lemma holds. We want to use
Norris’ lemma on ZF as given by (2.8), so we need that the coefficients satisfy the hypothesis.
Let G = [F, V0] + 1

2

∑m
k=1[[F, Vk], Vk], then we need to show that E‖Z[F,Vk]‖p1/3 < ∞ and

E‖ZG‖p1/3 <∞. This is true provided F grows at most polynomially fast, see [5]. Therefore
for each k = 1, . . . ,m, we have the almost implication

{‖ZF‖∞ < ε} ⇒ε {‖Z[F,Vk]‖∞ < εr} and {‖ZG‖∞ < εr}

Applying Norris’ lemma to ZG tells us that for each k, l = 0, . . . ,m

{‖ZG‖∞ < εr} ⇒ε {‖Z[[F,Vk],Vl]‖∞ < (εr)r}

and so
{‖ZF‖∞ < ε} ⇒ε {‖Z[[F,Vk],Vl]‖∞ < εr

2}

Therefore we have for each k = 0, . . . ,m

{‖ZF‖∞ < ε} ⇒ε {‖Z[F,Vk]‖∞ < εr
2} (2.10)

Now by (2.7) it can be shown that

{〈η, C1η〉 < ε} ⇒ε {‖ZVk‖ < ε1/5}
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Combining this with (2.10) we get that for each k = 1, . . . ,m, l = 0, . . . ,m

{〈η, C1η〉 < ε} ⇒ε {‖Z[Vk,Vl]‖∞ < ε1/25}

Iterating this gives that for every k > 0 there exists a qk > 0 such that

{〈η, C1η〉 < ε} ⇒ε

⋂
V ∈Vk

{‖ZV ‖∞ < εqk}

where Vk are the collections of Hörmander vector fields defined earlier. By our assumptions
on these collections, for every x ∈ Rn there exists a k > 0 such that Vk(x) = Rn. Since
ZV (0) = 〈η, V (X0)〉 it follows that the intersection above is empty for large enough k, and
so the result is proved.

We now just need one final lemma, whose proof is found in [5].

Lemma 2.10. Let M be a symmetric positive definite n× n matrix-valued random variable
such that E‖M‖p <∞ for every p ≥ 1 and such that, for every p ≥ 1 there exists a Cp such
that

sup
‖η‖=1

P(〈η,Mη〉 < ε) ≤ Cpε
p (2.11)

for every ε ≤ 1. Then E‖M−1‖p <∞ for every p ≥ 1.

Combining the above two results, we get that the inverse of the reduced Malliavin matrix
(and hence the inverse of the Malliavin matrix itself) has bounded moments of all orders,
provided that Assumption 2.5 and the parabolic Hörmander condition are satisfied. We are
hence finally ready to prove a version of Hörmander’s theorem:

Theorem 2.11 (Hörmander). Let X0 ∈ Rn and let Xt be a solution to the SDE (2.1). If
(2.1) satisfies the parabolic Hörmander condition and Assumption 2.5 is satisfied, then the
law of Xt has a smooth density with respect to the Lebesgue measure.

Proof. Recall (1.10) from the previous chapter: the Malliavin matrix of Xt is given by

Mt =

∫ t

0

JtJ
−1
s V (Xs)V

∗(Xs)(J
−1
s )∗J∗t ds

=

∫ t

0

Js,tV (Xs)V
∗(Xs)J

∗
s,tds

where V (Xs) is the n × m matrix obtained by concatenating the m vectors Vi(Xs), i =
1, . . . ,m. By the (2.3) coupled with the remark following Assumption 2.5, we have that
Xt ∈ D∞ for all t. From the above we know that E‖M−1

t ‖p <∞ for all p > 1, and so by the
remark following Theorem 2.3 the theorem is proved.
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3 Law of the Ornstein-Uhlenbeck process

The aim of this chapter is to use the tools of Malliavin calculus to analyse the law of the
Ornstein-Uhlenbeck (OU) process. Let i : H → Ω be classical Wiener space with the
Wiener measure P, so that H = L2,1

0 ([0, 1]) and Ω = C0([0, 1]) . Take a Brownian motion
B : [0, 1] × Ω → R on Ω, so that Bt(ω) = ω(t) for all ω ∈ Ω, t ≥ 0. The OU process
Xt : Ω→ R is the solution to the SDE

dXt = dBt −Xtdt (3.1)

which is given by

Xt = e−tX0 +

∫ t

0

es−tdBs (3.2)

where we assume that X0 is constant.

Before we proceed we first review some basic facts about Gaussian measures - a more detailed
treatment can be found in Appendix A.1. Recall the definition of a Gaussian measure:

Definition 3.1. Let (Ω,F ,P) be a probability space, and let λ be the Lebesgue measure on
R. A (centred) Gaussian measure on R is a Borel measure γ on R such that either there
exists α > 0 such that

γ(A) = (2πα)−1/2

∫
A

e−|x|
2/2αdλ(x)

or γ = δ0, the degenerate case.

If E is a separable Banach space, a Borel measure γ on E is a (centred) Gaussian mea-
sure on E if `∗γ is a (centred) Gaussian measure on R for all ` ∈ E∗

Example 3.2. The Wiener measure is a Gaussian measure. The law of the OU process
defined above is a Gaussian measure as it is the pushforward of the Wiener measure by the
linear map X·.

To each Gaussian measure µ on a separable Banach space E we can associate a Hilbert
subspace Hµ, called the Cameron-Martin space or reproducing kernel Hilbert space. This
space comprises of the directions in which we can translate µ whilst preserving null sets. It
can also be thought of the directions in which we can differentiate functions on Ω.

Definition 3.3. Let µ be a Gaussian measure on a separable Banach space E. We define
the covariance map R : E∗ → E by

R(`) :=

∫
E

`(x)xdµ(x)

where the integral is in the Bochner sense. The reproducing kernel Hilbert space (RKHS) Hµ

of µ is the completion of the image of the covariance map with respect to the inner product

〈R(`1), R(`2)〉µ :=

∫
E

`1(x)`2(x)dµ(x)
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Remark. It can be checked that Hµ is still a subset of E after the completion procedure. The
inclusion i : Hµ → E gives an abstract Wiener space, see Appendix A.1.

