The Bayesian Formulation of EIT

Matt Dunlop

Mathematics Institute, University of Warwick, U.K.

Joint work with Andrew Stuart (Warwick)

SIAM UQ 2016, Lausanne, Switzerland, April 5th.

Outline

- 2 The Forward Model
- 3 The Inverse Problem
- 4 Likelihood and Posterior Distribution
- 5 Numerical Experiments

Introduction

- Electrical Impedance Tomography (EIT) is an imaging technique in which the conductivity of a body is inferred from electrode measurements on its surface.
- Applications range from non-invasive medical imaging to monitoring oil flow in pipelines.
- Abstract formulation of the problem given by Calderón: can the coefficient of a divergence form elliptic PDE be recovered from knowledge of its Neumann-to-Dirichlet operator?

Specifically, if $g \in H^{-1/2}(\partial D)$ is given and $u \in H^1(D)$ solves

$$abla \cdot (\sigma \nabla u) = 0 \text{ in } D, \quad \sigma \frac{\partial u}{\partial \nu} = g \text{ on } \partial D$$

does the mapping $\Lambda_{\sigma} : g \mapsto u|_{\partial D}$ determine σ ?

Introduction

- The problem has received much study. Some significant results concern, e.g.,
 - Uniqueness (Sylvester, Uhlmann, '87)
 - Reconstruction (Nachman, '88)
 - Stability (Alessandrini, '88)
 - Partial data (Kenig, Sjöstrand, Uhlmann, '03)
- We work with a more physically appropriate model of the problem above, introduced in (Somersalo, Cheney, Isaacson, '92).
- The problem is ill posed, so we take a probabilistic (Bayesian) approach.
- I'll discuss choices of prior distribution, existence and well-posedness of the resulting posterior distribution, and numerical experiments.

Forward Model: Definition

Forward Model: Assumptions

Definition

A conductivity field $\sigma: \mathcal{D} \to \mathbb{R}$ is said to be admissible if

(i) There exists N ∈ N, {D_n}^N_{n=1} open disjoint subsets of D for which D = ∪^N_{n=1} D_n
(ii) σ|_{D_n} ∈ C(D_n)
(iii) There exist σ⁻, σ⁺ ∈ ℝ such that 0 < σ⁻ ≤ σ(x) ≤ σ⁺ < ∞ for all x ∈ D.

The set of all such conductivities will be denoted $\mathcal{A}(D)$.

Throughout we will assume that $\{z_{\ell}\} \in \mathbb{R}^{L}$ and $\{I_{\ell}\} \in \mathbb{R}^{L}$ satisfy (i) $0 < z_{-} \leq z_{\ell} \leq z_{+} < \infty$, $\ell = 1, ..., L$, (ii) $\sum_{\ell=1}^{L} I_{\ell} = 0$.

Forward Model: Existence and Uniqueness

Denote $\mathbb{H} = H^1(D) \times \mathbb{R}^L$.

Theorem (Somersalo, Cheney, Isaacson, '92)

Let $\sigma \in \mathcal{A}(D)$. Then there exists a unique $(\theta, \Theta) \in \mathbb{H}$ solving the weak form of (PDE), with $\sum_{\ell=1}^{L} \Theta_{\ell} = 0$.

- Fixing a current stimulation pattern and contact impedances $\{I_{\ell}\}, \{z_{\ell}\} \in \mathbb{R}^{L}$, the map $\mathcal{M} : \sigma \mapsto (\theta, \Theta)$ is hence well-defined.
- It has been shown (Kaipio et al, '00) that if we equip $\mathcal{A}(D)$ with $\|\cdot\|_{\infty}$, this map is Fréchet differentiable.
- For the conductivities we will be considering, this choice of norm is not appropriate. We establish the following continuity result.

Forward Map: Continuity

Proposition (D, Stuart, '15)

Fix a current stimulation pattern $\{I_{\ell}\} \in \mathbb{R}^{L}$ and contact impedances $\{z_{\ell}\} \in \mathbb{R}^{L}$. Define the solution map $\mathcal{M} : \mathcal{A}(D) \to \mathbb{H}$ as above. Let $\sigma \in \mathcal{A}(D)$ and let $\{\sigma_n\}_{n \geq 1} \subseteq \mathcal{A}(D)$ be such that either

(i) σ_n converges to σ uniformly; or

(ii) σ_n converges to σ in measure, and there exist $\sigma^-, \sigma^+ \in \mathbb{R}$ such that for all n > 0 and $x \in D$, $0 < \sigma^- \le \sigma_n(x) \le \sigma^+ < \infty$.

