Hierarchical Bayesian Level Set Inversion

Matt Dunlop

Mathematics Institute, University of Warwick, U.K.

Marco Iglesias (Nottingham), Andrew Stuart (Warwick)

SIAM UQ 2016, Lausanne, Switzerland, April 7th.

EPSRC

- Introduction
- Classical Level Set Inversion
- Bayesian Level Set Inversion
- 4 Hierarchical Bayesian Level Set Inversion
- Conclusions

- Introduction
- Classical Level Set Inversion
- Bayesian Level Set Inversion
- 4 Hierarchical Bayesian Level Set Inversion
- Conclusions

Level Set Representation

S.Osher and J.Sethian

Fronts propagating with curvature-dependent speed J. Comp. Phys. **79**(1988), 12–49.

Piecewise constant function v defined through thresholding a continuous level set function u. Let

$$-\infty = c_0 < c_1 < \dots < c_{K-1} < c_K = \infty.$$

$$v(x) = \sum_{k=1}^K v_k \mathbb{I}_{\{c_{k-1} < u \le c_k\}}(x); \quad v = F(u).$$

 $F: X \to Z$ is the level-set map, X cts fns. Z piecewise cts fns.

Example 1: Image Reconstruction

H.W. Engl, M. Hanke and A. Neubauer Regularization of Inverse Problems Kluwer(1994)

Forward Problem

Define
$$K: Z \to \mathbb{R}^J$$
 by $(Kv)_j = v(x_j), x_j \in D \subset \mathbb{R}^d$. Given $v \in Z$ $v = Kv$.

Let $\eta \in \mathbb{R}^J$ be a realization of an observational noise.

Inverse Problem

Given prior information v = F(u), $u \in X$ and $y \in \mathbb{R}^J$, find v :

$$y = Kv + \eta.$$

Example 2: Groundwater Flow

M. Dashti and A.M. Stuart

The Bayesian approach to inverse problems.

Handbook of Uncertainty Quantification

Editors: R. Ghanem, D.Higdon and H. Owhadi, Springer, 2017.

arXiv:1302.6989

Forward Problem: Darcy Flow

Let $X^+:=\{v\in Z: \mathrm{essinf}_{x\in D}v>0\}$. Given $\kappa\in X^+$, find $y:=\mathcal{G}(\kappa)\in\mathbb{R}^J$ where $y_j=\ell_j(p),\,V:=H^1_0(D),\ell_j\in V^*,\,j=1,\ldots,J$ and

$$\begin{cases} -\nabla \cdot (\kappa \nabla p) = f & \text{in } D \\ p = 0 & \text{on } \partial D. \end{cases}$$

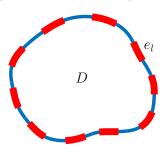
Let $\eta \in \mathbb{R}^J$ be a realization of an observational noise.

Inverse Problem

Given prior information $\kappa = F(u)$, $u \in X$ and $y \in \mathbb{R}^J$, find κ :

$$y = \mathcal{G}(\kappa) + \eta.$$

Example 3: Electrical Impedance Tomography



- Apply currents I_{ℓ} on e_{ℓ} , $\ell = 1, ..., L$.
- Induces voltages Θ_{ℓ} on e_{ℓ} , $\ell = 1, ..., L$.
- Input is (σ, I) , output is (θ, Θ) .
- We have an Ohm's law $\Theta = R(\sigma)I$.

$$\begin{cases} -\nabla \cdot (\sigma(x)\nabla\theta(x)) = 0 & x \in D \\ \int_{e_{\ell}} \sigma \frac{\partial \theta}{\partial \nu} dS = I_{\ell} & \ell = 1, \dots, L \\ \sigma(x) \frac{\partial \theta}{\partial \nu}(x) = 0 & x \in \partial D \setminus \bigcup_{\ell=1}^{L} e_{\ell} \\ \theta(x) + z_{\ell}\sigma(x) \frac{\partial \theta}{\partial \nu}(x) = \Theta_{\ell} & x \in e_{\ell}, \ell = 1, \dots, L \end{cases}$$
(PDE)

Example 3: Electrical Impedance Tomography

M. M. Dunlop and A. M. Stuart

The Bayesian formulation of EIT. arXiv:1509.03136

Inverse Problems and Imaging, Submitted, 2015.