We look at how to construct the RKHS for the law of a real-valued Gaussian process. Let
ξ = (ξt)t∈[0,1] be a centred real-valued sample continuous Gaussian process and let γ(s, t) =
Eξsξt be its covariance function. Let µ be the law of ξ, which is a Gaussian measure on
E = C([0, 1]). We have that

(R`)(t) =

∫
E

`(x)x(t)dµ(x)

We identify E∗ with the space of signed measures on [0, 1] by the relation

`(x) =

∫ 1

0

x(s)dα`(s)

for some signed measure α`. By the Riesz representation theorem for linear functionals on
Cc([0, 1]) = C([0, 1]), there is a unique function of bounded variation f such that α`([s, t]) =
f(t)−f(s) for all intervals [s, t]. The integral can hence be interpreted as a Lebesgue-Stieltjes
integral, and by abuse of notation we write

`(x) =

∫ 1

0

x(s)d`(s)

since the function f above is unique. We then have the integration by parts formula for
Lebesgue-Stieltjes integrals7:∫ 1

0

x(s)d`(x) = x(1)`(1)− x(0)`(0)−
∫ 1

0

`(s)dx(s)

Now using this representation along with Fubini’s theorem, we have

(R`)(t) =

∫
E

(∫ 1

0

x(s)d`(s)

)
x(t)dµ(x)

=

∫ 1

0

(∫
E

x(s)x(t)dµ(x)

)
d`(s)

=

∫ 1

0

γ(s, t)d`(s) (3.3)

Assuming that γ is almost everywhere differentiable, we can use integration by parts to get
this in terms of a Lebesgue integral:

(R`)(t) = γ(1, t)`(1)− γ(0, t)`(0)−
∫ 1

0

`(s)dγ(s, t)

= γ(1, t)`(1)− γ(0, t)`(0)−
∫ 1

0

`(s)
∂γ

∂s
(s, t)ds (3.4)

7When we write `(s) for ` ∈ E∗, s ∈ R, we mean f(s) where f is the corresponding unique bounded
variation function defined as above
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We use (3.3) to get an expression for the inner product on Hµ. Let `1, `2 ∈ E∗, then

〈R`1, R`2〉µ :=

∫
E

`1(x)`2(x)dµ(x)

= `2

(∫
E

`1(x)xdµ(x)

)
(since `2 is bounded and linear)

= `2

(∫ 1

0

γ(s, ·)d`1(s)

)
=

∫ 1

0

∫ 1

0

γ(s, t)d`1(s)d`2(s) (3.5)

Again if γ is differentiable almost everywhere we can use integration by parts to get this in
terms of Lebesgue integrals.

Example 3.4. We check that in the case where (ξt)t∈[0,1] is the Wiener process, we recover

the classical Cameron-Martin space L2,1
0 ([0, 1]), where

L2,1
0 ([0, 1]) =

{
σ : [0, T ]→ Rm

∣∣∣∣ ∃ϕ ∈ L2([0, T ];Rm) such that σ(t) =

∫ t

0

ϕ(s)ds

}
with inner product

〈g, h〉L2,1
0

=

∫ 1

0

ġ(t)ḣ(t)dt

Let ` ∈ E∗, and recall that the covariance of ξ is γ(s, t) = s ∧ t. Then we have

γ(1, t) = t, γ(0, t) = 0,
∂γ

∂s
(s, t) =

{
1 s < t
0 s > t

and so by (3.4) we have

(R`)(t) = t`(1)−
∫ t

0

`(s)ds

=

∫ t

0

(`(1)− `(s))ds

=

∫ t

0

`([s, 1])ds

This tells us that R` is differentiable with (R`)′(t) = `([t, 1]). We see that the inner
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product is given by

〈R`1, R`2〉µ =

∫ 1

0

∫ 1

0

γ(s, t)d`1(s)d`2(t)

=

∫ 1

0

∫ 1

0

(s ∧ t)d`1(s)d`2(t)

=

∫ 1

0

∫ t

0

`1([s, 1])dsd`2(s)

=

∫ 1

0

∫ 1

0

`1([s, 1])1[0,t](s)d`2(t)ds

=

∫ 1

0

`1([s, 1])

(∫ 1

s

d`2(t)

)
ds

=

∫ 1

0

`1([s, 1])`2([s, 1])ds

=

∫ 1

0

(R`1)′(t)(R`2)′(t)dt

That is, for h, g in the image of R, we have

〈h, g〉µ =

∫ 1

0

ḣ(t)ġ(t)dt

This is reassuring! We now just need to find the completion of the image of R with
respect to this inner product. Let (hn)n∈N ⊆ R(E∗) be a Cauchy sequence, so∫ 1

0

(ḣn(t)− ḣm(t))2dt→ 0 as m,n→∞

Now each ḣn(t) = `n([t, 1]) for some `n ∈ E∗, and so (`n([·, 1]))n∈N is a Cauchy sequence
in L2([0, 1]). By completeness it follows that it has a limit in L2([0, 1]), call it ϕ. Define
h by

h(t) =

∫ t

0

ϕ(s)dt

Then clearly h ∈ L2,1
0 , and hn → h with respect to 〈·, ·〉µ. Since R(E∗) ⊆ L2,1

0 and L2,1
0

is complete with respect to 〈·, ·〉µ, it follows that the RKHS of µ is a closed subspace
of L2,1

0 . Checking that the space (`([·, 1]))`∈E∗ is dense in L2 gives the result. Since
by `n([t, 1]) we actually mean α`n([t, 1]) := fn(1) − fn(t) for a function of bounded
variation fn, and each function of bounded variation can defines a measure in this
way, it’s then clear that (`([·, 1]))`∈E∗ ⊇ C∞c ([0, 1]), the space of smooth functions with
compact support on [0, 1]. Since these are dense in L2([0, 1]), the result follows.