Then $\|\mathcal{M}(\sigma_n) - \mathcal{M}(\sigma)\|_{\mathbb{H}} \to 0$.

Since the projection Π : (θ, Θ) → Θ is continuous, we also have that |(Π ∘ M)(σ_n) − (Π ∘ M)(σ)| → 0 above.

The Inverse Problem

 Given a conductivity field σ ∈ A(D), the boundary voltage measurements Θ(σ) arising from the solution of the forward model are related to the current stimulation pattern *I* via Ohm's law:

$$\Theta(\sigma) = R(\sigma)I$$

• Assume that *J* linearly independent current patterns $I^{(j)} \in \mathbb{R}^L$, $j = 1, ..., J, J \leq L - 1$ are applied, and noisy measurements of $\Theta^{(j)}(\sigma) = R(\sigma)I^{(j)}$ are made:

$$\mathbf{y}_{j} = \Theta^{(j)}(\sigma) + \eta_{j}, \quad \eta_{j} \sim \mathbf{N}(\mathbf{0}, \Gamma_{\mathbf{0}}) \text{ iid}$$

Concatenating these observations, we write

$$\begin{aligned} y &= \mathcal{G}(\sigma) + \eta, \quad \eta \sim \textit{N}(0, \Gamma) \\ \Gamma &= \text{diag}(\Gamma_0, \dots, \Gamma_0) \end{aligned}$$

• The inverse problem is to recover the conductivity field σ from the data y.

Choice of Prior Distribution

- This inverse problem is highly ill-posed, so we take a Bayesian approach by placing a prior probability distribution on *σ*.
- A solution to the problem is then the posterior distribution *σ*|*y* of the conductivity *σ* given data *y*, arising from an application of Bayes' theorem
- We consider three functions *F* : *X* → *A*(*D*) which map draws from prior measures µ₀ on Banach spaces *X* to the space of conductivities *A*(*D*)
- Our prior conductivity distributions will then be *F*^{*}(μ₀), the push forward of the prior measures by these maps *F*
- Regularity of these maps F will be important for existence of the posterior

Prior Model #1: Log-Gaussian

- A simple one to start with: let $F_{exp} : C^0(\overline{D}) \to \mathcal{A}(D)$ be defined by $F_{exp}(u) = exp(u)$.
- If $u_n \to u$ in $C^0(\overline{D})$, then we have $\|F_{exp}(u_n) F_{exp}(u)\|_{\infty} \to 0$.
- Take μ_0 to be Gaussian.
- Typical samples from $F^*_{exp}(\mu_0)$ when $\mu_0 = N(0, (-\Delta)^{-\alpha})$ for various α :

Prior Model #2: Star-shaped

- Formally, take a positive periodic function on a line segment/rectangle *R*, and wrap it around a circle/sphere using polar coordinates to give a closed curve/surface.
- Assign one positive value to points within the resulting region, and another to those outside.
- Also allow for variation of the centre of the polar coordinate system.
- This defines a map F_{star} : $C_{\text{per}}^{0}(R) \times D \rightarrow \mathcal{A}(D)$.
- It can be shown that if $x_0 \in D$ and $r \in C_{per}^0$ is Lipschitz continuous, then $r_n \to r$ and $x_0^n \to x_0$ implies that $F_{star}(r_\varepsilon, x_0^\varepsilon) \to F_{star}(r, x_0)$ in measure.

Prior Model #2: Star-shaped

- We assume that *r* and x₀ are independent under the prior so that we may factor μ₀ = σ₀ × τ₀.
- Assume that both σ₀(B) > 0 for all balls B, and τ₀ has exponential moments.
- Typical samples from F^{*}_{star}(μ₀) when σ₀ = log N(0, (-Δ)^{-α}) for various α and τ₀ is uniform:

Prior Model #3: Level Set

- These priors are discussed in (Iglesias, Lu, Stuart, '16). We give an overview of two-region case
- Let $\sigma_+, \sigma_- > 0$ be fixed positive numbers. Then we can define $F_{lvl}: C^0(\overline{D}) \to \mathcal{A}(D)$ by

$$F_{\mathrm{lvl}}(u) = \sigma_+ \mathbb{1}_{u \ge 0} + \sigma_- \mathbb{1}_{u < 0}$$

- It can be shown that if $u \in C^0(\overline{D})$ and $|\{u = 0\}| = 0$, then $u_n \to u$ implies that $F_{IvI}(u_n) \to F_{IvI}(u)$ in measure
- The assumption that the zero level set has zero measure is in important one, and can be enforced (almost-surely) by choice of prior.