Forward Problem

- Let $X \subseteq L^{\infty}(D)$, and denote $X^+ := \{u \in X : \operatorname{essinf}_{x \in D} u > 0\}$.
- Given $u \in X$, $F : X \to X^+$ and $\sigma = F(u)$, find $(\theta, \Theta) \in H^1(D) \times \mathbb{R}^L$ solving (PDE).
- This gives $\Theta = R(F(u))I$.

Let $\eta \in \mathbb{R}^L$ be a realisation of an observational noise.

Inverse Problem

Given prior information $\sigma = F(u)$, $u \in X$, and given currents I and $y \in \mathbb{R}^L$, find σ :

$$y = R(\sigma)I + \eta.$$

- Introduction
- Classical Level Set Inversion
- Bayesian Level Set Inversion
- 4 Hierarchical Bayesian Level Set Inversion
- Conclusions

Tikhonov Regularization

 $\mathcal{G}: Z \to \mathbb{R}^J$ and $\eta \in \mathbb{R}^J$ a realization of an observational noise.

Inverse Problem

Find $u \in X$, given $y \in \mathbb{R}^J$ satisfying $y = \mathcal{G} \circ F(u) + \eta$.

Model-Data Misfit

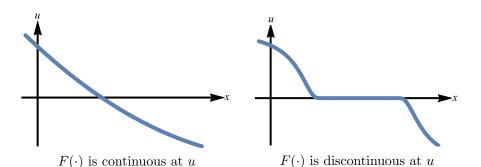
The model-data misfit is $\Phi(u; y) = \frac{1}{2} \left| \Gamma^{-\frac{1}{2}} (y - \mathcal{G} \circ F(u)) \right|^2$.

Tikhonov Regularization

Minimize, for some E compactly embedded into X,

$$I(u; y) := \Phi(u; y) + \frac{1}{2} ||u||_E^2.$$

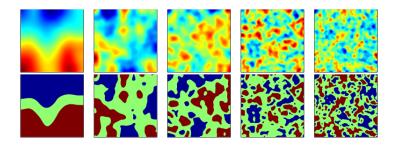
Issue 1: Discontinuity of Level Set Map



$$v = F(u) := v^+ \mathbb{I}_{\{u \ge 0\}}(x) + v^- \mathbb{I}_{\{u < 0\}}(x).$$

Causes problems in classical level set inversion.

Issue 2: Length-Scale Matters



- Figure demonstrates role of length-scale in level-set function.
- Classical Tikhonov-Phillips regularization does not allow for direct control of the length-scale.

New ideas needed.

Issue 3: Amplitude Matters

Y. Lu

Probabilistic Analysis of Interface Problems PhD Thesis (2016), Warwick University

- Consider case of K = 2, $c_1 = 0$.
- For contradiction assume u^* is a minimizer of I(u; y).
- Now define the sequence $u_{\epsilon} = \epsilon u^{\star}$. Then if $0 < \epsilon < 1$,

$$\Phi(u_{\epsilon};y) = \Phi(u^{\star};y), \|u_{\epsilon}\|_{E} = \epsilon \|u^{\star}\|_{E} \Rightarrow I(u_{\epsilon};y) < I(u^{\star};y).$$

- Hence $I(u_{\epsilon}; y)$ is an infimizing sequence. But $u_{\epsilon} \to 0$ and $I(0; y) > I(u_{\epsilon}; y)$ for $\epsilon \ll 1$.
- Thus infimum cannot be attained.
- This issue caused by thresholding at 0. But idea generalizes.

Choice of threshold matters.

- Introduction
- Classical Level Set Inversion
- Bayesian Level Set Inversion
- 4 Hierarchical Bayesian Level Set Inversion
- Conclusions

Bayes' Formula

Prior

Probabilistic information about *u* before data is collected:

$$\mu_0(du)$$

Likelihood

Since $y = \mathcal{G}(u) + \eta$, if $\eta \sim N(0, \Gamma)$, then $y|u \sim N(\mathcal{G}(u), \Gamma)$. The model-data misfit Φ is the negative log-likelihood:

$$\mathbb{P}(y|u) \propto \exp(-\Phi(u;y)), \quad \Phi(u;y) = \frac{1}{2} \Big| \Gamma^{-\frac{1}{2}} \big(y - \mathcal{G}(u) \big) \Big|^2.$$