We now turn to the law µ of the Ornstein-Uhlenbeck process X, so µ = (X·)∗(P). This
Gaussian measure is not centred, but (3.3), (3.4) and(3.5) still hold with γ this time defined
by

γ(s, t) = E(Xt − EXt)(Xs − EXs)
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where E is used to denote the integral over E with respect to µ. By standard results on
stochastic integrals, for s < t

EXt = e−tX0, γ(s, t) =
1

2
e−(t+s)(e2(s∧t) − 1) = e−t sinh(s)

We look for the RKHS of µ. This time we have

γ(1, t) = e−1 sinh t, γ(0, t) = 0,
∂γ

∂s
(s, t) =

{
e−t cosh(s) s < t
−e−s sinh(t) s > t

and so by (3.4), for ` ∈ E∗ we have

(R`)(t) = `(1)e−1 sinh(t)−
∫ t

0

`(s)e−t cosh(s)ds+

∫ 1

t

`(s)e−s sinh(t)ds

This is differentiable with

(R`)′(t) = `(1)e−1 cosh(t) +

∫ t

0

`(s)e−t cosh(s)ds− `(t)e−t cosh(t)

+

∫ 1

t

`(s)e−s cosh(t)ds− `(t)e−t sinh(t)

= `(1)e−1 cosh(t) +

∫ t

0

`(s)e−t cosh(s)ds+

∫ 1

t

`(s)e−s cosh(t)ds− `(t)

since sinh(t) + cosh(t) = et, and so we have

(R`)(t) + (R`)′(t) = `(1)et−1 − `(t) +

∫ 1

t

`(s)et−sds

= `(s)et−s
∣∣∣∣1
s=t

+

∫ 1

t

`(s)et−sds

Computing the inner product should8 yield, for `1, `2 ∈ E∗,

〈R`1, R`2〉µ =

∫ 1

0

((R`1)(t) + (R`1)′(t))((R`2)(t) + (R`2)′(t))dt

and so for g, h in the range of R we have

〈g, h〉µ =

∫ 1

0

(g(t) + ġ(t))(h(t) + ḣ(t))dt

= 〈g + ġ, h+ ḣ〉L2

This will only define an inner product on a space of functions that vanish at 0, but from
the expression for (R`)(t) above we see that (R`)(0) = 0 for all ` ∈ E∗. We claim that the

8Work in progress!
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completion of R(E∗) with respect to this inner product is L2,1
0 ([0, 1]).

First we show that R(E∗) ⊆ L2,1
0 . Let h ∈ R(E∗) so that h = R` for some ` ∈ E∗. Then we

have ∫ 1

0

(h(t) + ḣ(t))2dt =

∫ 1

0

h(t)2dt+

∫ 1

0

ḣ(t)2dt+ 2

∫ 1

0

h(s)ḣ(s)ds <∞

Integrating by parts we see that the rightmost term is finite, and so we have that h, ḣ ∈ L2.
It follows that h ∈ L2,1

0 . A Cauchy sequence (hn)n∈N ⊆ R(E∗) therefore has a limit h ∈ L2,1
0

and so we see that the completion of R(E∗) is a closed subspace of L2,1
0 . Using the expression

for (R`)(t) + (R`)′(t) above we can see that {(R`) + (R`)′ | ` ∈ E∗} ⊇ C∞c ([0, 1]), and so
R(E∗) is dense in L2,1

0 with respect to the inner product 〈·, ·〉µ. It follows that the RKHS of
µ is indeed L2,1

0 .

We now consider the problem of how to compute the divergence of elements of the RKHS
with respect to µ, i.e. we want to find an integration by parts formula for the measure µ.
Define the operator d : D1,2 → H∗ by

(df)σ(h) :=

〈∫ ·
0

(Df)(t)dt, h

〉
H

(σ)

= 〈Df, ḣ〉L2(σ)

where f ∈ D1,2, h ∈ H and σ ∈ Ω. Then a divergence with respect to µ, divµ, will satisfy∫
Ω

(df)σ(h)dµ(σ) =

∫
Ω

f(σ)(divµ)(h)dµ(σ)

for all f ∈ D1,2 and h ∈ H. Now recall the pushforward lemma:

Lemma 3.5 (Pushforward lemma). Let (X,A, µ) be a measure space, (Y,B) a measurable
space, θ : X → Y a measurable map and f : Y → R measurable. Then∫

X

f ◦ θdµ =

∫
Y

fd(θ∗µ)

in the sense that if one side exists so does the other, and there is equality.

(df).(h) is a real-valued function on Ω, so we can apply this lemma to get∫
Ω

(df)σ(h)dµ(σ) =

∫
Ω

(df)X.(ω)(h)dP(ω)

If we can get (df)X.(ω)(h) into the form (df̃)ω(g) for some f̃ : Ω → R, g = gh ∈ H then
we can use the integration by parts formula for the Wiener measure on the right hand side
above. By the chain rule for the Malliavin derivative,

(d(f ◦X.))ω(g) = (df)X.(ω)((dX.)ω(g))
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so we can set f̃ = f ◦X. and ht = (dXt)ω(g). Let us calculate h. We have that

(DXt)(s) = D(W (e·−t1[0,t](·)))(s)
= es−t1[0,t](s)

Thus for g ∈ H we have

(dXt)ω(g) = 〈DXt, ġ〉L2

=

∫ t

0

es−tġsds

We want this to equal ht, so we have

etht =

∫ t

0

esġsds

and therefore
ġt = ht + ḣt

Putting this together, we have∫
Ω

(df)σ(h)dµ(σ) =

∫
Ω

(d(f ◦X·))ω(g)dP(ω)

=

∫
Ω

f(X·(ω))(divPg)(ω)dP(ω)

=

∫
Ω

f(σ)E((divµh)(σ)|X·(ω) = σ)dµ(σ)

which tells us that (almost surely)

E((divµh)(σ)|X·(ω) = σ) = (divPg)(ω)

=

∫ 1

0

(ht + ḣt)dBt(ω)

Now using that dBt = dXt +Xtdt,∫ 1

0

(ht + ḣt)dBt =

∫ 1

0

(ht + ḣt)dXt +

∫ 1

0

(ht + ḣt)Xtdt

and so we claim that the divergence is given by

(divµh)(σ) =

∫ 1

0

(ht + ḣt)(dσt + σtdt)

Indeed we have, by the pushforward lemma again,∫
Ω

(df)σ(h)dµ(σ) =

∫
Ω

f(X·(ω))

(∫ 1

0

(ht + ḣt)dXt(ω) +

∫ 1

0

(ht + ḣt)Xt(ω)dt

)
dP(ω)

=

∫
Ω

f(σ)

(∫ 1

0

(ht + ḣt)dσt +

∫ 1

0

(ht + ḣt)σtdt

)
dµ(σ)

=

∫
Ω

f(σ)

(∫ 1

0

(ht + ḣt)(dσt + σtdt)

)
dµ(σ)

This divergence operator gives a martingale with respect to µ:
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Proposition 3.6. Let h ∈ H and define the process M = (Mt)t∈[0,1] by

Mt(σ) =

∫ t

0

(hr + ḣr)(dσ(r) + σ(s)dr)

Then M is an martingale with respect to µ.

