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Introduction

I Electrical Impedance Tomography (EIT) is an imaging
technique in which the conductivity of a body is inferred from
electrode measurements on its surface

I Applications range from non-invasive medical imaging to
monitoring oil flow in pipelines

I Abstract formulation of the problem given by Calderón: can
the coefficient of a divergence form elliptic PDE be recovered
from knowledge of its Neumann-to-Dirichlet operator?

Specifically, if g ∈ H−1/2(∂D) is given and u ∈ H1(D) solves

∇ · (σ∇u) = 0 in D, σ
∂u

∂ν
= g on ∂D

does the pair (u|∂D, g) determine σ?



Introduction

I We work with a more physically appropriate version of the
problem above

I The problem is ill posed, so we take a probabilistic (Bayesian)
approach

I I’ll discuss choices of prior distribution, and existence and
well-posedness of the resulting posterior distribution

I I’ll also present some numerical simulations
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The forward model
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−∇ · (σ(x)∇u(x)) = 0 x ∈ D∫
el

σ
∂u

∂n
dS = Il l = 1, . . . , L

σ(x)
∂u

∂n
(x) = 0 x ∈ ∂D \

⋃L
l=1 el

u(x) + zlσ(x)
∂u

∂n
(x) = Ul x ∈ el, l = 1, . . . , L

(PDE)

D

el

Input: σ : D → R, (Il) ∈ RL
Output: u : D → R, (Ul) ∈ RL



Existence and uniqueness

Denote H = H1(D)× RL.

Theorem (Cheney et al [SCI92])

Let σ ∈ A(D). Then there exists a unique (u, U) ∈ H solving the
weak form of (PDE), with

∑L
l=1 Ul = 0

I Fixing a current stimulation pattern and contact impedances
(Il), (zl) ∈ RL, the map M : σ 7→ (u, U) is hence
well-defined.

I It is shown in [KKSV00] that if we equip A(D) with ‖ · ‖∞,
this map is Fréchet differentiable

I For the conductivities we will be considering, this choice of
norm is not appropriate. We establish the following continuity
result.



Continuity of forward map

Proposition

Fix a current stimulation pattern (Il) ∈ RL and contact
impedances (zl) ∈ RL. Define the solution map M : A(D)→ H
as above. Let σ ∈ A(D) and let (σn)n≥1 ⊆ A(D) be such that
either

(i) σn converges to σ uniformly; or

(ii) σn converges to σ in measure, and there exist σ−, σ+ ∈ R
such that for all n > 0 and x ∈ D,
0 < σ− ≤ σn(x) ≤ σ+ <∞.

Then ‖M(σn)−M(σ)‖H → 0.

I Since the projection Π : (u, U) 7→ U is continuous, we also
have that |(Π ◦M)(σn)− (Π ◦M)(σ)| → 0 above.
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The inverse problem

I Given a conductivity field σ ∈ A(D), the boundary voltage
measurements U(σ) arising from the solution of the forward model
are related to the current stimulation pattern I via Ohm’s law:

U(σ) = R(σ)I

I Assume that J linearly independent current patterns I(j) ∈ RL,
j = 1, . . . , J , J ≤ L− 1 are applied, and noisy measurements of
U (j)(σ) = R(σ)I(j) are made:

yj = U (j)(σ) + ηj , ηj ∼ N(0,Γ0) iid

I Concatenating these observations, we write

y = G(σ) + η, η ∼ N(0,Γ)

Γ = diag(Γ0, . . . ,Γ0)

I The inverse problem is then to recover the conductivity field σ from
the data y.



