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Abstract

This thesis discusses the support of the laws of stochastic processes that arise as

solutions to stochastic differential equations. In the case when the drift coefficient

is Lipschitz continuous it is known that the support may be characterised as the

closure of the space of solutions to some approximating ODEs. We explore whether

this result holds when there is less regularity on the drift. In these cases we need to

generalise what we mean by a solution to the approximating ODEs.

We consider three cases: when the drift coefficient is bounded measurable, when it

has linear spatial growth, and when it lies in Lqp(T ) with d/p+ 2/q < 1.

Some numerical experiments are performed to gain insight into the behaviour of

some processes who support is more difficult to determine analytically.
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Introduction

Given a Brownian motion W on a probability space (Ω,F ,P), a solution x to the

SDE

dxt = σ(t, xt) dWt + b(t, xt) dt, x0 ∈ R, t ∈ [0, T ]

induces a measure µ := x∗P, the law of x, on the space of sample paths. With

sufficient regularity on the coefficients σ and b the sample paths will almost surely

lie in Cx0([0, T ];Rd), the space of continuous paths started from x0 valued in Rd.
The process may not explore the whole of this space, however. The subset of paths

upon which the measure really ‘lives’ is called the support of the measure. It is

rigourously defined as the set of paths for which all neighbourhoods have positive

measure, or equivalently the smallest closed set with full measure.

In 1972, Stroock and Varadhan provided a characterisation of the support of the

law of a diffusion process. Suppose that σ : [0, T ] × Rd → Rd ⊗ Rd is bounded

continuous with bounded continous derivatives, and that b : [0, T ] × Rd → Rd is

Lipschitz continuous. Then given any piecewise linear function u : [0, T ] → Rd

started from 0, the approximating ordinary differential equation

dxut = σ(t, xut ) dut + b(t, xut ) dt

has a unique solution in light of the famous Picard-Lindelöf theorem. It turns out

that the support of the law of the process x is given by the closure of the set of all

such solutions xu with respect to the topology of uniform convergence. Since this

result was proved, analogous results have been shown in different topologies, and

for jump processes, SPDEs, and Hilbert space valued processes.

When the diffusion is uniformly elliptic, i.e. when the matrix σσT is uniformly

positive definite, the support is often the whole space C0([0, T ];Rd) even when the

drift isn’t Lipschitz. This is the case when for example, b is such that either
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(i) there exists m ∈ L2([0, T ]) with |b(t, x)| ≤ m(t)(1 + |x|) for all t ∈ [0, T ] and

x ∈ Rd; or

(ii) b ∈ Lqp(T ) := Lqp([0, T ];Lp(Rd;Rd)) with d/p+ 2/q < 1 and p ≥ 2.

If the diffusion has some degeneracy then the support may be smaller. We can still

try to obtain a Stroock-Varadhan type result in the above cases, assuming solutions

exist, though we run into some trouble with the approximating ODEs. If we retain

spatial continuity of the drift then we may still retain existence in the Carathéodory

sense, however we lose uniqueness. Decreasing the regularity any further means that

we don’t even have existence, and so we need to extend what we mean by solutions

to the ODEs.

The first approach we take is Filippov regularisation. For this we map the right

hand side of the ODE to a set-valued function, resulting in a differential inclusion.

These are a strict generalisation of differential equations where instead of equality

we only insist that the derivative belongs to a set. In the case (i) above we then

obtain existence of solutions to the approximating equations in this new sense. For

case (ii) this approach is of no use since it requires local boundedness of the right

hand side, whilst b ∈ Lqp(T ) allows for singular drift.

The other approach we take is regularisation with noise. If we add a small amount

of noise εBt to the right hand side then in several cases we obtain existence and

uniqueness of solutions in a stochastic sense. In particular this holds in the case that

the right hand side lies in Lqp(T ) with d/p+2/q < 1. Since the laws of the perturbed

equations will have full support for all ε > 0, we ask what happens when we send ε

to zero. In case (i) above the limiting law turns out to be supported on the set of

Filippov solutions to the equation. Less is known in case (ii), however.

Numerical simulations can help us gain insight into the behaviour of diffusions which

are difficult to approach analytically. We perform some such simulations in Chapter

5, exploring cases such as when the equation is elliptic with singular drift, and when

the equation is degenerate with bounded drift.
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Chapter 1

Support Theorems

1.1 The support of a measure

We first define what is meant by the (topological) support of a measure.

Definition 1.1 (Topological support). Given a measure µ on a topological space

E, the topological support supp(µ) of µ is the closed subset of E defined as

supp(µ) = {y ∈ E |µ(U) > 0 for all open neighbourhoods U of y}

The support of µ can informally be thought of as the set upon which the measure re-

ally ‘lives’. If µ is a finite measure with total mass m, then an equivalent formulation

of the support is

supp(µ) =
⋂

Kclosed
µ(K)=m

K

i.e. it is the smallest closed set of full measure.

Remark. We lose nothing by only considering open neighbourhoods of the form

Bδ(y), where this denotes the open ball of radius δ centred at y. Clearly if µ(U) > 0

for all open sets U containing a point, then it holds in particular for all open balls

containing that point. Conversely, if we only assume µ(Bδ(y)) > 0 for all δ > 0,

then since any open set containing y contains some ball around y, the measure of

any open set containing y is positive.
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1.1.1 Examples

1. Consider Euclidean space Rd with the Lebesgue measure. Then since all balls

have positive measure, the support of the Lebesgue measure is the whole of

Rd.

2. Let δx denote the Dirac measure at x on some topological space, i.e. δx(A) = 1

if x ∈ A and δx(A) = 0 otherwise. Then supp(δx) = {x}.

3. Let W be a Brownian motion on R defined on Wiener space (C0([0, T ];R)

equipped with the uniform topology) with law P (the Wiener measure). We

know that Brownian paths are almost-surely continuous and start at 0, so

P(C0([0, T ];R)) = 1. In fact the support is the whole of this space, which

follows from the strict positivity of the Wiener measure.

Note that even though it is known that Brownian paths are almost-surely

α-Hölder continuous of order α < 1/2, the support of P turned out to be

the whole of C0([0, T ];R). This is a consequence of the topology we put on

the space. It can be shown that if we consider the same space with the α-

Hölder topology instead of the uniform topology, the support is C0,α
0 ([0, T ];R),

α < 1/2. See [AGL94] for a more general result.

4. Following the same setup as the previous example, let xt := |Wt| and denote

by µ its law. We claim that the support of µ is the space C+
0 given by

C+
0 := {σ ∈ C0([0, T ];R) |σ(t) ≥ 0 for all t ∈ [0, T ]}

First note that Xt ∈ C0([0, T ];R) and Xt ≥ 0 everywhere, so µ(C+
0 ) = 1.

Since C+
0 is closed, the support of µ can be no bigger than C+

0 .

We now show that given any σ ∈ C+
0 , µ(Bδ(σ)) > 0 for all δ > 0. First note

that for any real numbers a < b, we have the relation

{x | |x| ∈ (a, b)} =


(a, b) ∪ (−b,−a) a, b > 0

(−b, b) a ≤ 0, b > 0

∅ a, b ≤ 0
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Therefore given σ ∈ C+
0 and δ > 0 we have

µ(Bδ(σ)) = P({ω | |ω| ∈ Bδ(σ)})

= P({ω |ω(t) ∈ Bδ(σ(t)) ∪Bδ(−σ(t)) for all t s.t. σ(t) > δ,

ω(t) ∈ (−σ(t)− δ, σ(t) + δ) for all t s.t. σ(t) ≤ δ})

≥ P({ω |ω(t) ∈ Bδ(σ(t)) ∪Bδ(−σ(t)) for all t s.t. σ(t) > δ,

ω(t) ∈ Bδ(σ(t)) ∪Bδ(−σ(t)) for all t s.t. σ(t) ≤ δ})

= P(Bδ(σ) ∪Bδ(−σ))

> 0

by the strict positivity of the Wiener measure.

The following result is clear and will turn out to be useful.

Proposition 1.2. Let µ and ν be two equivalent measures. Then supp(µ) =

supp(ν).

The converse does not hold: if two measures have the same support then they need

not be equivalent. Consider for example two discrete measures µ and ν on R such

that µ assigns positive mass only to all elements of Q, and ν assigns positive mass

only to all elements of
√

2 +Q. Then the support of both of these measures is all of

R, whilst they are clearly singular. Many more examples exist in infinite dimensions,

where singularity of different measures is almost expected.

1.2 Diffusion measures

The measures we are interested in are those that arise as the laws of diffusion

processes. Given maps σ : [0, T ] × Rd → Rm ⊗ Rd, b : [0, T ] × Rd → Rd and

an m-dimensional Brownian motion W defined on a probability space (Ω,F ,P), a

diffusion x is defined by the SDE1

dxt = σ(t, xt) dWt + b(t, xt) dt, x0 ∈ Rd

Under suitable regularity conditions on σ and b, there exist solutions to this SDE

which almost surely take values in the space Cx0([0, T ];Rd), see for example [IW81].

1For simplicity, from now on we will assume that m = d, since we can always zero out the
appropriate rows/columns in a square matrix to effectively obtain a rectangular matrix.
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A solution x therefore induces a measure µ := x∗P on this space. Our question is

what precisely the support of µ is.

In the case that σ is the identity matrix and the drift b is zero, the solution to the

SDE is a Brownian motion, whose law we know has full support on C0([0, T ];Rd)
from the previous section. In that section we also considered the absolute value of

one-dimensional Brownian motion. Tanaka’s formula tells us that this is formally

defined by the SDE

dxt = sgn(xt) dWt + δ0(xt) dt, x0 = 0

where δ0 is the Dirac delta function at 0. In this case the support only turns out

to be the space C+
0 . The smaller support is related to the reduced regularity on σ

and b. Note in particular that the SDE above is not elliptic since sgn(0) = 0; 0 is a

‘barrier’ to the diffusion.

In the uniformly elliptic case we often have that the support of the law is all of

Cx0([0, T ];Rd).