Proof. Let Eµ denote expectation with respect to µ and let (Ft)t∈[0,1] be the filtration gener-
ated by B. Let f : Ω→ R be a bounded Fs-measurable function with s < t, then

Eµ(Mtf) = Eµ(Msf) + Eµ((Mt −Ms)f)

= Eµ(Msf) + Eµ(Eµ(Mt −Ms|Fs)f)

= Eµ(Msf) + Eµ
(
E
(∫ t

s

(hr + ḣs)dBr

∣∣∣∣Fs) f)
= Eµ(Msf)

by the martingale property of Itô integrals. Thus we have that M is a martingale with respect
to µ.

Now we have X· : (H, 〈·, ·〉L2,1
0

)→ (H, 〈·, ·〉µ) where 〈·, ·〉µ is the inner product on the RKHS

for µ. We can also equip H with the quotient inner product 〈·, ·〉q, defined by

〈h1, h2〉q := 〈(dX·)−1h1, (dX·)
−1h2〉L2,1

0

From earlier we have that for all ω ∈ Ω, h = (dX·)ω(g) ⇐⇒ ġ = h + ḣ, and so
˙︷ ︸︸ ︷

(dX·)
−1h =

h+ ḣ. The quotient inner product is therefore given by

〈h1, h2〉q = 〈h1 + ḣ1, h2 + ḣ2〉L2

and so 〈·, ·〉q = 〈·, ·〉µ.

3.1 Existence and smoothness of density

We now consider the two dimensional system{
dXt = Vtdt
dVt = dBt − Vtdt

Xt and Vt describe the position and velocity respectively of a massive Brownian particle.
We can use Theorem 2.1 to see if the law of the random vector (Xt, Vt) has a density. The
solution for V is

Vt = e−tX0 +

∫ t

0

es−tdBt
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and we saw earlier that (DVt)(s) = es−t1[0,t](s). Assuming that we can interchange the
Malliavin derivative and Lebesgue integral (which is reasonable due to linearity and closedness
of D), we have

(DXt)(s) =

∫ t

0

(DVr)(s)dr

=

∫ t

s

es−rdr

= 1− es−t

We can now calculate the Malliavin matrix:

〈DXt, DXt〉H =

∫ 1

0

(1− es−t)2ds

= 1 +
1

2
e−2t(e2 − 1)− 2e−t(e− 1)

〈DXt, DVt〉H =

∫ t

0

(es−t − e2s−2t)ds

=
1

2
e−2t(1− et)2

〈DVt, DVt〉H =

∫ t

0

e2s−2tds

=
1

2
(1− e−2t)

Note that the Malliavin matrix isn’t random in this case. Calculating the determinant, we
see that it doesn’t vanish for any t > 0 and so the law of (Xt, Vt) admits a density with
respect to the Lebesgue measure for all t > 0. In fact we can use Theorem 2.3 to deduce that
this density is smooth: it follows from the above that all inverse moments of the determinant
exist, and Xt, Yt can be seen to be in D∞. Thus the vector (Xt, Yt) is non-degenerate for all
t > 0 and therefore has a smooth density.

What if we didn’t have an explicit solution for the process (Xt, Vt)? We couldn’t use the
analysis above, but we could instead use Hörmander’s theorem. For this we need to get the
system into Stratonovich form, but since∫ t

0

1dBs =

∫ t

0

1 ◦ dBs

we don’t need to alter the finite variation term. In the notation of the section on Hörmander’s
theorem we have n = 2 and m = 1, and the system can be written as

d(Xt, Vt) = V0(Xt, Vt)dt+ V1(Xt, Vt) ◦ dBt

where V0(x, y) = (0, 1) and V1(x, y) = (y,−y). Clearly these are smooth, so we check the
parabolic Hörmander condition. We have

V0 = {V1}, V1 = {V1, [V0, V1]}
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We compute the Lie bracket above:

[V0, V1] = ∂V0 · V1 − ∂V1 · V0

= −
(

0 1
0 −1

)(
0
1

)
=

(
−1
1

)
It follows that V1(x) = R2 for all x ∈ R2 and so Hörmander’s condition is satisfied. We
therefore see (again) that the process (Xt, Yt) admits a smooth density with respect to the
Lebesgue measure.

A Appendices

A.1 Gaussian measure theory

Since we are concerned with the calculus of Gaussian random variables and processes, we
will need to know some of their properties. We will first briefly review standard results about
Gaussian measures, abstract Wiener spaces and Paley-Wiener integrals, before looking at
isonormal Gaussian processes and white noise, which will play an important role in Malliavin
calculus. Where not stated otherwise, the content of the following subsection is drawn from
[2] and [4].

A.1.1 Gaussian measures in infinite dimensions

Definition A.1. Let (Ω,F ,P) be a probability space, and let λ be the Lebesgue measure on
R. A (centred) Gaussian measure on R is a Borel measure γ on R such that either there
exists α > 0 such that

γ(A) = (2πα)−1/2

∫
A

e−|x|
2/2αdλ(x)

or γ = δ0, the degenerate case.

If E is a separable Banach space, a Borel measure γ on E is a (centred) Gaussian mea-
sure on E if `∗γ is a (centred) Gaussian measure on R for all ` ∈ E∗

Example A.2. The standard Gaussian measure γn on Rn. If λn is the Lebesgue measure
on Rn, then

γn(A) = (2π)−n/2
∫
A

e−‖x‖
2/2dλn(x)

Example A.3. We extend the above example to general finite dimensional inner product
spaces. Let (V, 〈·, ·〉) be an n-dimensional inner product space, and let λn be the
Lebesgue measure on Rn. Then the inner product 〈·, ·〉 can be used to define a ’Lebesgue
measure’ on V . Let u : Rn → V be an isometry so that 〈u(x), u(y)〉 = 〈u, v〉Rn ,
and u(x) = x1e1 + . . . + xnen for some orthonormal basis e1, . . . , en of V . Define
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λ〈·,·〉 := u∗(λ
n). It can be checked that this definition does not depend on the choice

of isometry u. We use this ’Lebesgue measure’ on V to define the standard Gaussian
measure γ〈·,·〉 on V : for each Borel subset A of V set

γ〈·,·〉(A) := (2π)−n/2
∫
A

e−〈x,x〉/2dλ〈·,·〉(x)

Definition A.4. Let E be a separable Banach space and let

A(E) = {T ∈ L(E;F ) | dimF <∞, T onto}

Write FT for F if T ∈ A(E) and T ∈ L(E;F ). A cylinder set measure (CSM) on E is a
family (µT )T∈A(E) of probability measures µT on FT satisfying the consistency relation: if we
have

E FT

FS

T

S
πST

then µS = (πST )∗(µT ).

