The Bayesian Approach to EIT: Analysis and Algorithms

Matt Dunlop

Mathematics Institute, University of Warwick

Joint work with Andrew Stuart (Warwick) and Marco Iglesias (Nottingham)

University of Reading May 29th 2015

- 1 Introduction and background
- 2 The forward model
- The inverse problem
- 4 Likelihood and posterior distribution
- 5 A hierarchical Bayesian approach

Introduction

- Electrical Impedance Tomography (EIT) is an imaging technique in which the conductivity of a body is inferred from electrode measurements on its surface
- ► Applications range from non-invasive medical imaging to monitoring oil flow in pipelines
- Abstract formulation of the problem given by Calderón: can the coefficient of a divergence form elliptic PDE be recovered from knowledge of its Neumann-to-Dirichlet operator?

Specifically, if $g \in H^{-1/2}(\partial D)$ is given and $u \in H^1(D)$ solves

$$\nabla \cdot (\sigma \nabla u) = 0 \ \text{ in } D, \quad \sigma \frac{\partial u}{\partial \nu} = g \ \text{ on } \partial D$$

does the pair $(u|_{\partial D}, g)$ determine σ ?

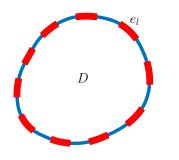
Introduction

- We work with a more physically appropriate version of the problem above
- ► The problem is ill posed, so we take a probabilistic (Bayesian) approach
- ▶ I'll discuss choices of prior distribution, and existence and well-posedness of the resulting posterior distribution
- ▶ I'll also present some numerical simulations

- Introduction and background
- 2 The forward model
- The inverse problem
- 4 Likelihood and posterior distribution
- 5 A hierarchical Bayesian approach

The forward model

$$\begin{cases}
-\nabla \cdot (\sigma(x)\nabla u(x)) = 0 & x \in D \\
\int_{e_l} \sigma \frac{\partial u}{\partial n} \, dS = I_l & l = 1, \dots, L \\
\sigma(x) \frac{\partial u}{\partial n}(x) = 0 & x \in \partial D \setminus \bigcup_{l=1}^L e_l \\
u(x) + z_l \sigma(x) \frac{\partial u}{\partial n}(x) = U_l & x \in e_l, l = 1, \dots, L
\end{cases}$$
(PDE)



 $\begin{array}{l} \text{Input: } \sigma:D\to\mathbb{R}\text{, } (I_l)\in\mathbb{R}^L\\ \text{Output: } u:D\to\mathbb{R}\text{, } (U_l)\in\mathbb{R}^L \end{array}$

Existence and uniqueness

Denote $\mathbb{H} = H^1(D) \times \mathbb{R}^L$.

Theorem (Cheney et al [SCI92])

Let $\sigma \in \mathcal{A}(D)$. Then there exists a unique $(u,U) \in \mathbb{H}$ solving the weak form of (PDE), with $\sum_{l=1}^L U_l = 0$

- Fixing a current stimulation pattern and contact impedances $(I_l), (z_l) \in \mathbb{R}^L$, the map $\mathcal{M} : \sigma \mapsto (u, U)$ is hence well-defined.
- ▶ It is shown in [KKSV00] that if we equip $\mathcal{A}(D)$ with $\|\cdot\|_{\infty}$, this map is Fréchet differentiable
- ► For the conductivities we will be considering, this choice of norm is not appropriate. We establish the following continuity result.

Continuity of forward map

Proposition

Fix a current stimulation pattern $(I_l) \in \mathbb{R}^L$ and contact impedances $(z_l) \in \mathbb{R}^L$. Define the solution map $\mathcal{M} : \mathcal{A}(D) \to \mathbb{H}$ as above. Let $\sigma \in \mathcal{A}(D)$ and let $(\sigma_n)_{n \geq 1} \subseteq \mathcal{A}(D)$ be such that either

- (i) σ_n converges to σ uniformly; or
- (ii) σ_n converges to σ in measure, and there exist $\sigma^-, \sigma^+ \in \mathbb{R}$ such that for all n > 0 and $x \in D$, $0 < \sigma^- \le \sigma_n(x) \le \sigma^+ < \infty$.

Then $\|\mathcal{M}(\sigma_n) - \mathcal{M}(\sigma)\|_{\mathbb{H}} \to 0$.

▶ Since the projection $\Pi:(u,U)\mapsto U$ is continuous, we also have that $|(\Pi\circ\mathcal{M})(\sigma_n)-(\Pi\circ\mathcal{M})(\sigma)|\to 0$ above.