Proposition 1.3. Suppose that σ : [0, T ] × Rd → Rd ⊗ Rd is bounded, continuous

and σσT is uniformly positive definite, so that there exist constants λ,Λ > 0 such

that for all ξ ∈ Rd and all (t, x) ∈ [0, T ]× Rd,

λ|ξ|2 ≤ 〈ξ, σσT (t, x)ξ〉Rd ≤ Λ|ξ|2

Let b : [0, T ]× Rd be such that either

(i) there exists m ∈ L2([0, T ]) with |b(t, x)| ≤ m(t) for all t ∈ [0, T ] and x ∈ Rd;

(ii) there exists m ∈ L2([0, T ]) with |b(t, x)| ≤ m(t)(1 + |x|) for all t ∈ [0, T ] and

x ∈ Rd; or

(iii) b ∈ Lqp(T ) := Lq([0, T ];Lp(Rd;Rd)), where d/p+ 2/q < 1 and p ≥ 2.

In case (iii), assume also that σσT is differentiable in its spatial component and its

derivatives are bounded. Then the support of the law µ of the solution to the SDE

dxt = σ(t, xt) dWt + b(t, xt) dt

started from x0 ∈ Rd is the whole space Cx0([0, T ];Rd).

Proof. We will assume without loss of generality that x0 = 0, and use Girsanov’s
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theorem to transform away the drift term. Let y be the process defined by the SDE

dyt = σ(t, yt) dWt

and let ν denote its law. Define the density

Zt = E
(∫ ·

0
σT (σσT )−1(s, ys)b(s, ys) ds

)
t

= exp

{∫ t

0
〈σT (σσT )−1(s, ys)b(s, ys), dWs〉 −

1

2

∫ t

0
|σT (σσT )−1(s, ys)b(s, ys)|2 ds

}
We first look at case (i). From the uniform positive-definiteness of σσT we know

that its (matrix) inverse is uniformly bounded. Using the boundedness of σ also,

we see that

|σT (σσT )−1(s, ys)b(s, ys)| ≤ C|b(s, ys)| ≤ Cm(s)

for all s. It follows that

E
(

exp

{
1

2

∫ T

0
|σT (σσT )−1(s, ys)b(s, ys)|2 ds

})
<∞ (1.1)

This bound is Novikov’s condition, so Z is a martingale with respect to ν and we

have dν = Z dµ. The measures µ and ν are hence equivalent and we have that

supp(µ) = supp(ν) by Proposition 1.2.

We show that (1.1) holds in the more general case (ii) also. By Jensen’s inequality

and Fubini’s theorem we have

E
(

exp

{
1

2

∫ T

0
|σT (σσT )−1(s, ys)b(s, ys)|2 ds

})
≤ C exp

{
C

∫ T

0
|m(t)|2E|ys|2 ds

}
so it suffices to show that E|ys|2 is bounded. This follows via the Itô isometry:

E|yt|2 = E
∣∣∣∣∫ t

0
σ(s, ys) dWs

∣∣∣∣2 ≤ C ∫ T

0
E|σ(s, ys)|2 ds <∞

For case (iii), in the case that σ ≡ Id, we use a result from the proof of Lemma 3.2

in [KR05] which tells us that for any κ > 0,

E
(

exp

{
κ

∫ T

0
|b(s, xs)|2 ds

})
<∞ (1.2)

and so in particular it holds for κ = K2/2 where K = supt,x |σT (σσT )−1(t, x)|.
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Therefore (1.1) holds in this case also.

We wish to extend the bound (1.2) to the general uniformly elliptic case. We show

that the proof in [KR05] still holds with the Brownian motion replaced by the process

y as defined above.

First note that Khas’minskii’s lemma still holds with y in place of a Brownian

motion since y still satisfies the Markov property. Next note that the density ρt of

yt satisfies the Fokker-Planck equation

∂ρt
∂t

=
1

2

d∑
i,j=1

∂2

∂xi∂xj

(
(σσT )ijρt

)
, ρ0 = δx0

From the uniform ellipticity of σσT , and the boundedness of σσT and its derivatives,

we can use the main result of [Aro67] to deduce that ρt satisfies the Gaussian upper

bound

ρt(x) ≤ Kt−d/2 exp

(
− 1

2t
δ|x|2

)
for some constants K, δ > 0. The right hand side is a rescaled heat kernel, and

so we see that the arguments in the proof of Lemma 3.2 in [KR05] still hold2. In

particular (1.1) holds and we have supp(µ) = supp(ν) again.

We therefore only need to look at the support of ν. We use the following lemma

from [SV72].

Lemma 1.4. Let ϕ : [0, T ] → Rd be once continuously differentiable such that

ϕ0 = 0. Then for all ε > 0, ν({ω | ‖ω − ϕ‖∞ < ε}) > 0.

Since the functions ϕ considered are dense in C0([0, T ];Rd), the result follows.

The result of (iii) is perhaps surprising since it allows for singular drift. These

singularities could believably be strong enough such that they act as barriers for the

process, with the process almost-surely being forced away from them by the high

intensity drift.

Consider the one-dimensional case in which the drift is time-independent. Then

sending q → ∞ in the condition d/p + 2/q < 1, we see that we have free choice

of p > 1. It is standard that the function b(x) = |x|−α1(0,1)(x) lies in Lp(R) for

α < 1/p < 1. Fix α = 1/2, say. Then the proposition tells us that the process x

2See the appendix in [FF10] for a more detailed proof of the lemma in [KR05].
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given by

dxt = dWt +
1√
|xt|

1(0,1)(xt) dt, x0 > 0

can reach the whole of R. This could be due to the requirement α < 1, which means

that the drift can’t grow too fast near zero. It isn’t unreasonable to think that for

larger α the drift is strong enough to prevent the process from passing the origin,

and that perhaps the result of (iii) is somewhat sharp. In Chapter 5 we will simulate

these processes numerically to gain an insight into their behaviour.

In light of Proposition 1.3, the case when the equation isn’t elliptic is arguably much

more interesting since the support of the law can potentially be more exotic. For

example, consider Brownian motion on [0, 1] with sticky boundary3, given by the

SDE

dxt = 1(0,1)(xt) dWt + θ
(
1{0}(xt)− 1{1}(xt)

)
dt, x0 ∈ [0, 1]

where θ ∈ (0,∞) is a positive constant. This doesn’t fall into the class of SDEs

considered in Proposition 1.3 due to the discontinuous and non-elliptic diffusion

coefficient, though the drift is bounded and hence okay. In this case the support of

the law of x is given by

{σ ∈ Cx0([0, T ];R) | 0 ≤ σ(t) ≤ 1 for all t ∈ [0, T ]}.

Note that in all the examples of supports of measures on Cx0([0, T ];Rd) we’ve looked

at, the restrictions come in which sets the sample paths can reach rather than the

regularity of the paths. This is a consequence of the uniform topology on the

space and the closedness of the support: higher regularity cannot be expected to be

preserved under limits in the uniform topology.

For cases when the equation isn’t uniformly elliptic, the support theorems may be

able to give a description of the support.

1.3 Existing theorems

In certain cases, the support of the law of a diffusion process can be characterised

by the closure of the set of solutions of a family of approximating ODEs. Such

a characterisation can be used to prove strong maximum principles for the PDEs

associated with the generators of the diffusions.

3More information about Brownian motion with sticky boundary can be found in [DT94]
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The classical Stroock-Varadhan support theorem as originally given in [SV72] is as

follows:

Theorem 1.5 (Stroock-Varadhan support theorem). Let σ : [0, T ]×Rd → Rd⊗Rd

and b : [0, T ] × Rd → Rd be bounded measurable functions. Assume also that σij ∈
C1,2
b ([0, T ]×Rd) and b is uniformly Lipschitz continuous in x. Define the differential

operator

Lt =
1

2
σT∇x · σT∇x + b · ∇x

=
1

2

d∑
i,j=1

(σσT )ij
∂2

∂xi∂xj
+

d∑
i=1

(
b+

1

2
σ′σ

)
i

∂

∂xi

Define also the space Sσ,b(t0, x0) as the class of ϕ ∈ C([t0, T ];Rd) for which there

exists a piecewise linear u : [t0, T ]→ Rd such that

ϕt = x0 +

∫ t

t0

σ(r, ϕr)u̇r dr +

∫ t

t0

b(r, ϕr) dr (1.3)

The the support of the unique solution Pt0,x0 to the martingale problem for Lt is

given by

supp(Pt0,x0) = Sσ,b(t0, x0)

where both the support and closure are taken in the uniform topology.

Remarks. .

1. This theorem remains true when instead we require that the control functions u

belong to L2,1
0 ([0, T ];Rd), the Cameron-Martin space for the Wiener measure.

Indeed this is the space that is used in most modern adaptations of the theorem,

and the space that we will be using later. It may be interesting to study which

other spaces we may substitute in place, however.

2. Pt0,x0 is the law of the solution to the Stratonovich SDE

xt = x0 +

∫ t

t0

σ(s, xs) ◦ dWs +

∫ t

t0

b(s, xs) ds (SDE)

with the σ′σ term appearing in Lt being the Itô-Stratonovich correction. It is

this SDE that we shall be interested in from now on (with t0 = 0).

3. The spatial continuity and temporal measurability of the integrands on the right

hand side of (1.3) ensure that these ODEs have solutions.
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The theorem as stated above is fairly old, and there have been developments since

it was published back in 1972. It turns out that it is also true in the finer α-

Hölder topologies for α ∈ [0, 1/2), see [AGL94] [MSS94]. The modern tools of

rough path theory have not only been used to give a succinct proof of the theorem

in the uniform topology, but also provide similar theorems for certain classes of

SPDEs [FV10] [LQZ02]. Other extensions include to Hilbert space valued SDEs

and to jump processes, see for example [Nak04] [Sim00].

1.3.1 Sketch proof in the uniform topology

We sketch the proof only in the degenerate case, since the non-degenerate case

is more straightforward. We work in the space C0([0, T ];Rd) equipped with the

uniform norm. This is the proof given in [SV72], corresponding to Theorem 1.5.

The proofs in the Hölder topology follow the same general structure, though there

are more technical details involved.

Without loss of generality we assume that the process is started from 0 at time 0,

and write µ = P0,0, Sσ,b = Sσ,b(0, 0). There are two inclusions that we must show.

The first, supp(µ) ⊆ Sσ,b, is shown using a Wong-Zakai approximation to the SDE.