If there exists a probability measure µ on E such that µT = T∗µ on FT for each T ∈ A(E), we
say that (µT )T∈A(E) ’is’ a measure. To see why this is reasonable, suppose µ is a probability
measure on E and define µT = T∗(µ) for each T ∈ A(E). Then if πST ◦ T = S as above,

µS = S∗(µ) = (πST ◦ T )∗(µ) = (πST )∗(T∗(µ)) = (πST )∗(µT )

Example A.5. (Not from [2] or [4]) Let E = R[0,1], the space of functions f : [0, 1] → R.
Then the finite dimensional subspaces of E are Rn for each n ∈ N. Let t = (tk)k∈N ⊆ R
be a sequence of real numbers, and define the linear map Tt,n : E → Rn by

Tt,n(f) = (f(t1), . . . , f(tn)).

Then if µ is a probability measure on E, A = A1 × . . .× An ⊆ Rn, we have

µTt,n(A) = µ(T−1
t,n (A))

= µ({f | (f(t1), . . . , f(tn)) ∈ A})
= µ({f | f(t1) ∈ A1, . . . , f(tn) ∈ An})

It can be seen that the measures µTt,n satisfy the consistency relation. This example
makes it clear why the name ‘cylinder set measure’ is appropriate: µTt,n coincides with
µ on cylinder sets, i.e. sets of a form like A1 × . . . An × R× R× . . ..
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Example A.6 (Canonical Gaussian CSM). To any real Hilbert space (H, 〈·, ·〉H) we can
associate a Gaussian CSM, (γHT )T∈A(H). Given T : H → FT onto with dimFT <∞, we
define the measure γHT on FT by γHT := γ〈·,·〉T where 〈·, ·〉T is the quotient inner product
on FT :

〈u, v〉T :=
〈
T |−1

(kerT )⊥
u, T |−1

(kerT )⊥
v
〉
H

Definition A.7. Let E,G be separable Banach spaces and let (µT )T be a cylinder set measure
on E. A linear map θ : E → G is said to radonify (µT )T if θ∗(µ·) is a measure on G.

Definition A.8 (Abstract Wiener space). Let H be a separable Hilbert space, E a separable
Banach space and i : H → E a continuous linear injective map with dense range. If i
radonifies the canonical Gaussian cylinder set measure, we say that i : H → E is an abstract
Wiener space. The induced measure i∗(γ

H
· ) on E is called the abstract Wiener measure of

i : H → E.

One can check that an abstract Wiener measure is a Gaussian measure. In fact the structure
theorem for Gaussian measures tells us that the abstract Wiener space construction is the
only way to obtain a Gaussian measure on a separable Banach space, that is every Gaussian
measure on a separable Banach space is the pushforward of the canonical Gaussian cylinder
set measure on some separable Hilbert space.

Example A.9. (Classical Wiener space) Let

H := L2,1
0 ([0, T ];Rm)

=

{
σ : [0, T ]→ Rm

∣∣∣∣ ∃ϕ ∈ L2([0, T ];Rm) such that σ(t) =

∫ t

0

ϕ(s)ds

}
So the elements of H start at the origin and have L2 derivative. We equip H with the
inner product

〈σ1, σ2〉L2,1
0

:=

∫ T

0

〈σ̇1(s), σ̇2(s)〉Rmds

This can be seen to be a Hilbert space by noting that the operator d
dt

: L2,1
0 → L2 is an

isometry. Now let

E := C0([0, t];Rm)

= {σ : [0, T ]→ Rm | σ is continuous and σ(0) = 0}

and equip it with the supremum norm. Then the inclusion i : H ↪→ E is continuous,
linear and injective with dense range. It can be proved that the inclusion radonifies the
canonical Gaussian cylinder set measure on H.

The Hilbert space H of an abstract Wiener space i : H → E is called the Cameron-Martin
space or reproducing kernel Hilbert space (RKHS). One is not always provided with an ab-
stract Wiener space, and is instead given a Gaussian measure on a separable Banach space E.
The task is then to find the RKHS H of the measure so that with the inclusion i, i : H → E
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is an abstract Wiener space. Fortunately there is a standard way of constructing this space.

Let µ be a centred Gaussian measure on a separable Banach space E. Following [1] and [4],
we define the covariance map R : E∗ → E by

R(`) :=

∫
E

`(x)xdµ(x)

where the integral is in the Bochner sense. This integral does indeed belong to E:

‖R(`)‖E ≤
∫
E

‖`(x)x‖Edµ(x)

=

∫
E

|`(x)|‖x‖Edµ(x)

≤
∫
E

‖`‖E∗‖x‖2
Edµ(x)

which is finite by, for example, Fernique’s integrability theorem for Gaussian measures (see
[1, pp. 96-97]). The map R is hence a bounded linear operator. We can therefore define the
RKHS:

Definition A.10. Let µ be a centred Gaussian measure on a separable Banach space E.
The reproducing kernel Hilbert space (RKHS) Hµ of µ is the completion of the image of the
covariance map R : E∗ → E with respect to the inner product

〈R(`1), R(`2)〉µ :=

∫
E

`1(x)`2(x)dµ(x)

It can be checked that Hµ is still a subset of E after the completion procedure.

An elementary stochastic integral called the Paley-Wiener map can be constructed on an
abstract Wiener space, which acts on elements of the Cameron-Martin space. Let i : H → E
be an abstract Wiener space with measure γ and let j : E∗ → H ∼= H∗ be the adjoint of
i, defined by 〈j(`), h〉H = `(i(h)) for ` ∈ E∗ and h ∈ H. This map is injective with dense
range, which allows for the following theorem:

Theorem A.11. If ` ∈ E∗ then ` ∈ L2(E, γ;R) with ‖`‖L2 = ‖j(l)‖H . Consequently, there
is a unique continuous linear map I : H → L2(E, γ;R), with I(h) := 〈h, ·〉∼H , such that

H L2(E, γ;R)

E∗

I

j ` 7→ [`]

Moreover, I is an isometry into L2(E, γ;R), and is called the Paley-Wiener map.
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In the classical case i : L2,1
0 ([0, 1]) ↪→ C0([0, 1]), we think of the Paley-Wiener map as a

stochastic integral. For g, h ∈ H, we have that

〈g, h〉L2,1
0

=

∫ 1

0

ġtḣtdt

=

∫ 1

0

ġtdhs

where the last integral is interpreted in the Lebesgue-Stieltjes sense. We hence often write
〈h, ·〉∼

L2,1
0

: C0([0, 1])→ R as

〈h, ·〉∼
L2,1
0

(σ) =

∫ 1

0

ḣsdσs =

∫ 1

0

ḣsdBs(σ)

since the evaluation map on classical Wiener space defines a Brownian motion B.