- Introduction and background
- 2 The forward model
- The inverse problem
- 4 Likelihood and posterior distribution
- 5 A hierarchical Bayesian approach

The inverse problem

▶ Given a conductivity field $\sigma \in \mathcal{A}(D)$, the boundary voltage measurements $U(\sigma)$ arising from the solution of the forward model are related to the current stimulation pattern I via Ohm's law:

$$U(\sigma) = R(\sigma)I$$

Assume that J linearly independent current patterns $I^{(j)} \in \mathbb{R}^L$, $j=1,\ldots,J$, $J\leq L-1$ are applied, and noisy measurements of $U^{(j)}(\sigma)=R(\sigma)I^{(j)}$ are made:

$$y_j = U^{(j)}(\sigma) + \eta_j, \quad \eta_j \sim N(0, \Gamma_0) \text{ iid}$$

► Concatenating these observations, we write

$$y = \mathcal{G}(\sigma) + \eta, \quad \eta \sim N(0, \Gamma)$$

 $\Gamma = \operatorname{diag}(\Gamma_0, \dots, \Gamma_0)$

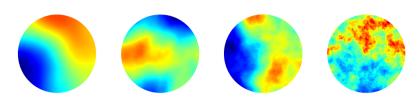
▶ The inverse problem is then to recover the conductivity field σ from the data y.

Choices of prior

- ▶ This inverse problem is highly ill-posed, so we take a Bayesian approach by placing a prior probability distribution on σ
- lacktriangle A solution to the problem is then the posterior distribution u|y of the state u given data y, arising from an application of Bayes' theorem
- ▶ We consider three functions $F: X \to \mathcal{A}(D)$ which map draws from prior measures μ_0 on Banach spaces X to the space of conductivities $\mathcal{A}(D)$
- Our prior conductivity distributions will then be $F^*(\mu_0)$, the push forward of the prior measures by these maps F
- lacktriangle Regularity of these maps F will be important for existence of the posterior

Prior 1: Log-Gaussian

- ▶ A simple one to start with: let $F_{\exp}: C^0(\overline{D}) \to \mathcal{A}(D)$ be defined by $F_{\exp}(\varphi) = \exp(\varphi)$
- ▶ Typical samples from $F^*_{\exp}(\mu_0)$ when $\mu_0 = N(0, (-\Delta)^{-\alpha})$ for various α :



Prior 2: Star-shaped

- ► Formally, take a positive periodic function on a line segment/rectangle R, and wrap it around a circle/sphere using polar coordinates to give a closed curve/surface
- Assign one positive value to points within the resulting region, and another to those outside
- Also allow for variation of the centre of the polar coordinate system
- ▶ This defines a map $F_{\text{star}}: C^0_{\text{per}}(R) \times D \to \mathcal{A}(D)$
- ▶ Typical samples from $F^*_{\mathrm{star}}(\sigma_0 \otimes \tau_0)$ when τ_0 is uniform and $\sigma_0 = \log N(0, (-\Delta)^{-\alpha})$ for various α :

Prior 3: Level set

- These priors are discussed in [ILS]. We give an overview of binary field case
- ▶ Let $f_1, f_2 \in C^0(\overline{D})$ be fixed positive functions. Then we can define $F_{\text{lvl}}: C^0(\overline{D}) \to \mathcal{A}(D)$ by

$$F_{\mathrm{lvl}}(\varphi) = f_1 \mathbb{1}_{\varphi > 0} + f_2 \mathbb{1}_{\varphi < 0}$$

▶ Typical samples from $F_{\mathrm{lvl}}^*(\mu_0)$ when $\mu_0 = N(0, (-\Delta)^{-\alpha})$ for various α :

- Introduction and background
- 2 The forward model
- The inverse problem
- 4 Likelihood and posterior distribution
- 5 A hierarchical Bayesian approach

The forward map and likelihood

- ▶ Let X be a separable Banach space and $F: X \to \mathcal{A}(D)$ a map from the state space to the conductivity space.
- ▶ Choose a set of current stimulation patterns $I^{(j)} \in \mathbb{R}^L$, $j=1,\ldots,J$ and let $\mathcal{M}_j:\mathcal{A}(D) \to \mathbb{H}$ denote the solution map when using stimulation pattern $I^{(j)}$.
- ▶ Define the projection map $\Pi : \mathbb{H} \to \mathbb{R}^L$ by $\Pi(u, U) = U$.
- ▶ Define $\mathcal{G}_j: X \to \mathbb{R}^L$ by $\mathcal{G}_j = \Pi \circ \mathcal{M}_j \circ F$, and let $\mathcal{G}: X \to \mathbb{R}^{JL}$ denote the concatenation of these \mathcal{G}_j .
- lacktriangle As before, we assume the data $y \in Y := \mathbb{R}^{JL}$ arises via