The other inclusion is proved by showing that, conditional on the control function

being close to the Brownian motion, the solution to the SDE is close to that of the

control problem with high probability.

supp(µ) ⊆ Sσ,b

This inclusion is typically regarded as the easy one. Take an approximation W (n)

of the Brownian motion, piecewise linear on the dyadic partition of [0, T ]. The

approximating process then given by

x
(n)
t =

∫ t

0
σ(r, x(n)r )Ẇ (n)

r dr +

∫ t

0
b(r, x(n)r ) dr

Wong-Zakai’s theorem tells us that the law of x(n) converges weakly to µ, the law of

x. We have that x
(n)
t ∈ Sσ,b for all sample paths and all n. This is preserved under

the weak limit thanks to the following lemma, and so we are done.

Lemma 1.6. Let (νn)n≥1 be a family of probability measures on a space X such

that νn → ν weakly. If A ⊆ X is a closed set such that supp(νn) ⊆ A for all n, then

supp(ν) ⊆ A.

10



Proof. Suppose the result is false, and there exists x ∈ supp(µ) such that x /∈ A.

Then since A is closed, d(x,A) = δ > 0. Choose O = Bδ/2(x). Then µn(O) = 0 for

all n since O ∩ supp(µn) = ∅ for all n, but µ(O) > 0 since x ∈ supp(µ). Therefore

by the lower semi-continuity of weak convergence on open sets we have

0 = lim inf
n→∞

µn(O) ≥ µ(O) > 0

which is a contradiction.

Sσ,b ⊆ supp(µ)

It suffices to show that, for all ϕ in a dense subset of Sσ,b and all ε > 0,

µ({ω | ‖ω − ϕ‖∞ < ε}) > 0 (1.4)

The dense set considered will be ϕ = ϕu of the form

ϕut =

∫ t

0
σ(r, ϕur )u̇r dr +

∫ t

0
b(r, ϕur ) dr

where u ∈ C2([0, T ]× Rd) with u0 = 0. (1.4) is then proved by showing that

lim
δ↓0

P(‖x− ϕu‖∞ < ε | ‖W − u‖∞ < δ) = 1 (1.5)

This is done by first considering the case u = 0. An application of Itô’s formula

shows that it is sufficient to show that

lim
δ↓0

P(‖∆‖∞ | ‖W‖∞ < δ) = 1

where ∆t is a sum of stochastic integrals of derivatives of σ. This follows from

a lengthy calculation involving several applications of Itô’s formula and Gaussian

estimates. An application of Girsanov’s theorem then yields (1.5).

1.4 Extension to irregular drift

In all of the above theorems the drift coefficient b is assumed to be Lipschitz contin-

uous. We ask what happens when we have less regularity on b. More specifically we

ask whether a support theorem holds when b : [0, T ]×Rd → Rd satisfies any of:
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(i) b is bounded measurable;

(ii) there exists m ∈ L2([0, T ]) with |b(t, x)| ≤ m(t)(1 + |x|) for all t ∈ [0, T ] and

x ∈ Rd; or

(iii) b lies in the space Lqp(T ) := Lq([0, T ];Lp(Rd;Rd)), where d/p+ 2/q < 1.

As in the above theorem we will treat the elliptic and degenerate cases separately.

The general degenerate case is particularly difficult to approach because we aren’t

even guaranteed the existence of solutions to the SDE!

Another issue is that the control ODEs do not necessarily have solutions in the

classical sense. We recall Carathéodory’s well-known existence theorem for solutions

to first order ODEs:

Theorem 1.7 (Carathéodory). Consider the differential equation

yt = y0 +

∫ t

0
f(s, ys) ds

with f defined on the rectangular domain R = {(t, y) | |t − t0| ≤ a, |y − y0| ≤ b}. If

the function f satisfies the following three conditions:

(i) f(t, y) is continuous in y for each fixed t

(ii) f(t, y) is measurable in t for each fixed y

(iii) there is a Lebesgue-integrable function m(t), |t− t0| ≤ a, such that |f(t, y)| ≤
m(t) for all (t, y) ∈ R

then the differential equation has a solution in a neighbourhood of the initial condi-

tion.

Our control ODEs will be of the form

xut = x0 +

∫ t

0
(σ(s, xus )u̇s + b(s, xus )) ds (1.6)

and so because of the lack of spatial continuity of b, condition (i) in the theorem fails.

In the Lqp(T ) case, condition (iii) also fails due to the lack of boundedness.

We remedy some of these issues by extending what we mean for a function to be a

solution to (1.6).
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Chapter 2

Regularisation of ODEs

Our main problem so far is that solutions to the control problems don’t necessarily

exist in the classical sense. We address this in two different ways. The first approach

is to instead look for a generalised type of solutions, known as Filippov solutions.

These are solutions to differential inclusions, a generalisation of differential equa-

tions to set-valued right hand sides. The second approach is to perturb the ODEs

with noise, yielding existence and uniqueness in a stochastic sense. We then consider

the limit as the intensity of the noise goes to zero.

In the case of bounded measurable drift, both of these approaches turn out to be

strongly related.

2.1 Differential inclusions and Filippov solutions

Definition 2.1 (Differential inclusion). Let F : [0, T ]×Rd → 2R
d \∅ be a set-valued

map. We say that a function x : [0, T ]→ Rd is a solution to the differential inclusion

ẋt ∈ F (t, xt), x0 ∈ Rd

if x is absolutely continuous and the above inclusion holds for almost all t ∈ [0, T ].

It can be seen that if F is single-valued then this reduces to the definition of an

ordinary differential equation (in the extended sense).

As a simple example of a differential inclusion, consider the case when F is given

13



by the set-valued sign function:

ẋt ∈


1 xt > 0

[−1, 1] xt = 0

−1 xt < 0

If we start solutions from x0 6= 0, then they will just move linearly in the direction

away from 0. If we start the solutions from x0 = 0, they may move linearly in

either direction immediately, or they may remain at 0 for an arbitrary period of

time before leaving in the same manner.

0.2 0.4 0.6 0.8 1.0

-1.0

-0.5

0.5

1.0

Figure 2.1: Plots of 20 different solutions to the above differential inclusion.

If we flip the sign of ẋ in the above inclusion, then we achieve uniqueness: all

solutions will immediately converge linearly to the origin and then stay there.

A more exotic example would be given by ẋt ∈ {−1, 1}. In this case the space of

solutions contains, for example, the space of linearly interpolated sample paths of a

simple random walk on Z.

20 40 60 80 100

-15

-10

-5

5

10

15

Figure 2.2: Examples of some solutions to the inclusion ẋt ∈ {−1, 1}.
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As expected, some assumptions on the map F are required to ensure existence of

solutions. There are quite a few different existence theorems with competing degrees

of regularity, but the one we are mainly interested in is Theorem 4.7 in [Smi00].

Before we state this we will need a definition, again taken from [Smi00]:

Definition 2.2 (Upper semi-continuity). Let F be a set-valued map defined on a

topological space X. F is said to be upper semi-continuous at x0 ∈ X if for any open

set M containing F (x0) there exists a neighbourhood Ω of x0 such that F (Ω) ⊆M .

F is said to be upper semi-continuous if it is so at every point x0 ∈ X.

As an example, consider the set-valued map on R given by F (x) = [−|x|, |x|]. With-

out loss of generality we can assume that any open set containing F (x0) is of the form

M = (−|x0|− ε, |x0|+ ε) for some ε > 0. If we then choose Ω = (x0− ε/2, x0 + ε/2),

we see that F (Ω) ⊆M and so F is upper semi-continuous.

For another example, again on R, consider the map given by

F (x) =

{0} x ∈ Q

R x /∈ Q

Then F is not upper semi-continuous on the rationals: if q ∈ Q then F (q) = {0}, but

F (Ω) = R for any neighbourhood Ω of q. Upper semi-continuity on the irrationals

is clear.

Theorem 2.3 (Existence). Let F : [0, T ] × Rd → 2R
d \ ∅ be a set-valued map with

closed convex values. Assume that

(i) the set-valued map x 7→ F (t, x) is upper semi-continuous for almost all t ∈
[0, T ];

(ii) for any x ∈ Rd there exists a measurable function t 7→ f(t, x) satisfying

f(t, x) ∈ F (t, x); and

(iii) there exists a function m ∈ L1([0, T ]) such that |f(t, x)| ≤ m(t), t ∈ [0, T ].

Then for any x0 ∈ Rd there exists a solution x to the differential inclusion

ẋt ∈ F (t, xt), t ∈ [0, T ]

started from x0.
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Compare this with Caratheodory’s existence theorem for ODEs given in the previous

chapter: if F (t, x) = {f(t, x)} is single-valued and f is continuous in the spatial

component we have the same result.

Remark. This theorem does require that the map x 7→ f(t, x) is globally bounded,

though this can be relaxed to local boundedness as will be discussed later.

We will denote by S(F, x0) the set of solutions to the inclusion ẋt ∈ F (t, x0) started

from x0 ∈ Rd. In the situations we will be interested in this set will be compact: we

prove this in Proposition 2.10.

In some cases it will be more convenient to work with the integral form of differential

inclusions. We must first however define what me mean by the integral of a set-

valued function.

Definition 2.4. Let F : [0, T ] × Rd → 2R
d \ ∅ be upper semi-continuous in the

second component, and let x : [0, T ] → Rd be absolutely continuous. We define the

set-valued function (s, t) 7→
∫ t
s F (u, xu) du by∫ t

s
F (u, xu) du =

{∫ t

s
f(u) du

∣∣∣∣ f(u) ∈ F (u, xu) for all u ∈ [s, t] and f integrable

}
Remark. Such functions f in this definition are referred to as selections from

F (·, x·).

We can now quote Lemma 2.1.1 from [AC84].

Lemma 2.5. Let F be an upper semi-continuous map from [0, T ] × Rd into the

compact1 convex subsets of Rd. Then a continuous function x is a solution on [0, T ]

to the inclusion

ẋt ∈ F (t, xt)

if and only if for every pair (s, t),

xt ∈ xs +

∫ t

s
F (u, xu) du

In the case that F is single valued, this lemma just tells us the equivalence between

differential and integral equations.

1The proof of this lemma does not appear to use the compactness assumption directly - it is
just used to guarantee existence of solutions to the inclusion.
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2.1.1 Filippov regularisation

In the problems we are interested in we don’t have a set-valued right hand side,

we just have an Rd-valued function. We therefore need a natural way to obtain a

set-valued map corresponding to our function. A suitable choice is given by the

so-called Filippov regularisation [BOQ09]:

Definition 2.6 (Filippov regularisation). Given a function f : [0, T ] × Rd → Rd,
define the set-valued map Ff : [0, T ]× Rd → 2R

d \ ∅ by

Ff (t, x) :=
⋂
|N |=0

⋂
δ>0

co {f(t, Bδ(x) \N)}

Ff is called the Filippov regularisation of f . Here Bδ(x) denotes the d-dimensional

ball of radius δ centred at x, co{A} denotes the closed convex hull of a set A, and

the first intersection is taken over all sets of Lebesgue measure zero.