We quote some properties of the Paley-Wiener map:

Proposition A.12. Let i : H → E be an abstract Wiener space with measure γ. Then for
h ∈ H, the Paley-Wiener map 〈h, ·〉∼H satisfies

(i) 〈g, ·〉∼H is a Gaussian random variable on (E,B(E), γ)

(ii)

∫
E

〈h, ·〉∼H(x)dµ(x) = 0

(iii)

∫
E

〈h, ·〉∼H(x)2dµ(x) = ‖h‖2
H

(iv)

∫
E

〈g, ·〉∼H(x)〈h, ·〉∼H(x)dµ(x) = 〈g, h〉H

We now see what happens when an abstract Wiener measure is pushed forward by a trans-
lation by an element of its Cameron-Martin space.

Theorem A.13 (Cameron-Martin formula). Let i : H → E be an abstract Wiener space
with measure γ and let Th : E → E be the map Th(x) = x+ i(h) for h ∈ H. Then (Th)∗γ ≈ γ
with

d(Th)∗γ

dγ
= e〈h,·〉

∼
H−

1
2
‖h‖2H

Hence if F : E → R is measurable, we have∫
E

F (x+ i(h))dγ(x) =

∫
E

F (x)e〈h,·〉
∼
H(x)− 1

2
‖h‖2Hdγ(x)
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Suppose now that F : E → R is a measurable BC1 function, i.e. a bounded measurable
function with bounded Fréchet derivative. By the Cameron-Martin formula, for t ∈ R we
have ∫

E

F (x+ ti(h))dγ(x) =

∫
E

F (x)et〈h,·〉
∼
H(x)− 1

2
t2‖h‖2Hdγ(x)

Formally differentiating this at t = 0 we obtain the relation∫
E

(DF )x(i(h))dγ(x) =

∫
E

F (x)〈h, ·〉∼H(x)dγ(x) (A.1)

The integrand on the left hand side is our prototype for the Malliavin derivative in the h-
direction. The relation is known as the integration by parts formula. Compare it to the
divergence theorem in Rn:∫

Rn
(Df)x(V (x))dx = −

∫
Rn

div(V (x))f(x)dx

where f : Rn → R, V : Rn → Rn are differentiable. For the (constant) vector field V : E → E
given by V (x) = i(h) it could hence seem reasonable to define

div(V (x)) = −〈h, ·〉∼H(x)

Can we extend this to non-constant vector fields? The answer is yes, and it is done by
defining the divergence operator as the adjoint of the Malliavin derivative operator. It is
discussed in detail in the first chapter.

A.1.2 Isonormal Gaussian processes

Central to our definition of the Malliavin derivative operator is the notion of an isonormal
process, which is a family of L2 Gaussian random variables indexed by a Hilbert space:

Definition A.14. Let H be a real separable Hilbert space, and let W : H → L2(Ω,F ,P).
We say that W is an isonormal Gaussian process if

(i) W is a linear isometry

(ii) W (h) is normally distributed with mean zero and variance ‖h‖2

Remarks. (i) As an immediate consequence of the above definition we have that E[W (g)W (h)] =
〈g, h〉H for all g, h ∈ H

(ii) The image ofH underW is a closed subspace of L2(Ω,F ,P), denotedH1. The reason for
this notation will become clear later when looking at the chaos expansion of L2(Ω,F ,P).

This definition may seem a little abstract, so we’ll look at a few examples.

Example A.15 (Paley-Wiener integral). Let i : H → E be an abstract Wiener space. Define
W : H → L2(Ω,F ,P) by W (h) = 〈h, ·〉∼H . Then by results from the previous section,
this defines an isonormal Gaussian process.
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In particular, on the canonical Wiener space i : L2,1
0 ([0, 1]) ↪→ C0([0, 1]) we have

W (h) =

∫ 1

0

ḣsdBs

where the integral with respect to the Brownian motion B is in the Itô sense. Then the
isometry property of W is precisely the Itô isometry.

Remark. From now on we will identify L2,1
0 with L2 via the isometry d

dt
: L2,1

0 → L2. Then
we define an isonormal Gaussian process on L2([0, 1]) by

W (h) =

∫ 1

0

hsdBs

We can then easily recover the Brownian motion from W , since indicator functions lie in
L2([0, 1]):

W (1[0,t]) =

∫ 1

0

1[0,t]dBs =

∫ t

0

dBs = Bt

The isometry property gives us the covariance function for Brownian motion,

EBsBt = E(W (1[0,s])W (1[0,t]))

= 〈1[0,s],1[0,t]〉L2([0,1])

= s ∧ t

The following examples are taken from [10, pp 11-15].

Example A.16 (Brownian sheet). A Brownian sheet (or two-parameter Brownian motion)
is a two-parameter stochastic process defined by the three properties

(i) Bs,t = 0 when s = 0 or t = 0

(ii) B has independent increments9

(iii) B is a (centred) Gaussian process with covariance

EBs1,t1Bs2,t2 = (s1 ∧ s2)(t1 ∧ t2)

An Itô calculus can be defined for this process, giving the integral of two-parameter
processes with respect to the Brownian sheet (see [] for details). Let H = L2([0, 1]2),

9For every pair of disjoint rectangles R1 and R2 of [0, 1]2, the increment of B on R1 is independent of the
increment of B on R2. The increment of B on a rectangle R = [s1, s2]× [t1, t2], ∆RB, is defined by

∆RB = (Bs2,t2 −Bs1,t2)− (Bs2,t1 −Bs1,t1)
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where [0, 1]2 is equipped with the two dimensional Lebesgue measure. Define the process
W : H → L2(Ω,F ,P) by

W (h) =

∫ 1

0

hs,tdBs,t

Then W is an isonormal Gaussian process, and we can recover Bs,t and its covariance
function from W similarly to in the one-parameter case.

It is useful to note that both one- and two-parameter Brownian motions are particular cases
of white noise, which is defined as follows.