Prior Model #3: Level Set

- Take μ_0 to be Gaussian.
- Typical samples from F^{*}_{lvl}(μ₀) when μ₀ = N(0, (-Δ)^{-α}) for various α:

Remark

From the regularity result for the forward map \mathcal{M} , we now know that $\Pi \circ \mathcal{M} \circ F : X \to \mathbb{R}^{L}$ is continuous μ_{0} -a.s. for all three of the choices (F, X) outlined above.

The Forward Map & Likelihood

- Let X be a separable Banach space and F : X → A(D) a map from the state space to the conductivity space.
- Choose a set of current stimulation patterns *I*^(j) ∈ ℝ^L, *j* = 1,..., *J* and let *M_j* : *A*(*D*) → ℍ denote the solution map when using stimulation pattern *I*^(j).
- Define the projection map $\Pi : \mathbb{H} \to \mathbb{R}^L$ by $\Pi(u, U) = U$.
- Define G_j : X → ℝ^L by G_j = Π ∘ M_j ∘ F, and let G : X → ℝ^{JL} denote the concatenation of these G_j.
- As before, we assume the data $y \in Y := \mathbb{R}^{JL}$ arises via

$$y = \mathcal{G}(u) + \eta, \ \eta \sim \mathbb{Q}_0 := N(0, \Gamma)$$

The Forward Map and Likelihood

- Assume that u ~ μ₀, where μ₀ is independent of Q₀. From the above, we see that y|u ~ Q_u := N(G(u), Γ). This can be used to formally find the distribution of u|y.
- First note that

$$\frac{\mathsf{d}\mathbb{Q}_{u}}{\mathsf{d}\mathbb{Q}_{0}}(y) = \exp\left(-\Phi(u;y) + \frac{1}{2}|y|_{\mathsf{F}}^{2}\right)$$

where the potential $\Phi : X \times Y \to \mathbb{R}$ is given by

$$\Phi(u; y) = \frac{1}{2} |\mathcal{G}(u) - y|_{\Gamma}^2.$$

 Then under suitable regularity conditions, Bayes' theorem tells us that the distribution μ^y of u|y satisfies

$$\frac{\mathsf{d}\mu^{\mathbf{y}}}{\mathsf{d}\mu_0}(u)\propto\exp(-\Phi(u;\mathbf{y}))$$

after absorbing the $\exp(\frac{1}{2}|y|_{\Gamma}^2)$ term into the normalisation constant.

Matt Dunlop (Warwick)

Theorem (D, Stuart, '15)

Let (X, \mathcal{F}, μ_0) denote any of the probability spaces associated with the priors introduced previously, and let $\Phi : X \times Y \to \mathbb{R}$ be the potential associated with the corresponding forward map. Then the posterior distribution μ^y of the state u given data y is well-defined. Furthermore, $\mu^y \ll \mu_0$ with Radon-Nikodym derivative

$$rac{d\mu^{y}}{d\mu_{0}}(u)\propto\exp(-\Phi(u;y)).$$

Additionally, μ^{y} locally Lipschitz with respect to y, in the Hellinger distance, and so if y, y' \in Y and $f \in L^{2}_{\mu_{0}}(X; S)$, then there is a C > 0 such that

$$|\mathbb{E}^{\mu^{\mathbf{y}}}f(u)-\mathbb{E}^{\mu^{\mathbf{y}'}}f(u)|\leq C|\mathbf{y}-\mathbf{y}'|_{\mathbf{Y}}.$$

References

- Masoumeh Dashti and Andrew M. Stuart, The Bayesian Approach to Inverse Problems, arXiv.
- Marco A. Iglesias, Yulong Lu, and Andrew M. Stuart, *A Bayesian Level* Set Method for Geometric Inverse Problems, arXiv.
- Jari P. Kaipio, Ville Kolehmainen, Erkki Somersalo, and Marko Vauhkonen, Statistical inversion and Monte Carlo sampling methods in electrical impedance tomography, Inverse Problems 16 (2000), no. 5, 1487–1522.
- Sari Lasanen, Janne M. J. Huttunen, and Lassi Roininen, Whittle-Matérn priors for Bayesian statistical inversion with applications in electrical impedance tomography, Inverse Problems and Imaging 8 (2014), no. 2, 561–586.
- Erkki Somersalo, Margaret Cheney, and David Isaacson, Existence and Uniqueness for Electrode Models for Electric Current Computed Tomography, SIAM Journal on Applied Mathematics 52 (1992), no. 4, 1023–1040.

Thank you!