This definition is such that solutions to the differential inclusion ẋt ∈ Ff (t, xt) can

be thought of as limits of solutions to ẋδt = fδ(t, x
δ
t ), where fδ(t, x) is obtained by

averaging f(t, y) over y ∈ Bδ(x). Indeed suppose that f is locally integrable, so that

all of its points are Lebesgue points. Define the average fδ of f over Bδ via

fδ(t, x) :=
1

|Bδ|

∫
Bδ(x)

f(t, y) dy

Then Lebesgue’s differentiation theorem tells us that fδ(t, x) → f(t, x) as δ ↓ 0.

Another application of the theorem tells us that for all t, the map x 7→ fδ(t, x)

is continuous, and so by Carathéodory’s existence theorem we have existence of

solutions to the ODE ẋδt = fδ(t, x
δ
t ) for all t and each δ > 0. It follows that any

solution xδ satisfies

ẋδt ∈ co
{
f(t, Bδ(x

δ
t ))
}

for all t and each δ > 0. Taking the intersection over all δ > 0, we can deduce that

any limit z of solutions (if it exists) will satisfy

żt ∈
⋂
δ>0

co {f(t, Bδ(zt))} .

Since we have Ff (t, x) ⊆
⋂
δ>0 co {f(t, Bδ(x))}, it follows that any Filippov solutions

will also solve the same inclusion as the limits of the approximations xδ.
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We ideally want Ff to satisfy the assumptions of Theorem 2.3 so that we can infer

existence of solutions to the corresponding differential inclusion. This is the main

reason why the closed convex hull appears in the definition. There are some useful

properties of the regularisation which are collected in the following proposition.

This a minor modification of Proposition 2 in [BOQ09], where instead we allow for

explicit time dependence.

Proposition 2.7 (Properties I). Let f : [0, T ]×Rd → Rd be a measurable function

such that x 7→ f(t, x) is locally bounded for almost all t ∈ [0, T ]. Then

(i) There exists a set Nf (t) negligible under the Lebesgue measure such that for

any (t, x) ∈ R× Rd,

Ff (t, x) =
⋂
δ>0

co {f(t, Bδ(x) \Nf (t))} .

(ii) For almost all (t, x) ∈ [0, T ]× Rd, we have f(t, x) ∈ Ff (t, x).

(iii) For each t, the set-valued map Ff (t, ·) is the smallest upper semi continuous

set-valued map F t with closed convex values such that f(t, x) ∈ F t(x) for

almost all x ∈ Rd.

(iv) The map (t, x) 7→ Ff (t, x) is single-valued if and only if there exists a continu-

ous function g which coincides almost everywhere with f . In this case we have

Ff (t, x) = {g(t, x)} for almost all (t, x) ∈ [0, T ]× Rd.

(v) If a function f̃ coincides almost everywhere with f , then Ff (t, x) = Ff̃ (t, x)

for all (t, x) ∈ [0, T ]× Rd.

(vi) There exists a function f̄ which is equal almost everywhere to f and such that

Ff (t, x) =
⋂
δ>0

co
{
f̄(t, Bδ(x))

}

(vii) We have

Ff (t, x) =
⋂

f̃=f a.e.

⋂
δ>0

co
{
f̃(t, Bδ(x))

}
where the first intersection is taken over all functions f̃ being equal to f almost

everywhere.

Proof. The proof is identical to that in [BOQ09]: we just treat t as a parameter.
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Corollary 2.8. Let f : [0, T ] × Rd be such that for all x ∈ Rd, t 7→ f(t, x) is

measurable and there exists m ∈ L1([0, T ]) such that |f(t, x)| ≤ m(t) for t ∈ [0, T ].

Then there exists a solution to the differential inclusion

ẋt ∈ Ff (t, xt), x(0) = x0

Remark. We say that x is a solution to the differential equation ẋt = f(t, xt) in

the Filippov sense, or a Filippov solution, if it is a solution to the corresponding

differential inclusion ẋt ∈ Ff (t, xt).

If F,G are set valued functions satisfying the assumptions of the existence theorem,

and F (t, x) ⊆ G(t, x) for all t ∈ [0, T ], x ∈ Rd, then it’s clear that S(F, x0) ⊆
S(G, x0). It may therefore be tempting to think that if f is continuous almost

everywhere and a classical solution exists to the problem

ẋ(t) = f(t, x(t)), x0 ∈ Rd

then it is a Filippov solution to the corresponding differential inclusion. This is

incorrect, since although the regularisation Ff will be single valued, it may differ

from f on a null set. Consider for example the ODE

ẋt = 1R\{0}(xt), x0 = 0

Then xt = 0 is a classical solution, but it is not a Filippov solution since we have

Ff (t, x) = {1} everywhere.

We will also need some additional properties related to the algebra of the Filippov

regularisations so that we can more easily calculate specific regularisations.

Proposition 2.9 (Properties II). (i) Let f, g : [0, T ]× Rd → Rd. Then

Ff+g(t, x) = Ff (t, x) + Fg(t, x),

Ff ·g(t, x) = Ff (t, x) · Fg(t, x)

(ii) Let g : Rd → Rd be C1 with rank(Dg(x)) = d and let f : [0, T ] × Rd → Rd be

locally bounded. Set h(t, x) = f(t, g(x)). Then Fh(t, x) = Ff (t, g(x))

(iii) If f : [0, T ]×Rd → Rd satisfies the bound |f(t, x)| ≤ h(t, x) for some h : [0, T ]×
Rd → R+ non-negative and continuous, then for all elements α(t, x) ∈ Ff (t, x),

|α(t, x)| ≤ h(t, x).

Proof. (i) This follows from a more general result for families of sets. Let (Aα)
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and (Bα) be families of sets parameterised by α. Then

(a)
⋂
α

Aα +
⋂
α

Bα =
⋂
α

(Aα +Bα)

(b)
⋂
α

Aα ·
⋂
α

Bα =
⋂
α

(Aα ·Bα)

To see this in the summation case, note that⋂
α

Aα +
⋂
α

Bα = {x |x ∈ Aα for all α}+ {y | y ∈ Bα for all α}

= {x+ y |x ∈ Aα, y ∈ Bα for all α}

=
⋂
α

(Aα +Bα)

The product case follows similarly.

(ii) See Theorem 1 in [PS87] and treat t as a parameter.

(iii) Given any y ∈ Bδ(x), we have that |f(t, y)| ≤ h(t, y) for all t. Thus there

exists yδ ∈ Bδ(x) such that |f(t, y)| ≤ h(t, yδ) for all y ∈ Bδ(x). Taking the

intersection over all δ > 0 and f̃ = f a.e., we see from the continuity of h that

any element β(t, x) of F|f |(t, x) satisfies β(t, x) ≤ h(t, x).

Now given any set A, suppose that z ∈ |co{A}| := {|v| | v ∈ co{A}}. Then

there exist p, q ∈ A and λ ∈ [0, 1] such that

x = |λp+ (1− λ)q| ≤ λ|p|+ (1− λ)|q| ∈ co{|A|}

Therefore we have that |Ff (t, x)| ⊆ F|f |(t, x), and so given any α(t, x) ∈
Ff (t, x), |α(t, x)| ∈ F|f |(t, x). Taking β(t, x) = |α(t, x)| we see that the re-

sult is proved.

We now prove that the set S(Ff , x0) of Filippov solutions is compact under certain

assumptions on the function f . This result will be useful later on.

Proposition 2.10 (Compactness of the solution set). Suppose that f : [0, T ]×Rd →
Rd is measurable and satisfies, for almost all t ∈ [0, T ] and all x ∈ Rd,

|f(t, x)| ≤ m(t)(1 + |x|)

where m ∈ L2([0, T ]). Let (xk)k≥1 ⊆ S(Ff , x0) be a sequence of Filippov solutions.
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Then there exists a subsequence (xkp)p≥1 which converges uniformly to a solution

x ∈ S(Ff , x0).

Proof. Assume we have existence of solutions, otherwise the result is clear. We first

show that the sequence (xk)k≥1 is uniformly bounded. From Proposition 2.9(iii)

we know that any selection α(t, x) from Ff (t, x) satisfies the bound |α(t, x)| ≤
m(t)(1 + |x|), and so we have that

|xkt | ≤
∫ t

0
|ẋks | ds

≤
∫ t

0
m(s)(1 + |xks |) ds

≤ C +

∫ t

0
m(s)|xks | ds

since m ∈ L2([0, T ]) ⊆ L1([0, T ]). Therefore by Gronwall’s lemma we obtain the

uniform bound

|xkt | ≤ C exp

(∫ T

0
m(s) ds

)
<∞

We now show that the (xk)k≥1 is uniformly equicontinuous. We have that

|xkt − xks | =
∣∣∣∣∫ t

0
ẋku du−

∫ s

0
ẋku du

∣∣∣∣
≤
∫ t

s
|ẋku| du

≤
∫ t

s
m(u)(1 + |xku|) du

≤ (t− s)
∫ t

s
m(u)2(1 + |xku|)2 du

≤ C(t− s)

using Cauchy-Schwarz, the uniform boundedness of |xk| and the fact m ∈ L2([0, T ]).

The result now follows from the Arzela-Ascoli theorem.

Remark. The result is trivially true if S(Ff , x0) is empty. As we will see later

however, this is never the case when the assumptions of the proposition are satisfied.
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2.1.2 Examples

1. Let A ⊆ [−1, 1] be a dense set such that 0 ∈ A and |A ∩ [a, b]| ∈ (0, b− a) for

all −1 ≤ a < b ≤ 1. Define f : [−1, 1]→ R

f(x) =

{
1 x ∈ A
−1 x /∈ A

Then the differential equation

ẋ(t) = f(x(t)), x(0) = 0

can be seen to have no classical solution. Indeed suppose that it did: imme-

diately the solution would move away from zero, and then immediately after

this it would move back to zero. This would repeat, suggesting that the zero

function is the only possible candidate for a solution. This does not solve the

equation, however.