Definition A.17 (White noise). Let (T, T , µ) be a σ-finite measure space without atoms and
let H be the Hilbert space L2(T, T , µ). Let W be an isonormal Gaussian process on H. We
define a white noise with intensity µ as the process

{W (1A) |A ∈ T , µ(A) <∞}

We define the natural filtration (FA, A ∈ T ) of this process as the completion of the filtration
given by

F̃A = σ({W (1B) |B ∈ T , µ(B) <∞, B ⊆ A})

Remarks. (i) From now on we will write W (A) := W (1A) when A is a set. In this way
we think of W as a (random) vector measure on (T, T , µ). For h ∈ H we can think of
W (h) as an integral with respect to this measure.

(ii) In the case that (T, T , µ) = ([0, T ],B([0, T ]), λ) and W is given by the Itô integral, we
recover standard Brownian motion by defining

Bt := W ([0, t]), Ft := F[0,t]

Similarly we can recover two-parameter Brownian motion.

Are there any useful Gaussian processes which aren’t white noise? There are, and one
commonly used example is fractional Brownian motion (fBm):

Definition A.18. A fractional Brownian motion with Hurst parameter h ∈ (0, 1) is a centred
Gaussian process (Bh

t )t∈[0,1] starting from 0 whose covariance is given by

EBh
sB

h
t =

1

2

(
s2h + t2h − |t− s|2h

)
Note that in the case h = 1/2 we have standard Brownian motion (a centred Gaussian
process is entirely determined by its covariance function). For general h ∈ (0, 1), fBm has
the following properties.

Proposition A.19 (Properties of fBm). Let h ∈ (0, 1) and let Bh be fractional Brownian
motion with Hurst parameter h. Then,

(i) Bh has Hölder continuous paths of order α for all α < h
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(ii) Bh is self-similar: for each a > 0, (a−hBh
at) has the same law as (Bh

t )

(iii) Bh has stationary increments

(iv) Bh has independent increments if and only if h = 1/2

(v) Bh is a semimartingale if and only if h = 1/2

(vi) Bh is a Markov process if and only if h = 1/2

The first property shows that the sample paths of Bh are less regular than those of B for
h < 1/2. The reduced regularity coupled with the lack of semimartingale property means
that the definition of a stochastic integral with respect to such Bh is non-trivial. Nualart
develops a stochastic calculus for fractional Brownian motion with Hurst parameter less than
1/2 using Malliavin calculus. This won’t be discussed here, but details can be found in [].

We check that fBm can be viewed as an isonormal Gaussian process. Let E be the set of step
functions on [0, 1]. Define the Hilbert space Hh as the closure of E with respect to the inner
product

〈1[0,s],1[0,t]〉Hh =
1

2

(
s2h + t2h − |t− s|2h

)
Now define the linear isometry W h : Hh → L2(Ω,F ,P) by W h(1[0,t]) := Bh

t . One can check
that this defines an isonormal Gaussian process, but that the space Hh is not of the form
L2(T, T , µ) for some measure space (T, T , µ) and so this process does not define a white
noise.

A.2 Chaos expansions

We give a brief overview of the relevant properties of chaos expansions. The statements in
this appendix and much more detail can be found in [9, §1].

A.2.1 Iterated Itô integrals - classical case

Let (Ω,F ,P) be a complete probability space, and let (Bt, t ∈ [0, T ]) be a stardard one-
dimensional Brownian motion on (Ω,F ,P). Let Ft be the (completion of) the σ-algebra
generated by (Bs, s ∈ [0, t]). Define the simplex

∆n = {(t1, . . . , tn) | 0 ≤ t1 ≤ t2 ≤ . . . ≤ tn ≤ T} ⊆ [0, T ]n

Then for f ∈ L2(∆n), i.e. measurable deterministic f defined on ∆n such that

‖f‖2
L2(∆n) :=

∫
∆n

f 2(t1, . . . , tn)dt1 . . . dtn <∞,

we define the n-fold iterated Itô integral as

Jn(f) =

∫ T

0

∫ tn

0

· · ·
∫ t3

0

∫ t2

0

f(t1, ..., tn)dBt1 ...dBtn
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Note that each successive integrand is square integrable (with respect to dP × dti) and F.
adapted due to the conditions on t1, . . . tn, so this is well-defined.

Then for symmetric f ∈ L2([0, 1]n) we can define In(f) = n!Jn(f). These are related to the
Hermite polynomials (Hn)n∈N,

Hn(x) = (−1)nex
2/2 d

n

dxn
(e−x

2/2),

by, for example,

In(g⊗n) = ‖g‖nHn

(∫ 1

0
g(t)dBt

‖g‖

)
when g ∈ L2([0, 1]).

Example A.20. H5(x) = x5 − 10x3 + 15x, so

5!

∫ 1

0

∫ t5

0

· · ·
∫ t2

0

1dBt1 ...dBt5 = 1 ·H5

(
B1

1

)
= B5

1 − 10B3
1 + 15B1

Let L̃2([0, T ]n) := {f ∈ L2([0, T ]n) | f is symmetric}, and for f ∈ L2([0, T ]n) let f̃ denote the
symmetrisation of f , i.e.

f̃ :=
∑
σ∈Sn

f(σ(x1), . . . , σ(xn))

where Sn is the group of bijections of {1, . . . , n} to itself.

Proposition A.21. The operator In : L2([0, T ]n)→ L2(Ω) has the following properties:

(i) In is linear

(ii) In(f) = In(f̃)

(iii) E(In(f)Im(g)) = δmn · n!〈f̃ , g̃〉L2([0,T ]n)

We can now state the following result:

Theorem A.22. Let F ∈ L2(Ω,F ,P) where F = σ({Bs | s ∈ [0, T ]}). Then there exists a
sequence of functions (fn)n∈N with fn ∈ L2([0, T ]n) such that

F =
∞∑
n=0

In(fn)

If in addition the fn are required to be symmetric, the above expansion is unique - in this
case, we say that this is ‘the’ chaos expansion of F .

Proof follows from iterated application of the martingale representation theorem.

If Xt is a stochastic process, we can apply the chaos expansion at each time to get

Xt =
∞∑
n=0

In(fn,t) :=
∞∑
n=0

In(fn(·, t))
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Example A.23. What is the chaos expansion of

exp

(∫ 1

0

g(t)dBt

)
?

