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Linear Problem

H. W. Engl, M. Hanke and A. Neubauer
Regularization of Inverse Problems.
Kluwer (1994)

Forward Problem

Let K ∈ L(X ,RJ) for some Banach space X . Given u ∈ X

y = Ku.

Let η ∈ RJ be a realisation of an observational noise.

Inverse Problem

Given prior information on u ∈ X , and given y ∈ RJ , find u :

y = Ku + η.
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D

el

Electrical Impedance Tomography
Apply currents I` on
e`, ` = 1, . . . ,L.
Induces voltages Θ` on
e`, ` = 1, . . . ,L.
Input is (σ, I), output is (θ,Θ).
We have an Ohm’s law
Θ = R(σ)I.



−∇ · (σ(x)∇θ(x)) = 0 x ∈ D∫
e`

σ
∂θ

∂ν
dS = I` ` = 1, . . . ,L

σ(x)
∂θ

∂ν
(x) = 0 x ∈ ∂D \⋃L

`=1 e`

θ(x) + z`σ(x)
∂θ

∂ν
(x) = Θ` x ∈ e`, ` = 1, . . . ,L

(PDE)
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Electrical Impedance Tomography

M. M. Dunlop and A. M. Stuart
The Bayesian Formulation of EIT.
arXiv:1509.03136
Inverse Problems and Imaging, Submitted, 2015.

Forward Problem
Let X ⊆ L∞(D), and denote X+ := {u ∈ X : essinfx∈D u > 0}.
Given u ∈ X ,F : X → X+ and σ = F (u), find (θ,Θ) ∈ H1(D)× RL

solving (PDE).
This gives Θ = R(F (u))I.

Let η ∈ RL be a realisation of an observational noise.

Inverse Problem

Given prior information on u, and given currents I and y ∈ RL, find u :

y = R(F (u))I + η.
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General Structure

A. M. Stuart
Inverse problems: a Bayesian approach.
Acta Numerica 19(2010)

Forward Problem
Let X , Y be separable Banach spaces, and let G : X → Y be a
measurable mapping. Given u ∈ X ,

y = G(u).

Let η ∈ Y be a realisation of an observational noise.

Inverse Problem
Given prior information on u, and given y ∈ Y , find u:

y = G(u) + η.
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Bayesian Inversion: The Idea

The Idea: Words
Problem is under-determined; data is noisy. Probability delivers
missing information and accounts for observational noise.

The Idea: Picture

INPUT
u MODEL

G
DATA

y
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Bayes’ Formula

Prior
Probabilistic information about u before data is collected:

µ0(du)

Likelihood
Since y = G(u) + η, if η ∼ N(0, Γ), then y |u ∼ N(G(u), Γ). The
model-data misfit Φ is the negative log-likelihood:

P(y |u) ∝ exp
(
−Φ(u; y)

)
, Φ(u; y) =

1
2

∣∣∣Γ−1/2(y − G(u)
)∣∣∣2.

Posterior
Probabilistic information about u after data is collected:

µy (du) ∝ exp
(
−Φ(u; y)

)
µ0(du).
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Well-posedness

A. M. Stuart
Inverse problems: a Bayesian approach.
Acta Numerica 19(2010)

L2
ν(X ; S) = {f : X → S : Eν‖f (u)‖2S <∞}.

Theorem
Assume that:

u ∈ X µ0−a.s. ;
G ∈ C(X ,RJ);
G ∈ L2

µ0
(X ;RJ).

Then y 7→ µy (du) is Lipschitz in the Hellinger metric. Furthermore, if S
is a separable Banach space and f ∈ L2

µ0
(X ; S), then∥∥Eµy1 f (u)− Eµ

y2 f (u)
∥∥

S ≤ C|y1 − y2|.
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Probing the Posterior

We wish to get information about the structure of the posterior
probability µy on unknown function u given data y . Possibilities:

Best approximation by a Dirac: MAP/Tikhonov
M. Dashti, K. J. H. Law, A. M. Stuart and J. Voss
MAP estimators and their consistency in Bayesian nonparametric inverse problems.
Inverse Problems 29(2013)

Best approximation by a Gaussian: variational/ML
F. J. Pinski, G. Simpson, A. M. Stuart and H. Weber
Kullback-Leibler approximation for probability measures on infinite dimensional
spaces.
SIAM J. Math. Analysis (to appear)

Best approximation by many Diracs: sampling/MCMC
S. L. Cotter, G. O. Roberts, A. M. Stuart, and D. White.
MCMC methods for functions: modifying old algorithms to make them faster.
Statistical Science 28(2013)
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The Level Set Approach to Inverse Problems
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The Level Set Approach to Inverse Problems

Recovery of a piecewise constant field now becomes recovery of
a continuous field.
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Level Set Inversion: The Level Set Map

M. A. Iglesias, Y. Lu and A. M. Stuart
A level-set approach to Bayesian geometric inverse problems
arXiv:1504.00313
Interfaces and Free Boundaries, Submitted, 2015.