The fact that A∩ (a, b) is dense in (a, b) without full measure ensures that we

have, for each x, ⋂
δ>0

co {f(Bδ(x)} = [−1, 1]

The condition on the measure of intersections of A with intervals means that

the above is also true for any f̃ such that f̃ = f almost everywhere, and

therefore Ff (x) = [−1, 1]. The corresponding differential inclusion is hence

given by

ẋ(t) ∈ [−1, 1]

which has a very large number of solutions: given any measurable y : [−1, 1]→
R such that |y| ≤ 1,

xy(t) :=

∫ t

0
y(s) ds

solves the inclusion.

2. Now that we have a suitable existence result we return to the control problem

for (SDE), given by

xut = x0 +

∫ t

0
σ(s, xus )u̇s ds+

∫ t

0
b(s, xus ) ds

where u̇ ∈ L2([0, T ];Rd), σ ∈ BC1([0, T ]×Rd;Rd) and b ∈ L∞([0, T ]×Rd;Rd).
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Defining f(t, x) = σ(t, x)u̇(t) + b(t, x), it is clear that f(t, ·) is bounded for all

t. We also have that for all x ∈ Rd,

|f(t, x)| ≤ ‖σ(·, ·)‖L∞([0,T ]×Rd)|u̇t|+ ‖b(·, ·)‖L[0,T ]×∞(Rd)

= C|u̇t|+D

=: m(t)

Since we have |u̇| ∈ L2([0, T ]) ⊆ L1([0, T ]), m ∈ L1([0, T ]). The assumptions

of Corollary 2.8 are therefore satisfied and a solution to the control problem

exists in the Filippov sense.

Using Proposition 2.9 and the continuity of σ(t, ·)u̇t we see that the regulari-

sation Ff (t, x) is given by

Ff (t, x) = σ(t, x)u̇t + Fb(t, x)

and Fb is compact and convex valued.

2.2 Regularisation by noise

We are not always guaranteed solutions to differential inclusions, with the main

obstacle in our case being the local boundedness requirement on the right hand

side. One approach to remedy this situation is to perturb the ODEs by some non-

degenerate noise such as Brownian motion. In certain cases the resulting SDEs

are known to have both unique strong solutions, as well as unique ‘path-by-path’

solutions.

To start with, we consider the simple example given by the ODE

xt = 2

∫ t

0
sgn(xs) ds (2.1)

Then three solutions to this equation are given by xt = 0 and xt = ±t2. Moreover,

the non-zero solutions can be connected to the zero solution via

xt =

{
0 t ≤ C
±(t− C)2 t > C

resulting in an uncountable family of solutions.
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Now consider the stochastic perturbation of (2.1) given by

xεt = 2

∫ t

0
sgn(xεs) ds+ εWt (2.2)

for some ε > 0, where W is a Brownian motion. Since b(x) := 2sgn(x) is bounded

and the SDE is elliptic, existence of a unique strong solution follows from a theorem

of Veretennikov [Ver80]. The question is how this strong solution compares to the

solutions of the deterministic equation (2.1). It makes sense to look for some kind

of convergence of xεt as ε ↓ 0.

This limit has been studied previously, see for example [Tre13]. If µε denotes the

law of the solution to (2.2), then it is known that the weak limit of µε as ε ↓ 0 is

given by

µ :=
1

2
δt2 +

1

2
δ−t2

That is, the limiting process chooses one of the extremal paths ±t2 with equal

probability. In particular, the limiting measure assigns full mass to the space of

solutions to (2.1).

We wish to apply this technique to our control ODEs, which unlike (2.1) may not

have solutions in a classical sense. In this case we would aim to describe the support

of the law of (SDE) in terms of the limits of the laws of the stochastically perturbed

ODEs rather than the solutions to the ODEs themselves. The controlled problems

we are interested in are of the form

xut = x0 +

∫ t

0
σ(s, xus )u̇s ds+

∫ t

0
b(s, xus ) ds (2.3)

where u ∈ H := L2,1
0 ([0, T ];Rd), the Cameron-Martin space of the Wiener measure

given by

L2,1
0 ([0, T ];Rd) :=

{
u ∈ C0([0, T ];Rd)

∣∣∣∣ut =

∫ t

0
ϕs ds for some ϕ ∈ L2([0, T ];Rd)

}
In the case that b is not locally bounded, we do not have an existence theorem even

for Filippov solutions. We do however have existence theorems for the stochastic

perturbation of (2.3) in certain cases.

As before, let W be a Brownian motion and let ε > 0. Consider the SDE

xu,εt = x0 +

∫ t

0
σ(s, xu,εs )u̇s ds+

∫ t

0
b(s, xu,εs ) ds+ εWt (2.4)
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Existence and uniqueness of solutions to this equation in different senses have been

shown, depending upon which space f := σu̇+ b lies in:

(i) (Veretennikov, [Ver80]) f bounded measurable implies existence and unique-

ness of a strong solution.

(ii) (Davie, [Dav07] [Dav10] [Fla11]) f bounded measurable almost-surely implies

existence and uniqueness of path-by-path solutions. That is, if a sample path

of W is fixed, then almost surely the resulting (random) ODE has a unique

solution.

(iii) (Krylov-Röckner, [KR05] [FF10]) f ∈ Lqp(T ) := Lq([0, T ];Lp(Rd;Rd)) with

d/p+ 2/q < 1 implies existence and uniqueness of a strong solution.

2.2.1 The zero-noise limit

Although we have existence of solutions to (2.4) in the cases described above, much

less is known about the limit of these solutions as the intensity of the noise ε tends

to zero. This problem was originally studied by Bafico and Baldi in their 1982 paper

[BB82]. Their result concerned the one-dimensional case when f is continuous. The

problem has since been studied in the multi-dimensional case with fewer restrictions

on f , for example Buckdahn et al. studied the case when f has at most linear

growth. The following theorem is taken from [BOQ09]:

Theorem 2.11. Suppose that f : Rd → Rd is Lebesgue measurable and satisfies

|f(x)| ≤M(1 + |x|), ∀x ∈ Rd

For any ε > 0, let xε be the solution to

dxεt = f(xεt ) dt+ εdWt, x0 = x (2.5)

Then there exists εn → 0 such that xε converges in law, as εn → 0, to some x which

belongs almost surely to the set of Filippov solutions2 to

ẋt = f(xt), x0 = x

Furthermore, any cluster point of xε is also almost surely in the set of Filippov

solutions.

2Theorem 10.1 in [Dei92] tells us that this set is non-empty.
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Let µε denote the law of the solution to (3.2). Then the theorem tells us that, given

any sequence εn → 0 such that (µεn)n≥1 converges weakly, the limiting measure µ

will satisfy µ(S(Ff , x)) = 1. Unfortunately it is possible that different subsequences

will result in different limiting measures, even though all such measures will assign

full mass to the set of Filippov solutions.

A more specific result is proved in [Zha12]. In this paper, under additional assump-

tions on the function f , the author shows that the limiting process in fact belongs

almost surely to the subset of Filippov solutions that leave the starting point imme-

diately. This was the case in the example discussed above, where only the extremal

solutions ±t2 were reachable by the limiting process.
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Chapter 3

Elliptic case

We first concentrate on the case when the diffusion matrix is uniformly elliptic.

In this case the support of the law of the diffusion is given by the whole space

Cx0([0, T ];Rd), as shown in Proposition 1.3. We therefore only need to show that

the space of solutions to the control problems is dense in Cx0([0, T ];Rd).

3.1 Bounded measurable drift

Assume without loss of generality that x0 = 0 and let H = L2,1
0 ([0, T ];Rd). Choose

u ∈ H and consider the ODE

xut =

∫ t

0
σ(s, xus )u̇t du+

∫ t

0
b(s, xus ) ds

where σ : [0, T ] × Rd → Rd ⊗ Rd is BC1 and b : [0, T ] × Rd → Rd is bounded

measurable. We interpret this in the Filippov sense, so that

xut ∈
∫ t

0
σ(s, xus )u̇t du+

∫ t

0
Fb(s, x

u
s ) ds (3.1)

where as usual Fb denotes the Filippov regularisation of b. In this case the bound-

edness of b means that Fb is compact valued.

Denote by S(u) the set of solutions to (3.1). We aim to show that⋃
u∈H
S(u) = C0([0, T ];Rd)
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where the closure is taken in the uniform topology.

We first note that each solution is of the form

xut = ut +

∫ t

0
yus ds

where yu is a selection from Fb(·, xu· ), and so in particular is bounded measurable.

Now given any family of uniformly bounded measurable functions Z = (zu)u∈H , we

define the set

AZ :=

{
ut +

∫ t

0
zus ds

∣∣∣∣u ∈ H}
Since zu is bounded, it is clear that AZ ⊆ H for all Z, and so AZ ⊆ C0([0, T ];Rd).
As a consequence, we have ⋃

u∈H
S(u) ⊆ C0([0, T ];Rd)

by choosing the appropriate Z.

We now need to show that AZ is dense. It suffices to show that zero is a limit point

of AZ . Moreover, we need only to consider the ‘worst case’ for Z, specifically if b is

uniformly bounded by K, a choice such that |ut − zut | ≥ K for all u ∈ L2([0, T ];Rd)
and all t ∈ [0, T ]. In one dimension, this may be given by

zut =

−K u̇t ≤ 0

+K u̇t > 0

In higher dimensions, zut can take the value (±K, . . . ,±K)/
√
d in the same orthant

as u̇t. We have that, for example,∣∣∣∣∫ t

0
u̇s ds+

∫ t

0
zus ds

∣∣∣∣ =

∣∣∣∣∣
∫
{u̇s≤0}∩[0,t]

(u̇s −K) ds+

∫
{u̇s>0}∩[0,t]

(u̇s +K) ds

∣∣∣∣∣
=

∣∣∣∣∫ t

0
u̇s ds−K|{u̇s ≤ 0} ∩ [0, t]|+K|{u̇s > 0} ∩ [0, t]|

∣∣∣∣
which can be made arbitrarily small in the uniform norm by the appropriate choice

of u̇.

Alternatively, we could follow the same approach as described in the sketch proof

earlier, using a Wong-Zakai approximation. The approximation still holds with our

regularity on the coefficients (at least in the continuous case), but we defer the proof
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until the next chapter, see Corollary 4.3.

It follows that

C0([0, T ];Rd) ⊆
⋃
u∈H
S(u)

and so we have the desired equality.