Choices of prior

I This inverse problem is highly ill-posed, so we take a Bayesian
approach by placing a prior probability distribution on σ

I A solution to the problem is then the posterior distribution
u|y of the state u given data y, arising from an application of
Bayes’ theorem

I We consider three functions F : X → A(D) which map draws
from prior measures µ0 on Banach spaces X to the space of
conductivities A(D)

I Our prior conductivity distributions will then be F ∗(µ0), the
push forward of the prior measures by these maps F

I Regularity of these maps F will be important for existence of
the posterior



Prior 1: Log-Gaussian

I A simple one to start with: let Fexp : C0(D)→ A(D) be defined by
Fexp(ϕ) = exp(ϕ)

I Typical samples from F ∗
exp(µ0) when µ0 = N(0, (−∆)−α) for

various α:



Prior 2: Star-shaped

I Formally, take a positive periodic function on a line
segment/rectangle R, and wrap it around a circle/sphere
using polar coordinates to give a closed curve/surface

I Assign one positive value to points within the resulting region,
and another to those outside

I Also allow for variation of the centre of the polar coordinate
system

I This defines a map Fstar : C0
per(R)×D → A(D)

I Typical samples from F ∗star(σ0 ⊗ τ0) when τ0 is uniform and
σ0 = logN(0, (−∆)−α) for various α:



Prior 3: Level set

I These priors are discussed in [ILS]. We give an overview of
binary field case

I Let f1, f2 ∈ C0(D) be fixed positive functions. Then we can
define Flvl : C0(D)→ A(D) by

Flvl(ϕ) = f11ϕ≥0 + f21ϕ<0

I Typical samples from F ∗lvl(µ0) when µ0 = N(0, (−∆)−α) for
various α:
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The forward map and likelihood

I Let X be a separable Banach space and F : X → A(D) a
map from the state space to the conductivity space.

I Choose a set of current stimulation patterns I(j) ∈ RL,
j = 1, . . . , J and let Mj : A(D)→ H denote the solution
map when using stimulation pattern I(j).

I Define the projection map Π : H→ RL by Π(u, U) = U .

I Define Gj : X → RL by Gj = Π ◦Mj ◦ F , and let
G : X → RJL denote the concatenation of these Gj .

I As before, we assume the data y ∈ Y := RJL arises via

y = G(u) + η, η ∼ Q0 := N(0,Γ)



The forward map and likelihood

I Assume that u ∼ µ0, where µ0 is independent of Q0. From
the above, we see that y|u ∼ Qu := N(G(u),Γ). This can be
used to formally find the distribution of u|y.

I First note that

dQu

dQ0
(y) = exp

(
−Φ(u; y) +

1

2
|y|2Γ

)
where the potential Φ : X × Y → R is given by

Φ(u; y) =
1

2
|G(u)− y|2Γ (1)

I Then under suitable regularity conditions, Bayes’ theorem tells
us that the distribution µy of u|y satisfies

µy(du) ∝ exp(−Φ(u; y))µ0(du)

after absorbing the exp(1
2 |y|

2
Γ) term into the normalisation

constant.



Existence of posterior

Theorem (Existence)

Let (X,F , µ0) denote any of the probability spaces associated with
the priors introduced previously, and let Φ : X × Y → R be the
potential associated with the corresponding forward map. Then the
posterior distribution µy of the state u given data y is well-defined.
Furthermore, µy � µ0 with Radon-Nikodym derivative

dµy

dµ0
(u) =

1

Z
exp(−Φ(u; y))

where

Z :=

∫
X

exp(−Φ(u; y))µ0(du) > 0



Well-posedness of posterior

Theorem (Well-posedness)

Let (X,F , µ0) denote any of the probability spaces associated with
the priors introduced previously, and let Φ : X × Y → R be the
potential associated with the corresponding forward map. Then
the posterior measure µy is locally Lipschitz with respect to y, in
the Hellinger distance.

As a consequence, if y, y′ ∈ BY (r) and f ∈ L2(X,µ0), then there
is a C = C(r) > 0 such that

|Eµyf(u)− Eµ
y′
f(u)| ≤ C|y − y′|Y
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A hierarchical Bayesian approach

I We do not know a priori how clustered together different
inclusions will be - there is an intrinsic length scale associated
with the conductivity.

I Suppose that our Gaussian prior has stationary covariance
function

Eu(x)u(y) = c(x, y) = h(|x− y|)

I We can then define the family of covariances

c`(x, y) = h

(
|x− y|
`

)
I We treat this parameter ` as an additional unknown and place

a hyper-prior on it.
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