Piecewise constant conductivity σ (EIT example) defined through
thresholding a level set function u:

σ(x) =
n∑

i=1

σi I{ci−1<u≤ci}(x).

σ = F (u), u is now the unknown.
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Level Set Inversion: A Continuity Issue

F (·) is continuous at u F (·) is discontinuous at u

σ = F (u) := σ+1{u≥0}(x) + σ−1{u<0}(x)
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Level Set Inversion: Well-posedness
M. Iglesias, Y. Lu and A. M. Stuart
A level-set approach to Bayesian geometric inverse problems. (above)

M. M. Dunlop and A. M. Stuart
The Bayesian formulation of EIT: analysis and algorithms. (above)

Level Set Measurement Set-Up
F : X → Z , X = C(D;R),Z = L∞(D; R); level-set map.
G : Z → H, H Hilbert space; PDE solve/linear map.
O : H → RJ ; linear functionals of solution.

Theorem

Assume that G := O ◦G ◦ F : X → RJ and, for Gaussian prior µ0,
u ∈ X with probability 1. Then, for the linear and EIT examples,
y 7→ µy (du) is Lipschitz in the Hellinger metric. Furthermore, if S is a
separable Banach space and f ∈ L2

µ0
(X ; S), then∥∥Eµy1 f (u)− Eµ

y2 f (u)
∥∥

S ≤ C|y1 − y2|.
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Length-scale is Important

F (E(u))

F (u)

Var(F (u))
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A Family of Prior Distributions

Whittle-Matérn distributions allow for control over sample
regularity and length scale.
These are stationary Gaussian distributions with covariance
function

cν,`(x , y) =
21−ν

Γ(ν)

( |x − y |
`

)ν
Kν

( |x − y |
`

)
.

Special cases are exponential (ν = 1/2) and Gaussian (ν →∞)
covariance functions.
Ignoring boundary conditions, the covariance operator Dν,`
corresponding to the covariance function cν,` is given by

Dν,` = β`d (I − `2∆)−ν−d/2.
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We Need to Re-scale

The factor `d leads to problems when finding algorithms that are
robust with respect to mesh refinement (lack of absolute
continuity).
Hence re-scale the covariances as Cν,` = (`−2I −∆)−ν−d/2.
For u ∼ N(m0, Cν,`), we have E‖u −m0‖2 ∝ `2ν .
To counter this, scale levels ci with ` as well:

ci(`) = m0 + `ν(ci −m0).

This means we must explicitly pass the length scale parameter `
to the level set map.
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The New Level Set Map

M. M. Dunlop, M. A. Iglesias and A. M. Stuart
Hierarchical Bayesian Level Set Inversion
In preparation

Let X = C0(D) and Z = Lp(D). F : X × R+ → Z is defined by

F (u, `) =
K∑

k=1

σk1{ck−1(`)≤u<ck (`)}.
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A Sampling Algorithm

We can sample the posterior µy (du,d`) using a
Metropolis-within-Gibbs MCMC method:

Algorithm
1 Set k = 0 and pick initial state (u(0), `(0)) ∈ X × R+.
2 Update u(k+1) ∼ u|(`(k), y) using a dimension robust MCMC.
3 Update `(k+1) ∼ `|(u(k+1), y) using a scalar sampling algorithm.
4 k → k + 1 and return to 2.

Step 3 above requires knowledge of the conditional distribution πu,y of
`|(u, y). The absolute continuity of the family {µ`0}`>0 allows us to write
down an expression for this.
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Summary

Overview of the recent development of a theoretical and
computational framework for infinite dimensional Bayesian
inversion.

1 Probabilistic well-posedness.
2 Leads to new algorithms (defined on Banach space).
3 Mesh-indepedent convergence rates for MCMC.

A Bayesian level set method overcomes some challenges with
classical level set methods.

1 Probabilistic well-posedness follows from the general theory.
2 Algorithms which update the level set implicitly via MCMC methods

on level set function – no explicit velocity field required for level set
interface.

A hierarchical approach improves the effectiveness of the level set
method.

1 Relies on a family of equivalent Gaussian measures parameterised
by the length scale of their samples.

2 Variation of sample amplitude compensated for by passing the
length scale parameter to level set map.
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