3.1.1 Regularisation with noise

We could instead perturb the control ODEs by noise, yielding

dxu,εt = σ(t, xu,εt )u̇t dt+ b(t, xu,εt ) dt+ εdBt

As discussed in Chapter 2 there exists a unique strong solution to this SDE. Fur-

thermore, letting µu,ε denote its law and given any εn ↓ 0 such that µu,εn converges

weakly, the limiting measure µu satisfies µu(S(u)) = 1. Note that this limiting

measure isn’t necessarily unique across all subsequences.

We now consider the set

T (u) :=

{
y ∈ C0([0, T ];Rd)

∣∣∣∣ ∃εn ↓ 0 s.t. lim inf
εn↓0

µu,εn(Bδ(y)) > 0 for all δ > 0

}
We show that this contains at least one element of S(u) for each u. Given any

y ∈ S(u) and any δ > 0, we have by the lower semi-continuity of weak convergence

of measures on open sets that

lim inf
εn↓0

µu,εn(Bδ(y)) ≥ µu(Bδ(y))

First suppose that |S(u)| <∞. Then since µu(S(u)) = 1 it follows that there exists

y ∈ S(u) such that µu({y}) > 0, and so the same holds for all balls containing that

y. It follows that y ∈ T (u).

If instead |S(u)| =∞, we use the compactness of S(u) and cover it with (Bδ(y))y∈S(u).

We take a finite subcover (Bδ(yn))kn=1 and note that

1 = µu(S(u)) ≤
k∑

n=1

µu(Bδ(yn))

At least one of the terms in the sum must be positive, and so we have yn ∈ T (u)

for some n.
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Now using the same argument as in the previous section, we can conclude that⋃
u∈H
T (u) = C0([0, T ];Rd) = supp(µ)

This is the result we aim to obtain for the case of Lqp(T ) drift, where we don’t have

existence of Filippov solutions.

We can summarise our results for bounded measurable drift in the following propo-

sition.

Proposition 3.1. Suppose that b : [0, T ]×Rd → Rd is bounded measurable, and let

σ : [0, T ] × Rd → Rd ⊗ Rd be continuous, bounded and such that σσT is uniformly

positive definite. Let µ denote the law of a solution to the SDE

dxt = σ(t, xt) dWt + b(t, xt) dt

Then retaining the same notation as before, we have⋃
u∈H
S(u) =

⋃
u∈H
T (u) = C0([0, T ];Rd) = supp(µ)

3.2 Drift with linear growth

We can in fact generalise this result slightly to the case where the drift has at most

linear growth in space and an L1 dependence on time, thanks to an existence result

for inclusions by Tolstonogov [Tol88]:

Theorem 3.2. Let the mapping F : [0, T ]×Rd → 2R
d \ ∅ be measurable and satisfy

(i) for almost all t ∈ [0, T ], for each x ∈ Rd the mapping F (t, ·) has a closed graph

at the point x and the set F (t, x) is convex; and

(ii) there exists a non-negative m ∈ L1([0, T ]) such that

F (t, x) ∩ {y ∈ Rd | |y| ≤ m(t)(1 + |x|)} 6= ∅

almost everywhere on [0, T ] for any x.

Then there exists a solution on [0, T ] to the differential inclusion ẋt ∈ F (t, xt) started

from any x0 ∈ Rd.
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Any upper semi-continuous map with closed values has a closed graph, see for exam-

ple Proposition 2.1 in [Smi00]. It is therefore not hard to see that the conditions on

F required in the theorem are satisfied by the Filippov regularisation Ff of a measur-

able function f : [0, T ]×Rd → Rd which satisfies the bound |f(t, x)| ≤ m(t)(1 + |x|)
for some m ∈ L2([0, T ]) ⊆ L1([0, T ]). This condition is similar to that in Theorem

2.11, except now there is an explicit time-dependence. Nonetheless, the conclusion

of that theorem remains true in this case:

Theorem 2.11′. Suppose that f : [0, T ]× Rd → Rd is measurable and satisfies, for

almost all t ∈ [0, T ] and all x ∈ Rd,

|f(t, x)| ≤ m(t)(1 + |x|)

where m ∈ L2([0, T ]). For any ε > 0, let xε be the solution to

dxεt = f(t, xεt ) dt+ εdWt, x0 = x (3.2)

Then there exists εn → 0 such that xε converges in law, as εn → 0, to some x which

belongs almost surely to the set of Filippov solutions to

ẋt = f(t, xt), x0 = x

Furthermore, any cluster point of xε is also almost surely in the set of Filippov

solutions.

Proof. The previous theorem gives us the existence of the Filippov solutions. Propo-

sition 2 in [BOQ09] remains true when we add time-dependence: it is Proposition

2.7 here. Most other parts of the proof of Theorem 4 in [BOQ09] remain virtually

identical in light of this. The only small change required is in showing that the pro-

cesses Ỹ ′εn as defined in their paper remain uniformly bounded in L2([0, T ]×Ω;Rd).
The processes satisfy the bound

|Ỹ ′εn(t)| ≤ m(t)(1 + |X̃εn(t)|)

where X̃εn(t) is a weak solution to the SDE

X̃εn(t) = x+

∫ t

0
f(s, X̃εn(s)) ds+ εnW̃εn(t)

for some Brownian motion W̃εn . Therefore, using the bound on f and the fact that
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(a+ b)2 ≤ 2(a2 + b2),

|X̃εn(t)|2 ≤ C
(
|x|2 + ε2n|W̃εn(t)|2 +

∫ t

0
m(s)2(1 + |X̃εn(s)|2) ds

)
and so

E
(

sup
s≤t
|X̃εn(s)|2

)
≤ C

(
|x|2 + ε2n sup

s≤T
|W̃εn(s)|2 +

∫ T

0
m(s)2 ds

+

∫ t

0
m(s)2E

(
sup
r≤s
|X̃εn(r)|2

)
ds

)
sincem2 is non-negative. The first three terms on the right hand side can be bounded

independently of n, and so using Gronwall’s lemma we deduce that

E

(
sup
s≤T
|X̃εn(s)|2

)
≤ C exp

(∫ T

0
m(s)2 ds

)
<∞

independently of n. It follows that

E
(∫ T

0
|Ỹ ′εn(t)|2 dt

)
≤ C

∫ T

0
m(t)2

(
1 + E

(
sup
s≤T
|X̃εn(s)|2

))
ds

≤ C
∫ T

0
m(t)2 ds

<∞

Thus the processes Ỹ ′εn(t) are uniformly bounded in L2([0, T ] × Ω;Rd). We are

therefore still able to deduce the weak H1([0, T ] × Ω;Rd) convergence of the Ỹεn ,

and the rest of the proof proceeds in the same way.

Using the above theorem we are able to characterise the supports of the laws of

some more diffusion processes:

Proposition 3.3. Suppose that b : [0, T ]×Rd → Rd is measurable and satisfies, for

almost all t ∈ [0, T ] and all x ∈ Rd,

|b(t, x)| ≤ m(t)(1 + |x|)

where m ∈ L2([0, T ]). Let σ : [0, T ] × Rd → Rd ⊗ Rd be continuous, bounded and

such that σσT is uniformly positive definite. Let µ denote the law of a solution to
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the SDE

dxt = σ(t, xt) dWt + b(t, xt) dt

Then retaining the same notation as before, we have⋃
u∈H
S(u) =

⋃
u∈H
T (u) = C0([0, T ];Rd) = supp(µ)

Proof. The fact that the support of µ is all of C0([0, T ];Rd) follows from Proposition

1.3.

Let u ∈ H and define f(t, x) = σ(t, x)u̇t + b(t, x). Then it’s easy to see that there

exists m ∈ L1([0, T ]) such that |f(t, x)| ≤ m(t)(1 + |x|) for almost all t ∈ [0, T ] and

all x ∈ Rd. Therefore by Theorem 3.2 there exists a solution xu to the inclusion

ẋut ∈ Ff (t, xt), and from the algebra of the Filippov regularisations it can be seen

to satisfy

xut = x0 +

∫ t

0
σ(s, xus )u̇s ds+

∫ t

0
yus ds

for a selection yu from Fb(·, xu· ). Since we have |b(t, x)| ≤ m(t)(1 + |x|), it follows

from Proposition 2.9(iii) that yu satisfies

|yut | ≤ m(t)(1 + |xut |)

Since xht is continuous and we’re working on a compact interval, it is bounded. From

this we can see that yht ∈ L2([0, T ]). Then similarly to the bounded measurable case

we see that ⋃
u∈H
S(u) =

⋃
u∈H
T (u) = C0([0, T ];Rd)

3.3 Lqp(T ) drift

The case when we have Lqp(T ) drift is more complicated since we don’t have any

existence theorems for the control ODEs or inclusions: we are forced to regularise

by noise. However as remarked earlier, little is known about the zero noise limit in

this case.

In [Fla08], the author explains that there is some progress in this direction. Assume

that f : Rd → Rd has no time dependence and lies in Lp(Rd;Rd). Assume further

33



that f is continuous and satisfies a growth condition such as 〈f(x), x〉 ≤ C(|x|2 + 1)

for all x ∈ Rd. Then the family of laws (µε)ε>0 of solutions to the SDEs

xεt = f(xεt ) dt+ εdWt, x0 ∈ R

is tight and each limit point assigns full mass to the space of solutions to the corre-

sponding ODE.

The conditions on f are particularly restrictive, ruling out the possibility of singular

drift. However, the note [Fla08] does not make use of the fact that there exists a

unique strong solution in the more general non-autonomous case f ∈ Lqp(T ) [KR05]

[FF10], a result which may be of use.

Suppose that b : [0, T ] × Rd → Rd lies in Lqp(T ) with d/p + 2/q < 1. We will need

some decay assumption on σ : [0, T ] × Rd → Rd ⊗ Rd: we assume it is bounded

and has compact support K (or at least strong decay at infinity). Assume also that

u̇ ∈ L2([0, T ];Rd). Then we can use Hölder’s inequality to deduce that f := σu̇+ b

lies in Lqp(T ) also:

‖f‖q
Lqp(T )

≤
∫ T

0

(∫
K
|σ(t, x)u̇(t)|p dx

)q/p
dt+ ‖b‖Lqp(T )

≤ C
∫ T

0
|u̇(t)|q dt+ ‖b‖Lqp(T )

≤ C‖1‖Lq′ (T )‖u̇‖L2(T ) + ‖b‖Lqp(T )

where q′ = q/(q−2). This is well-defined since by assumption q > 2. Therefore under

these assumptions we have existence of a unique strong solution to the perturbed

control ODE

xu,εt = x0 +

∫ t

0
σ(s, xu,εs )u̇s ds+

∫ t

0
b(s, xu,εs ) ds+ εWt

We aim to investigate the set T (u) corresponding to this SDE, defined earlier. How-

ever due to the lack of Filippov solutions, we must investigate this set directly.
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Chapter 4

Degenerate case

4.1 Bounded measurable drift

We assume throughout this section that σ : [0, T ]× Rd → Rd ⊗ Rd lies in BC1 and

that b : [0, T ]× Rd → Rd is bounded measurable.