$$y = \mathcal{G}(u) + \eta, \quad \eta \sim \mathbb{Q}_0 := N(0, \Gamma)$$

The forward map and likelihood

- Assume that $u \sim \mu_0$, where μ_0 is independent of \mathbb{Q}_0 . From the above, we see that $y|u \sim \mathbb{Q}_u := N(\mathcal{G}(u), \Gamma)$. This can be used to formally find the distribution of u|y.
- ► First note that

$$\frac{\mathrm{d}\mathbb{Q}_u}{\mathrm{d}\mathbb{Q}_0}(y) = \exp\left(-\Phi(u;y) + \frac{1}{2}|y|_{\Gamma}^2\right)$$

where the potential $\Phi: X \times Y \to \mathbb{R}$ is given by

$$\Phi(u;y) = \frac{1}{2}|\mathcal{G}(u) - y|_{\Gamma}^{2} \tag{1}$$

▶ Then under suitable regularity conditions, Bayes' theorem tells us that the distribution μ^y of u|y satisfies

$$\mu^y(\mathrm{d}u) \propto \exp(-\Phi(u;y))\mu_0(\mathrm{d}u)$$

after absorbing the $\exp(\frac{1}{2}|y|_{\Gamma}^2)$ term into the normalisation constant.

Existence of posterior

Theorem (Existence)

Let (X, \mathcal{F}, μ_0) denote any of the probability spaces associated with the priors introduced previously, and let $\Phi: X \times Y \to \mathbb{R}$ be the potential associated with the corresponding forward map. Then the posterior distribution μ^y of the state u given data y is well-defined. Furthermore, $\mu^y \ll \mu_0$ with Radon-Nikodym derivative

$$\frac{\mathrm{d}\mu^y}{\mathrm{d}\mu_0}(u) = \frac{1}{Z}\exp(-\Phi(u;y))$$

where

$$Z := \int_X \exp(-\Phi(u; y)) \,\mu_0(\mathrm{d}u) > 0$$

Well-posedness of posterior

Theorem (Well-posedness)

Let (X, \mathcal{F}, μ_0) denote any of the probability spaces associated with the priors introduced previously, and let $\Phi: X \times Y \to \mathbb{R}$ be the potential associated with the corresponding forward map. Then the posterior measure μ^y is locally Lipschitz with respect to y, in the Hellinger distance.

As a consequence, if $y,y'\in B_Y(r)$ and $f\in L^2(X,\mu_0)$, then there is a C=C(r)>0 such that

$$|\mathbb{E}^{\mu^y} f(u) - \mathbb{E}^{\mu^{y'}} f(u)| \le C|y - y'|_Y$$

- Introduction and background
- 2 The forward model
- The inverse problem
- 4 Likelihood and posterior distribution
- 5 A hierarchical Bayesian approach

A hierarchical Bayesian approach

- We do not know a priori how clustered together different inclusions will be - there is an intrinsic length scale associated with the conductivity.
- Suppose that our Gaussian prior has stationary covariance function

$$\mathbb{E}u(x)u(y) = c(x,y) = h(|x-y|)$$

We can then define the family of covariances

$$c_{\ell}(x,y) = h\left(\frac{|x-y|}{\ell}\right)$$

We treat this parameter ℓ as an additional unknown and place a hyper-prior on it.

References

- Masoumeh Dashti and Andrew M. Stuart, *The Bayesian Approach* to Inverse Problems, arXiv.
- Marco A. Iglesias, Yulong Lu, and Andrew M. Stuart, A Bayesian Level Set Method for Geometric Inverse Problems, arXiv.
- Jari P. Kaipio, Ville Kolehmainen, Erkki Somersalo, and Marko Vauhkonen, *Statistical inversion and Monte Carlo sampling methods in electrical impedance tomography*, Inverse Problems **16** (2000), no. 5, 1487–1522.
- Sari Lasanen, Janne M. J. Huttunen, and Lassi Roininen, Whittle-Matérn priors for Bayesian statistical inversion with applications in electrical impedance tomography, Inverse Problems and Imaging 8 (2014), no. 2, 561–586.
- Erkki Somersalo, Margaret Cheney, and David Isaacson, *Existence* and *Uniqueness for Electrode Models for Electric Current Computed Tomography*, SIAM Journal on Applied Mathematics **52** (1992), Moo. 4, 1023–1040.