First note that

exp

(
tx− t2

2

)
=
∞∑
n=0

tn

n!
Hn(x)

and so

exp

(∫ 1

0

g(t)dBt −
‖g‖2

2

)
=
∞∑
n=0

‖g‖n

n!
Hn

(
θ

‖g‖

)
thus

exp

(∫ 1

0

g(t)dBt

)
= e‖g‖

2/2

∞∑
n=0

‖g‖n

n!
· In(g⊗n)

‖g‖n

=
∞∑
n=0

In

(
e‖g‖

2/2 g
⊗n

n!

)

A.2.2 Iterated Itô integrals - white noise case

We consider now the multiple integral in the more general case when the process isn’t nec-
essarily indexed by a time interval in the real line.

Definition A.24 (White noise). Let (T, T , µ) be a σ-finite measure space without atoms and
let H be the Hilbert space L2(T, T , µ). Let W be an isonormal Gaussian process on H. We
define a white noise with intensity µ as the process

{W (1A) |A ∈ T , µ(A) <∞}

We define the natural filtration (FA, A ∈ T ) of this process as the completion of the filtration
given by

F̃A = σ({W (1B) |B ∈ T , µ(B) <∞, B ⊆ A})

Remark. From now on we will write W (A) := W (1A) when A is a set. In this way we think
of W as a (random) vector measure on (T, T , µ). For h ∈ H we can think of W (h) as an
integral with respect to this measure.

Remark. In the case that (T, T , µ) = ([0, T ],B([0, T ]), λ) and W is given by the Itô integral,
we recover standard Brownian motion by defining

Bt := W ([0, t]), Ft := F[0,t]

Let En be the set of elementary functions of the form

f(t1, . . . , tn) =
k∑

i1,...,in

ai1...in1Ai1×...×Ain (t1, . . . , tn) (A.2)

where A1, . . . , Ak are pairwise disjoint sets of finite measure, and ai1...in = 0 whenever iα = iβ
for some α 6= β. We can define the integral of such functions:
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Definition A.25 (Multiple integral). Let f ∈ En be an elementary function with repre-
sentation (A.2). We define the multiple integral operator In : En ⊆ L2(T n, T ⊗n, µ⊗n) →
L2(Ω,F ,P) by

In(f) :=
k∑

i1,...,in

ai1...inW (Ai1) . . .W (Ain) (A.3)

We quote some results on this operator without proof. Compare with the results for the
basic case in the previous subsection.

Proposition A.26. The operator In : En → L2(Ω) has the following properties:

(i) In is linear

(ii) In(f) = In(f̃)

(iii) E(In(f)Im(g)) = δmn · n!〈f̃ , g̃〉L2(Tn)

(iv) There exists a continuous extension In : L2(T n) → L2(Ω) that satisfies the three prop-
erties above and is given by (A.3) on En.

Theorem A.27. Let F ∈ L2(Ω,G,P) where G = σ({W (h) |h ∈ H}). Then there exists a
sequence of functions (fn)n∈N ⊆ L2(T n) such that

F =
∞∑
n=0

In(fn)

If in addition the fn are required to be symmetric, the above expansion is unique - in this
case, we say that this is ‘the’ chaos expansion of F .

Remark. As before, if (Ft)t∈T ⊆ L2(Ω,G,P) is a stochastic process we write

Ft =
∞∑
n=0

In(fn(·, t)

A.3 Sobolev inequalities

As a nice application of the Clark-Ocone theorem we prove two Sobolev inequalities following
[1, pp. 146-148]. These are analogous to the inequalities for finite dimensional Gaussian
Sobolev spaces, see [11] for details.

Theorem A.28 (Sobolev inequality). For every F ∈ D1,2 the following inequality holds

E(F 2) ≤ (E(F ))2 + E(‖DF‖2
H) (A.4)

Equality is achieved if F is Gaussian, i.e. F = C +W (h) for some C ∈ E, h ∈ H.
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Proof. By Clark-Ocone we have

F = E(F ) +

∫ T

0

E[DtF |Ft]dBt

So by the Itô isometry, Jensen’s inequality and the tower property of conditional expectations
we have

E(F 2) = (E(F ))2 + E
[∫ T

0

E[DtF |Ft]2dt
]

≤ (E(F )2 + E
[∫ T

0

(DtF )2dt

]
= (E(F ))2 + E(‖DF‖2

H)

Theorem A.29 (log-Sobolev inequality). For every F ∈ D1,2 the following inequality holds

E(F 2 log(F 2)) ≤ E(F 2) log(E(F 2)) + 2E(‖DF‖2
H) (A.5)

Equality is achieved if F is lognormal, i.e. F = C exp(W (h)) for some C ∈ R, h ∈ H.

Proof. Define the family of bounded random variables GN := F ∧ N for N ∈ N so that
GN ↑ F . Let (MN

t )t≥0 be the positive continuous martingale given by MN
T = G2

N and
MN

t = E[G2
N |Ft]. By Clark-Ocone we have

MN
t = E(G2

N) +

∫ t

0

E[DsG
2
N |Fs]dBs

or equivalently
dMN

t = E[DtG
2
N |Ft]dBt, M

N
0 = E(G2

N)

Now by Itô’s formula we have

MN
t log(MN

t ) = MN
0 log(MN

0 ) +

∫ t

0

(1 + log(MN
s ))dMN

s +
1

2

∫ t

0

1

MN
s

d〈MN ,MN〉s

Combining the above formulas gives, using the chain rule for D, Cauchy-Schwarz and the
tower property of conditional expectations,

E(G2
N log(G2

N)) = E(MN
T log(MN

T ))

= E(G2
N) log(E(G2

N)) +
1

2
E
[∫ T

0

E[DsG
2
N |Fs]2

MN
s

ds

]
= E(G2

N) log(E(G2
N)) + 2E

[∫ T

0

E[GNDsGN |Fs]2

MN
s

ds

]
≤ E(G2

N) log(E(G2
N)) + 2E

[∫ T

0

E[G2
N |Fs]E[(DsGN)2|Fs]

MN
s

ds

]
= E(G2

N) log(E(G2
N)) + 2E

[∫ T

0

(DsGN)2ds

]
= E(G2

N) log(E(G2
N)) + 2E(‖DGN‖2)

Letting N →∞ and using the monotone convergence theorem gives the result.
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Remark. In particular this theorem tells us that if F ∈ D1,2 then E(F 2 log(F 2)) =
2E(F 2 log(F )) <∞. We therefore have that D1,2 is embedded in the space

L2,log(Ω) := {F : Ω→ R | E(F 2 log+(|F |)) <∞}

where log+(x) = max{0, log(x)}.
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