4.1.1 A Wong-Zakai type result

We wish to prove that if we replace the Brownian motion in (SDE) by an approxima-

tion, we get convergence of the approximate solutions to the true solution in some

sense. Under higher regularity on the drift, the result is known for weak conver-

gence [SV72], L2 convergence [IW81] and convergence in probability [GP90].

Let W be a Brownian motion on R and let W (n) be a polygonal approximation to

it such that

Ẇ (n)(t) = 2n(W (t+n )−W (tn))

where

tn :=
b2ntc

2n
, t+n :=

b2ntc+ 1

2n

Then Ẇ (n) ∈ L2([0, T ]) for all T > 0. Set fn(t, x) := σ(t, x)Ẇ (n)(t) + b(t, x), so that

we have existence of solutions to the differential inclusion

xnt ∈ x0 +

∫ t

0
Ffn(s, xns ) ds
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We are interested in how these solutions relate to those of the Stratonovich SDE

xt = x0 +

∫ t

0
σ(s, xs) ◦ dWs +

∫ t

0
b(s, xs) ds (SDE)

Since we do not have an existence theorem for this SDE in the general degenerate

case, we simply assume existence. We first need to see what Ffn(t, x) looks like.

From the continuity of σ in space and the algebra of Filippov regularisations, we

have

Ffn(t, x) = σ(t, x)Ẇ (n)(t) + Fb(t, x)

The only term of concern is hence the drift b. We first concentrate on the one-

dimensional case because it is more transparent what is going on. Define

b−(t, x) := lim
δ↓0

inf
y∈Bδ(x)

b(t, y), b+(t, x) := lim
δ↓0

sup
y∈Bδ(x)

b(t, y)

Then it’s clear that almost everywhere we have the equality

Fb(t, x) =
⋂

b̃=b a.e.

⋂
δ>0

co
{
b̃(Bδ(t, x)

}
= [b−(t, x), b+(t, x)] (4.1)

and this interval is finite due to the boundedness of b. Therefore we have that

Ffn(t, x) =
[
σ(t, x)Ẇ (n)(t) + b−(t, x), σ(t, x)Ẇ (n)(t) + b+(t, x)

]
and so

xnt ∈ x0 +

∫ t

0

[
σ(s, xns )Ẇ (n)(s) + b−(s, xns ), σ(s, xns )Ẇ (n)(s) + b+(s, xns )

]
ds

Equivalently, by the absolute continuity of xn, we have that for all s,

σ(s, xns )Ẇ (n)(s) + b−(s, xns ) ≤ ẋns ≤ σ(s, xns )Ẇ (n)(s) + b+(s, xns )

In higher dimensions we don’t have a nice analogue of (4.1), but we do at least

know that it is a compact convex set due to the boundedness of b. We can therefore

write

ẋns ∈ σ(s, xns )Ẇ (n)(s) + Fb(s, x
n
s )

where where addition is done pointwise, and Fb is known to be a compact and convex

set valued function.
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We wish to show that each solution xn converges weakly to a solution x. The

lack of uniqueness both for the approximations and the original SDE is an issue

however: we need to ensure that we pick the correct sequence of solutions from

the sets of solutions to each approximation, otherwise we may have no hope for

convergence.

We first show that the family of laws of xn is relatively weakly compact. For

convenience we will use the following notation:

α(n)(t) = σ(t, xn(tn))Ẇ (n)(t)

(σ′σ)j,li (t, x, s, y) =
∂σij

∂xk
(t, x)σkl(s, y)

(σ′b)ji (t, x, s, y) =
∂σij

∂xk
(t, x)bk(s, y)

Lemma 4.1. Let (xn)n≥1, xn : R × Ω → Rd, be a sequence of processes such that

xn(·, ω) ∈ S(W (n)(ω)) for each n ≥ 1 and ω ∈ Ω. Then the family of laws (µn)n≥1

of (xn)n≥1 is relatively weakly compact.

Proof. We follow the idea of the proof in [SV72]. It suffices to prove that

sup
n

Eµn
(
|ω(t)− ω(s)|4

)
≤ CT |t− s|2, 0 ≤ s ≤ t ≤ T, T > 0

where t 7→ ω(t) is the evaluation map on C0([0, T ];Rd). First note that1

Eµn |ω(t)− ω(s)|4 = EW
∣∣∣∣∫ t

s
ẋnt dr

∣∣∣∣4
≤ C

(
EW

∣∣∣∣∫ t

s
σ(r, xnr )Ẇ (n)(r) dr

∣∣∣∣4 + EW
∣∣∣∣∫ t

s
|Fb(r, xnr )|dr

∣∣∣∣4
)

≤ CEW
∣∣∣∣∫ t

s
σ(r, xnr )Ẇ (n)(r) dr

∣∣∣∣4 + C|t− s|4

so we just need to deal with the first term. By the Fundamental Theorem of Calculus

1For a set A ⊆ Rd, we define |A| := supx∈A |x|
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we have

σij(t, xnt ) = σij(t, xntn) +

∫ t

tn

〈
∇xσij(t, xnw), ẋnw

〉
dw

∈ σij(t, xntn) +

∫ t

tn

〈
∇xσij(t, xnw), σ(w, xnw)Ẇ (n)

w

〉
dw

+

∫ t

tn

〈
∇xσij(t, xnw), Fb(w, x

n
w)
〉

dw

Therefore[∫ t

s
σ(r, xnr )Ẇ (n)(r) dr

]
i

∈
∫ t

s
αni (u) du

+

∫ t

s

∫ u

un

∂σij

∂xk
(u, xnw)σkl(w, xnw)Ẇ

(n)
l (w)Ẇ

(n)
j (u) dw du

+

∫ t

s

∫ u

un

∂σij

∂xk
(u, xnw)(Fb)k(w, x

n
w)Ẇ (n)

u dw du

and so∫ t

s
σ(r, xnr )Ẇ (n)(r) dr ∈

∫ t

s
αn(u) du

+

∫ t

s

∫ u

un

(σ′σ)j,l(u, xnw, w, x
n
w)Ẇ

(n)
l (w)Ẇ

(n)
j (u) dw du

+

∫ t

s

∫ u

un

(σ′Kb)j(u, xnw, w, x
n
w)Ẇ

(n)
k (u) dw du

=: I1 + I2 + I3

Now

EW |I1|4 = EW
∣∣∣∣∫ t

s
σ(u, xnun)Ẇ (n)(u) du

∣∣∣∣4
= EW

∣∣∣∣∫ tn

sn

σn(u) dW (u)

∣∣∣∣4
≤ C(t− s)2

where

σ(n)(u) = 2n
∫ u+n∧t

un∨s
σ(v, xnun) dv
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For the second term we use Jensen’s inequality and the fact that σ ∈ BC1:

EW |I2|4 ≤ (t− s)3EW
[∫ t

s

∣∣∣∣∫ u

un

(σ′σ)j,l(u, xnw, w, x
n
w)Ẇ

(n)
l (w)Ẇ

(n)
j (u) dw

∣∣∣∣4 du

]

≤ C(t− s)3
∫ t

s
(u− un)3

∫ u

un

EW
∣∣∣∣∣∣

d∑
l,l′=1

Ẇ
(n)
l (w)Ẇ

(n)
j (u)

∣∣∣∣∣∣
4

dw du

Since w ∈ [un, u] it follows that Ẇ (n)(w) = Ẇ (n)(u), and so by the distributional

properties of Brownian motion,

EW |I2|4 ≤ C(t− s)3 · 28n
∫ t

s
(u− un)4EW |W (u+n )−W (un)|8 du

= C(t− s)3 ·
b2ntc∑

k=b2nsc

24n
∫ (k+1)/2n

k/2n

(
u− k

2n

)4

du

≤ C(t− s)3 · 24n · 2n · 2−5n = C(t− s)3

The third term is dealt with similarly to the second:

EW |I3|4 ≤ C(t− s)3 · 24n
∫ t

s
(u− un)4EW |W (u+n )−W (un)|4 du

= C(t− s)3 ·
b2ntc∑

k=b2nsc

22n
∫ (k+1)/2n

k/2n

(
u− k

2n

)4

du

= C(t− s)3 · 2−2n ≤ C(t− s)3

Combining everything, we see that we have the uniform bound

Eµn |x(t)− x(s)|4 ≤ CT |t− s|2

and so the result is proved.

We now need to check that the weak limit of (a subsequence of) (µn)n≥1 converges

to what we want, namely, the law µ of a solution to the original SDE.

Proposition 4.2. Let x be a solution to (SDE) with law µ. Then there exists a

sequence of processes (yn)n≥1, yn : R× Ω→ Rd, with yn(·, ω) ∈ S(W (n)(ω)) for all

n ≥ 1 and ω ∈ Ω, such that their laws µn converge weakly to µ.
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Proof. From the previous lemma we know that the family of laws of any processes

satisfying the above is relatively weakly compact, and so has a weakly convergent

subsequence. There are two issues we must deal with: firstly we must be able to

choose the ‘correct’ solution to each control ODE, and secondly we must be able to

show that the limit of this subsequence is indeed what we want it to be. For the

latter we will use a martingale argument, similar to [SV72].

First of all, note that for each path ω and each n ≥ 1, there exists a solution to the

differential inclusion

ẏ
(n)
t (ω) ∈ σ(t, y

(n)
t (ω))Ẇ

(n)
t (ω) + Fb(t, y

(n)
t (ω))

and each solution satisfies

ẏ
(n)
t (ω) = σ(t, y

(n)
t (ω))Ẇ

(n)
t (ω) + b

(n)
t (ω)

for some b(n)(ω) : [0, T ]→ Rd with b
(n)
t (ω) ∈ Fb(t, y

(n)
t (ω)) for all t.