Posterior

Probabilistic information about *u* after data is collected:

$$\mu^{y}(du) \propto \exp(-\Phi(u;y))\mu_{0}(du).$$

Rigorous Statement

M. Iglesias, Y. Lu and A. M . Stuart

A level-set approach to Bayesian geometric inverse problems. arXiv:1504.00313

M. Iglesias

A regularizing iterative ensemble Kalman method for PDE constrained inverse problems. arXiv:1505.03876

$$L^2_{\nu}(X;S) = \{f: X \to S : \mathbb{E}^{\nu} || f(u) ||_S^2 < \infty\}.$$

Theorem (Iglesias, Lu and S)

Let $\mu_0(du)=\mathbb{P}(du)$ and $\mu^y(du)=\mathbb{P}(du|y)$. Assume that $u\in X$ $\mu_0-a.s.$ Then for Examples 1–3 (and more) $\mu^y\ll\mu_0$ and $y\mapsto\mu^y(du)$ is Lipschitz in the Hellinger metric. Furthermore, if S is a separable Banach space and $f\in L^2_{\mu_0}(X;S)$, then

$$\|\mathbb{E}^{\mu^{y_1}}f(u)-\mathbb{E}^{\mu^{y_2}}f(u)\|_{S}\leq C|y_1-y_2|.$$

Key idea in proof is that $F: X \to Z$ is continuous μ_0 – a.s.

Whittle-Matern Priors

$$c(x,y) = \sigma^2 \frac{1}{2^{\nu-1} \Gamma(\nu)} (\tau |x-y|)^{\nu} K_{\nu} (\tau |x-y|).$$

- ν controls smoothness draws from Gaussian fields with this covariance have ν fractional Sobolev and Hölder derivatives.
- \bullet τ is an inverse length-scale.
- \bullet σ is an amplitude scale.

Ignoring boundary conditions, corresponding covariance operator given by

$$C_{\mathrm{WM}(\sigma,\tau)} \propto \sigma^2 \tau^{2\nu} (\tau^2 I - \triangle)^{-\nu - rac{d}{2}}.$$

Example 2: Groundwater Flow

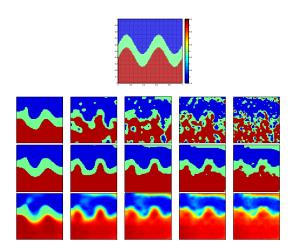


Figure: (Row 1, $\tau = 15$) Logarithm of the true hydraulic conductivity. (Row 2 $\tau = 10, 30, 50, 70, 90$) samples of F(u). (Row 3) $F(\mathbb{E}(u))$. (Row 4) $\mathbb{E}(F(u))$.

- Introduction
- Classical Level Set Inversion
- Bayesian Level Set Inversion
- 4 Hierarchical Bayesian Level Set Inversion
- Conclusions

Hierarchical Whittle-Matern Priors (The Problem)

Prior:

$$\mathbb{P}(u,\tau) = \mathbb{P}(u|\tau)\mathbb{P}(\tau).$$

 $\mathbb{P}(u|\tau) = N(0, C_{\mathrm{WM}(\sigma,\tau)}).$

Recall $C_{\text{WM}(\sigma,\tau)} \propto \sigma^2 \tau^{2\nu} (\tau^2 I - \triangle)^{-\nu - \frac{d}{2}}$.

Theorem

For fixed σ the family of measures $N(0, C_{\mathrm{WM}(\sigma, \cdot)})$ are mutually singular.

Algorithms which attempt to move between singular measures perform badly under mesh refinement (since they fail completely in the fully resolved limit).

Hierarchical Whittle-Matern Priors (The Solution)

M. Dunlop, M. Iglesias and A. M. Stuart Hierarchical Bayesian Level Set Inversion arXiv:1601.03605

Hence choose $\sigma=\tau^{-\nu}$ and define: $C_{\tau}\propto (\tau^2I-\triangle)^{-\nu-\frac{d}{2}}$. Prior:

$$\mathbb{P}(u,\tau) = \mathbb{P}(u|\tau)\mathbb{P}(\tau).$$

$$\mathbb{P}(u|\tau) = N(0, C_{\tau}).$$

Theorem

The family of measures $N(0, C_{\tau})$ are mutually equivalent.

