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Introduction

Electrical Impedance Tomography (EIT) is an imaging technique
in which the conductivity of a body is inferred from electrode
measurements on its surface.
Applications range from non-invasive medical imaging to
monitoring oil flow in pipelines.
Abstract formulation of the problem given by Calderón: can the
coefficient of a divergence form elliptic PDE be recovered from
knowledge of its Neumann-to-Dirichlet operator?

Specifically, if g ∈ H−1/2(∂D) is given and u ∈ H1(D) solves

∇ · (σ∇u) = 0 in D, σ
∂u
∂ν

= g on ∂D

does the mapping Λσ : g 7→ u|∂D determine σ?
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Introduction

The problem has received much study. Some significant results
concern, e.g.,

I Uniqueness (Sylvester, Uhlmann, ‘87)
I Reconstruction (Nachman, ‘88)
I Stability (Alessandrini, ‘88)
I Partial data (Kenig, Sjöstrand, Uhlmann, ‘03)

We work with a more physically appropriate model of the problem
above, introduced in (Somersalo, Cheney, Isaacson, ‘92).
The problem is ill posed, so we take a probabilistic (Bayesian)
approach.
I’ll discuss choices of prior distribution, existence and
well-posedness of the resulting posterior distribution, and
numerical experiments.
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D

el

Forward Model: Definition
Apply currents I` on
e`, ` = 1, . . . ,L.
Induces voltages Θ` on
e`, ` = 1, . . . ,L.
Input is (σ, I), output is (θ,Θ).
We have an Ohm’s law
Θ = R(σ)I.



−∇ · (σ(x)∇θ(x)) = 0 x ∈ D∫
e`

σ
∂θ

∂ν
dS = I` ` = 1, . . . ,L

σ(x)
∂θ

∂ν
(x) = 0 x ∈ ∂D \

⋃L
`=1 e`

θ(x) + z`σ(x)
∂θ

∂ν
(x) = Θ` x ∈ e`, ` = 1, . . . ,L

(PDE)
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Forward Model: Assumptions

Definition

A conductivity field σ : D → R is said to be admissible if
(i) There exists N ∈ N, {Dn}Nn=1 open disjoint subsets of D for which

D =
⋃N

n=1 Dn

(ii) σ
∣∣
Dn
∈ C(Dn)

(iii) There exist σ−, σ+ ∈ R such that 0 < σ− ≤ σ(x) ≤ σ+ <∞ for all
x ∈ D.

The set of all such conductivities will be denoted A(D).

Throughout we will assume that {z`} ∈ RL and {I`} ∈ RL satisfy
(i) 0 < z− ≤ z` ≤ z+ <∞, ` = 1, . . . ,L,

(ii)
L∑
`=1

I` = 0.
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Forward Model: Existence and Uniqueness

Denote H = H1(D)× RL.

Theorem (Somersalo, Cheney, Isaacson, ‘92)
Let σ ∈ A(D). Then there exists a unique (θ,Θ) ∈ H solving the weak
form of (PDE), with

∑L
`=1 Θ` = 0.

Fixing a current stimulation pattern and contact impedances
{I`}, {z`} ∈ RL, the mapM : σ 7→ (θ,Θ) is hence well-defined.
It has been shown (Kaipio et al, ‘00) that if we equip A(D) with
‖ · ‖∞, this map is Fréchet differentiable.
For the conductivities we will be considering, this choice of norm
is not appropriate. We establish the following continuity result.
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Forward Map: Continuity

Proposition (D, Stuart, ‘15)

Fix a current stimulation pattern {I`} ∈ RL and contact impedances
{z`} ∈ RL. Define the solution mapM : A(D)→ H as above. Let
σ ∈ A(D) and let {σn}n≥1 ⊆ A(D) be such that either

(i) σn converges to σ uniformly; or
(ii) σn converges to σ in measure, and there exist σ−, σ+ ∈ R such

that for all n > 0 and x ∈ D, 0 < σ− ≤ σn(x) ≤ σ+ <∞.
Then ‖M(σn)−M(σ)‖H → 0.

Since the projection Π : (θ,Θ) 7→ Θ is continuous, we also have
that |(Π ◦M)(σn)− (Π ◦M)(σ)| → 0 above.
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The Inverse Problem

Given a conductivity field σ ∈ A(D), the boundary voltage
measurements Θ(σ) arising from the solution of the forward model are
related to the current stimulation pattern I via Ohm’s law:

Θ(σ) = R(σ)I

Assume that J linearly independent current patterns I(j) ∈ RL,
j = 1, . . . , J, J ≤ L− 1 are applied, and noisy measurements of
Θ(j)(σ) = R(σ)I(j) are made:

yj = Θ(j)(σ) + ηj , ηj ∼ N(0, Γ0) iid

Concatenating these observations, we write

y = G(σ) + η, η ∼ N(0, Γ)

Γ = diag(Γ0, . . . , Γ0)

The inverse problem is to recover the conductivity field σ from the data y .