In order to proceed it seems necessary to assert that b is continuous almost ev-

erywhere in the spatial component, though it may be possible to relax this at a

later date. In this case we have that Fb(t, x) = {b(t, x)} almost everywhere, and so

b
(n)
· (ω) = b(·, yn· (ω)) almost surely.

Now as in [SV72] we aim to show that

Eµ [F · (f(ω(t))− f(ω(s)))] = Eµ
[
F ·
∫ t

s
Luf(ω(u)) du

]
for all f ∈ C∞0 (Rd), 0 ≤ s < t and bounded Fs measurable F : Ω→ R, where Lt is

as defined in Theorem 1.5. It suffices to assume that F is continuous, and so by the

Fundamental Theorem of Calculus we have

Eµn [F · (f(ω(t))− f(ω(s)))] = Eµn
[
F ·
∫ t

s
〈∇xf(ω(u)), b(u, ω(u))〉du

]
+ Eµn

[
F ·
∫ t

s
〈∇xf(ω(u)), σ(u, ω(u))Ẇ (n)(u)〉 du

]
= I

(n)
1 + I

(n)
2

From the boundedness of b, the convergence of I
(n)
2 is the same as in [SV72]. Sim-

ilarly, from the fact the that integrand in I
(n)
1 is a bounded continuous function of
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ω, the weak convergence of the µn implies that

Eµn
[
F ·
∫ t

s
〈∇xf(ω(u)), b(u, ω(u))〉du

]
→ Eµ

[
F ·
∫ t

s
〈∇xf(ω(u)), b(u, ω(u))〉du

]
and so the result follows.

We can now see that the first inclusion for the support theorem holds:

Corollary 4.3. Suppose that σ : [0, T ]×Rd → Rd⊗Rd is BC1 and b : [0, T ]×Rd →
Rd is bounded continuous in space and L2 in time. Let S(W ) denote the space of

solutions to (SDE), and let µx denote the law of x ∈ S(W ). Then⋃
x∈S(W )

supp(µx) ⊆
⋃
u∈H
S(u)
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Chapter 5

Numerical Experiments

We can simulate SDE sample paths numerically to get a feel for how solutions

should behave. This is particularly useful for gauging which sets appear to be

reachable by sample paths, since we can simulate numerous paths and plot them

together. Likewise, we can plot solutions to the control ODEs and see how they

compare with either the simulated SDE sample paths, or the support if already

known analytically.

5.1 Stochastic Runge-Kutta methods

We use general Runge-Kutta methods for the simulations. The implementation

is essentially identical to the that for deterministic ODEs, just performed path-

wise.

Suppose we wish to solutions to the SDE

dxt = σ(t, xt) dWt + b(t, xt) dt, x0 = a ∈ Rd

Fix a sequence of timesteps (τj)
J
j=1, possibly all equal. Set tn =

∑n
j=1 τj . We

estimate dWtn with ωn := Wtn −Wtn−1 ∼ N(0, τnId). Choose s ∈ N (number of

stages in the method), along with aij , bj and ci :=
∑s

j=1 aij ∈ R for each i, j =

1, . . . , s.

The value of our approximation at time tn will be denoted yn, so that yn ≈ xtn(κ)

for some sample κ ∈ Ω. Set y0 = a. At each timestep we have three stages to

perform:
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1. Simulate ωn ∼ N(0, τnId)

2. Find a sequence of vectors (pi)
s
i=1 such that

pi = yn−1 +

s∑
j=1

aij

[
b(tn−1 + cjτn, pj)τn + σ(tn−1 + cjτn, pj)ωn

]

3. Set

yn := yn−1 +
s∑
i=1

bi

[
b(tn−1 + ciτn, pi)τn + σ(tn−1 + ciτn, pi)ωn

]

This is repeated until we reach the end of the time interval we are simulating

over.

See [But87] for more detail on Runge-Kutta schemes for ODEs.

5.1.1 Examples of schemes

A Runge-Kutta scheme is determined by its Butcher tableau.

c a

bT
=

c1 a11 . . . a1s
...

...
. . .

...

cs as1 . . . ass

b1 . . . bs

The method is explicit if aij = 0 for all j ≥ i.

The most basic example of a scheme is the forward Euler method, a fully explicit one

stage method. In this case results in the well-known Euler-Maruyama approximation

for the SDE. Its Butcher tableau is given by

0 0

1

Similarly we have the backward Euler method, a fully implicit one stage method

whose Butcher tableau is given by

1 1

1
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This has the advantage of higher stability, allowing for greater timesteps.

For the non-explicit methods we need to invoke a non-linear solver to find the

(pi)
s
i=1, which requires knowledge of the spatial derivatives of the coefficients. Since

we would rather not restrict ourselves to C1 coefficients, we will stick to explicit

schemes. The one we focus on is the 3-stage Heun method, a third order scheme

given by the Butcher tableau

0 0 0 0

1/3 1/3 0 0

2/3 0 2/3 0

1/4 0 3/4

We implement the scheme in C++ and plot the solutions with gnuplot.

5.2 Simulations

We first consider a process that we considered earlier in Chapter 1, given by the

SDE

dxt = dWt +
1√
|xt|

1(0,1)(xt) dt, x0 = a > 0 (5.1)

It was proved in Proposition 1.3 that the law of this process is supported on all of

C0([0, T ];Rd). We provide numerical confirmation of this result.

Figure 5.1 shows an example of a sample path of the solution to (5.1), which can

be seen to cross zero. Since the behaviour of a single path doesn’t tell us much, in

Figure 5.2 we plot the graphs of fifty sample paths. Whilst the vast majority of the

paths remain positive, a significant number of them pass through the origin. Once a

path passes the origin it acts as a Brownian motion since their is no drift there, from

which it is more clear that it can reach any point on the negative real line.

We now look at the similar SDE,

dxt = dWt +
1

|xt|2
1(0,1)(xt) dt, x0 = a > 0 (5.2)

The drift does not belong to Lp for any p > 1 in this case. We postulated that this

drift could be strong enough such that the process cannot reach the negative real

line.
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Figure 5.3 shows an example of a single sample path, which remains positive. Figure

5.4 shows fifty sample paths, all of which also remain positive. This could suggest

that the diffusion does in fact remain positive almost surely, despite the uniform

ellipticity of the equation.

The next process we try is Brownian motion on the positive real line with sticky

boundary. Let θ > 0 be some constant, then the process is given by

dxt = 1(0,∞)(xt) dWt + θ1{0}(xt) dt, x0 = a ≥ 0

This SDE is not elliptic since we turn off the noise when the process hits zero.

The constant θ determines how quickly the process will leave the origin once it hits

it. The case θ = 0 gives absorbed Brownian motion, and the case θ = ∞ can be

understood as describing reflected Brownian motion, i.e. xt = |Wt|. The SDE isn’t

elliptic since the diffusion coefficient vanishes outside of (0,∞).

We simulate the case θ = 1. Looking at Figure 5.5, the sample path behaves as

expected. From the plot of fifty sample paths together (Figure 5.6), it seems likely

that the support of x is contained in the space C+
x0 defined in the first chapter.

Note that since the drift is bounded in the case θ < ∞, replacing the diffusion

coefficient by 1[0,∞) would result in a process with full support.

We can also define Brownian motion on the interval [0, 1] with sticky boundary. It

is given by the SDE

dxt = 1(0,1)(xt) dWt + θ
(
1{0}(xt)− 1{1}(xt)

)
dt, x0 = a ∈ [0, 1]

Plots of simulations of a single sample path and fifty sample paths are given in

Figure 5.7 and Figure 5.8 respectively.
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Figure 5.1: A sample path of the process given by (5.1).

-10

-8

-6

-4

-2

 0

 2

 4

 6

 8

 10

 0  1  2  3  4  5  6  7  8  9  10

Figure 5.2: Fifty sample paths of the process given by (5.1).
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Figure 5.3: A sample path of the process given by (5.2).
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Figure 5.4: Fifty sample paths of the process given by (5.2).
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Figure 5.5: A sample path of Brownian motion on the positive real line with sticky
boundary.
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Figure 5.6: Fifty sample paths of Brownian motion on the positive real line with
sticky boundary.
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Figure 5.7: A sample path of Brownian motion on [0, 1] with sticky boundary.
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Figure 5.8: Fifty sample paths of Brownian motion on [0, 1] with sticky boundary.
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We now try an example with d = 2, since this leaves more freedom for degeneracy

instead of just points where σ = 0. Let

σ1 =

(
1 0

0 1

)
, σ2 =

(
0 0

0 1

)

Consider the SDE

dxt =
(
σ11((0,∞)×R)∪{0,0}(xt)− σ21R×[0,∞)(xt)

)
dWt, x0 = a ∈ R2

so that the diffusion coefficient σ : R2 → R2 ⊗ R2 is given by

σ(x, y) =



 0 0

0 −1

 x ≤ 0, y ≥ 0 1 0

0 0

 x > 0, y ≥ 0 1 0

0 1

 x > 0, y < 0 or (x, y) = (0, 0) 0 0

0 0

 x ≤ 0, y < 0

Then clearly we have no degeneracy in one quadrant, some degeneracy in two and

full degeneracy in the other. The effect of this can be seen in the simulation in

Figure 5.9.

The support of this process appears to be sensitive to the starting point x0 as

expected. If started in the quadrant x ≤ 0, y < 0, then the process cannot move so

it’s support is just the starting point. If it is started in the quadrant x > 0, y < 0,

then the support appears to be paths restricted to the whole (closed) quadrant

x ≥ 0, y ≤ 0.

The process becomes more interesting when started in the positive quadrant x >

0, y ≥ 0. The process initially performs a one-dimensional Brownian motion parallel

to the x-axis. Once it hits the y-axis, which occurs almost-surely in a finite time,

it stays there and performs a one-dimensional Brownian motion along it. It will

then almost surely hit the origin in a finite time. At this point there is a positive

chance it will enter the quadrant x > 0, y < 0. Once it is there it is free to explore
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that whole quadrant. Therefore it is believable that the support in this case, when

started from (x0, y0), is given by the set of paths restricted to take values in the

set

([0,∞)× {y0}) ∪ ({0} × [0,∞)) ∪ ([0,∞)× (−∞, 0])

-4
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-2

-1

 0

 1

 2

 3

 4

-2 -1  0  1  2  3  4  5  6  7

Figure 5.9: Plots of 20 sample paths, with x0 ∼ N(0, I2)
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