Suggests need to scale thresholds in F by τ . Let

$$-\infty = c_0 < c_1 < \cdots < c_{K-1} < c_K = \infty.$$

$$v(x) = \sum_{k=1}^{K} v_k \mathbb{I}_{\{c_{k-1} < u\tau^{\nu} \le c_k\}}(x); \quad v = F(u, \tau).$$

Hierarchical Posterior

Prior

$$\mu_0(\mathsf{d} u, \mathsf{d} \tau) = \mu_0(\mathsf{d} u \,|\, \tau)\pi_0(\mathsf{d} \tau)$$

where $\mu_0(\cdot|\tau) = N(0, C_{\tau})$, π_0 is hyperprior on τ .

Likelihood

Likelihood is given by $\mathbb{P}(y|u,\tau) \propto \exp(-\Phi(u,\tau;y))$. where the

model-data misfit is now
$$\Phi(u, \tau; y) = \frac{1}{2} \left| \Gamma^{-\frac{1}{2}} (y - \mathcal{G} \circ F(u, \tau)) \right|^2$$
.

Posterior

Probabilistic information about *u* after data is collected:

$$\mu^{\mathbf{y}}(\mathsf{d} u, \mathsf{d} \tau) \propto \exp(-\Phi(u, \tau; \mathbf{y}))\mu_0(\mathsf{d} u, \mathsf{d} \tau).$$

MCMC

We implement a Metropolis-within-Gibbs algorithm to generate a posterior-invariant Markov chain (u_k, τ_k) :

- Propose v_{k+1} from a $\mathbb{P}(u|\tau_k)$ -reversible kernel.
- $u_{k+1} = v_{k+1}$ w.p. $1 \wedge \exp(\Phi(u_k, \tau_k) \Phi(v_{k+1}, \tau_k))$, $u_{k+1} = u_k$ otherwise.
- Propose t_{k+1} from a $\mathbb{P}(\tau)$ -reversible kernel.
- $\tau_{k+1} = t_{k+1}$ w.p. $1 \wedge \exp(\Phi(u_{k+1}, \tau_k) \Phi(u_{k+1}, t_{k+1}))w(\tau_k, t_{k+1})$, $\tau_{k+1} = \tau_k$ otherwise.

Here $w(\tau, t)$ is density of $N(0, C_t)$ with respect to $N(0, C_\tau)$.

Example 2: Groundwater Flow

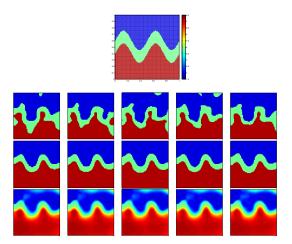


Figure: (Row 1, $\tau=$ 15) Logarithm of the true hydraulic conductivity (middle, top). (Row 2 $\tau=$ 10, 30, 50, 70, 90) samples of $F(u,\tau)$. (Row 3) $F(\mathbb{E}(u),\mathbb{E}(\tau))$. (Row 4) $\mathbb{E}(F(u,\tau))$.

- Introduction
- Classical Level Set Inversion
- Bayesian Level Set Inversion
- 4 Hierarchical Bayesian Level Set Inversion
- Conclusions

Summary

- Last 5 years development of a theoretical and computational framework for infinite dimensional Bayesian inversion with wide applicability:
 - Framework allows for noisy data and uncertain prior information.
 - Probabilistic well-posedness.
 - Theory clearly delineates (and links) analysis and probability.
 - Theory leads to new algorithms (defined on Banach space).
 - Grid-independent convergence rates for MCMC.
- The methodology has been extended to solve interface problems. This is achieved via the level set representation.
 - Level set method becomes well-posed in this setting.
 - Discontinuity in level set map is a probability zero event.
 - 4 Hierarchical choice of length-scale improves performance.
 - Amplitude scale is linked to length-scale via measure equivalence.
 - Algorithms which reflect this link are mesh-invariant.
- Potential for many future developments for both applications and theory:
 - Applications: subsurface imaging, medical imaging.
 - Theory: inhomogenous length-scales, new hierarchies.