Matt Dunlop (Warwick) The Bayesian Formulation of EIT April 5th 2016 9 / 22



Choice of Prior Distribution

This inverse problem is highly ill-posed, so we take a Bayesian
approach by placing a prior probability distribution on σ.
A solution to the problem is then the posterior distribution σ|y of
the conductivity σ given data y , arising from an application of
Bayes’ theorem
We consider three functions F : X → A(D) which map draws from
prior measures µ0 on Banach spaces X to the space of
conductivities A(D)

Our prior conductivity distributions will then be F ∗(µ0), the push
forward of the prior measures by these maps F
Regularity of these maps F will be important for existence of the
posterior
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Prior Model #1: Log-Gaussian

A simple one to start with: let Fexp : C0(D)→ A(D) be defined by
Fexp(u) = exp(u).

If un → u in C0(D), then we have ‖Fexp(un)− Fexp(u)‖∞ → 0.

Take µ0 to be Gaussian.

Typical samples from F ∗exp(µ0) when µ0 = N(0, (−∆)−α) for various α:

Matt Dunlop (Warwick) The Bayesian Formulation of EIT April 5th 2016 11 / 22



Prior Model #2: Star-shaped

Formally, take a positive periodic function on a line
segment/rectangle R, and wrap it around a circle/sphere using
polar coordinates to give a closed curve/surface.
Assign one positive value to points within the resulting region, and
another to those outside.
Also allow for variation of the centre of the polar coordinate
system.
This defines a map Fstar : C0

per(R)× D → A(D).

It can be shown that if x0 ∈ D and r ∈ C0
per is Lipschitz continuous,

then rn → r and xn
0 → x0 implies that Fstar(rε, xε0)→ Fstar(r , x0) in

measure.
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Prior Model #2: Star-shaped

We assume that r and x0 are independent under the prior so that
we may factor µ0 = σ0 × τ0.
Assume that both σ0(B) > 0 for all balls B, and τ0 has exponential
moments.
Typical samples from F ∗star(µ0) when σ0 = log N(0, (−∆)−α) for
various α and τ0 is uniform:
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Prior Model #3: Level Set

These priors are discussed in (Iglesias, Lu, Stuart, ‘16). We give
an overview of two-region case
Let σ+, σ− > 0 be fixed positive numbers. Then we can define
Flvl : C0(D)→ A(D) by

Flvl(u) = σ+1u≥0 + σ−1u<0

It can be shown that if u ∈ C0(D) and |{u = 0}| = 0, then un → u
implies that Flvl(un)→ Flvl(u) in measure
The assumption that the zero level set has zero measure is in
important one, and can be enforced (almost-surely) by choice of
prior.
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Prior Model #3: Level Set

Take µ0 to be Gaussian.
Typical samples from F ∗lvl(µ0) when µ0 = N(0, (−∆)−α) for various
α:

Remark
From the regularity result for the forward mapM, we now know that
Π ◦M ◦ F : X → RL is continuous µ0-a.s. for all three of the choices
(F ,X ) outlined above.
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The Forward Map & Likelihood

Let X be a separable Banach space and F : X → A(D) a map
from the state space to the conductivity space.
Choose a set of current stimulation patterns I(j) ∈ RL, j = 1, . . . , J
and letMj : A(D)→ H denote the solution map when using
stimulation pattern I(j).
Define the projection map Π : H→ RL by Π(u,U) = U.
Define Gj : X → RL by Gj = Π ◦Mj ◦ F , and let G : X → RJL

denote the concatenation of these Gj .
As before, we assume the data y ∈ Y := RJL arises via

y = G(u) + η, η ∼ Q0 := N(0, Γ)

Matt Dunlop (Warwick) The Bayesian Formulation of EIT April 5th 2016 16 / 22



The Forward Map and Likelihood

Assume that u ∼ µ0, where µ0 is independent of Q0. From the
above, we see that y |u ∼ Qu := N(G(u), Γ). This can be used to
formally find the distribution of u|y .
First note that

dQu

dQ0
(y) = exp

(
−Φ(u; y) +

1
2
|y |2Γ

)
where the potential Φ : X × Y → R is given by

Φ(u; y) =
1
2
|G(u)− y |2Γ.

Then under suitable regularity conditions, Bayes’ theorem tells us
that the distribution µy of u|y satisfies

dµy

dµ0
(u) ∝ exp(−Φ(u; y))

after absorbing the exp(1
2 |y |

2
Γ) term into the normalisation

constant.
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Existence and Well-posedness of the Posterior

Theorem (D, Stuart, ‘15)
Let (X ,F , µ0) denote any of the probability spaces associated with the
priors introduced previously, and let Φ : X × Y → R be the potential
associated with the corresponding forward map. Then the posterior
distribution µy of the state u given data y is well-defined. Furthermore,
µy � µ0 with Radon-Nikodym derivative

dµy

dµ0
(u) ∝ exp(−Φ(u; y)).

Additionally, µy locally Lipschitz with respect to y, in the Hellinger
distance, and so if y , y ′ ∈ Y and f ∈ L2

µ0
(X ; S), then there is a C > 0

such that
|Eµy

f (u)− Eµ
y′

f (u)| ≤ C|y − y ′|Y .
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Numerical Experiments: Truth From Star-shaped Prior
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Numerical Experiments: Truth Not From Prior
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Thank you!
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