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Current Research

My thesis has focused on classical and quantum spin systems. I have been especially interested in investigating
phase diagrams of spin systems using tools of mathematics, mathematical physics and probability. In spin systems
the Hamiltonian consists, for example, of interactions of the form J,,S, - Sy, J., € R and Sy = (S1,52,53) for
particles x and y. In the classical case S, is a unit vector and in the quantum case it is given by spin operators. For
quantum spin-S particles they are matrices on C>*! satisfying certain relations. There have been many important
results for both classical and quantum spin systems. For example the proof of a phase transition for the classical
Heisenberg model [6]]. For spins on a parallelepiped in Z¢ (d > 3) and Hamiltonian H({S}) = —J De—yl=1 Sx - Sy it
was shown that there is a phase transition at low temperatures. The proof used the methods of reflection positivity
and Gaussian domination, these have been very important in my own research. This result was extended to the
quantum system soon after [3].

The Spin-1 Quantum System
Much of my research has concerned the spin-1 system. Force carrying particles (photons, gluons) have spin-1,
making the system of interest to physicists. Here a general Hamiltonian for pair interactions would be

H== Y JS:-Sy+ /xS, Sy (1)
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This seemingly simple model has a surprisingly rich behaviour, with several phases expected. These phases are
ferromagnetic, antiferromagnetic, nematic and staggered nematic (see [11] for details). A wide array of tools (both
theoretical and experimental) have been used to understand this system.

The Nematic Phase

In the classical case it is intuitively clear how the J; term affects the energy of the system. In the quantum case the
same intuition leads us astray. I was able to prove the following theorem (for more detail see [12]).

Theorem 1. For cubic A ¢ Z%, d > 6 for 0 < —J, < J, and 8 large enough there exists ¢ = c(a,d) > 0 such that
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Here (-) is the Gibbs state at inverse temperature 8. It is known that such a bound on the correlations implies the
occurrence of a phase transition. This inequality implies a nematic phase transition. It has been shown [[17] that
for J; = O there is also a stronger antiferromagnetic phase transition. This result did not extend to J; < 0 but
interestingly the results of [5] show such an antiferromagnetic phase transition for J; < 0 = J;, (and hence for
some unspecified J,’s with —J; > J, > 0).

The Antiferromagnetic Phase

The phase diagram in the remainder of the quadrant J; < 0 < J, was a focus of a lot of my research [11]. In order
to study the system given by (I)) in this quadrant I used and further developed a model introduced in [13]]. The idea
of the model is to represent a spin-1 system as a projection of two spin—% systems. By attaching an interval [0, 5]
to each lattice site in this new system one can introduce a probabilistic model of loops inspired by [[1} 15 [17], built
up by geometric events on edges {x, y} X [0, 8]. The events are laid down according to a Poisson point process and
a configuration w is then given a weighting of 2#1°°Psin«@_The following theorem can be found in [TT].

Theorem 2. For cubic A C Z¢, d > 3, there exists a(d) > 0 such that a(d) — 0 as d — o and for J1 <0< Jp if
=J1/J> > a(d) then there exists ¢ = c(a,d) > 0 such that
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This is equivalent to the existence of infinite loops in the probabilistic model when |A| — oo for 8 large. Here
a(3) = 0.46 (corresponding to = 72% of the quadrant). This result extends the proof of [5]. There are unexpected
difficulties in the proof. One difficulty is bounding expectations of double commutators of spin operators (coming
from the application of the Falk-Bruch inequality). These expectations can be given bounded using the loop model
but careful consideration of the loop structure is required.
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Correlation Inequalities for Quantum Spin Systems

My co-authors C. Benassi, D. Ueltschi and I also obtained a new correlation inequality for quantum spin systems
[2]. Correlation inequalities were proposed by Griffiths for classical spin systems [8]. They have been very
useful for showing (for example) infinite volume limits of correlation functions and monotonicity of spontaneous
magnetisation. There are few corresponding results for quantum systems. Gallavotti proved such inequalities for
the quantum XY model in spin—% with pair interactions. The results are as follows.

Theorem 3. Let Jj'4 >0forAcCA i=1,2 ForS = % or in the limit B — oo for S = 1 we have for all A,B C A
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Annealed Spin Systems

R. Kotecky and I have investigated the phases of an annealed quantum Heisenberg model. We proved the occur-
rence of staggered order for a certain region of the parameters and intermediate inverse temperatures [9)]. This
order is characterised by preferential occupation of the even or odd sublattice. This complements the work of
Chayes, Kotecky and Shlosman [4] on the classical models. The quantum case is entirely new. It is given by
quantum particles on sites having a classical occupation number (0 or 1). The Hamiltonian is
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For § e %N, u, i,k € Rand |u| < 1. This mixture of quantum and classical added some extra challenges, for
example reflection positivity does not hold for every model (famously the Heisenberg ferromagnet is not reflection
positive). However for the antiferromagnet and XY model reflection positivity can be extended to the annealed
case and we can prove the following theorem.
Theorem 4. Letu = —1 and S > % oru=0andS = % For each case there exists uy > 0 and a function kg
(both depending on u, S, and d) that is positive on (0, uo) and such that for any u > 0, k < max(ko(u), 0), and any
O<e< % there exists By = Bo(u, k, €) such that for any 8 > By there exist two distinct KMS states, (-); and (-)2,
that are staggered,
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Further Research

In the future I very much hope for and look forward to working on some of the many beautiful problems in my and
related fields. I wish to obtain postdoctoral positions in the area of mathematical physics with the aim of obtaining
a permanent position involving both research and teaching.

Poisson Dirichlet Structure of Loop Models

My future research would concern the underlying loop models used for study of quantum spin systems. These loop
models find their origin in the works of Téth [15] and Aizenman and Nachtergaele [1]] for the spin—% ferromagnet
and antiferromagnet respectively. These models were combined and extended by Ueltschi [16] where it was shown
they can also be used for higher spins. The work of Nachtergaele [13] has more recently been used by myself
[L1] to show occurrence of Néel order (see theorem 1) as well as some correlation inequalities. It has been shown
that similar representations to the one presented in [[13]] can be used for any values of (Ji, J;). Loop models can
be exploited to obtain results for quantum spin systems such as emptiness formation probability, classification of
gapped ground states and the nature of pure Gibbs states.

These loops models are expected to exhibit interesting behaviour in the thermodynamic limit for 8 large. Namely
they are expected to obey a Poisson Dirichlet law. There are only initial results in this directions [3l [14]. Proof
of such a structure would add much to current understanding. For example the calculation of certain two-point
correlation functions at long range and understanding of the nature of pure Gibbs states of the related quantum
model. One could also gain insight into the relation between Néel and nematic order for quantum systems. The
first step towards this conjecture would be to consider the loop model in the region J; < 0 < J, without the factor
2#loopsin@ " There has been some success in similar areas. In particular the random interchange model (equivalent
to the loop model for J; > 0 = J, without the factor 2#1°0ps inwy was studied by Schramm [[14]]. It was shown that in
this case there is the Poisson Dirichlet structure. The first step towards the conjecture would be to understand the



methods used in these papers. For the model with the factor 2#1°°P$ i@ there has been work on the complete graph
by Bjornberg [3]], understanding the method of this paper could be of much use. The recent work of Kotecky,
Mitos and Ueltschi [[10] is also of interest.

Correlation inequalities for Quantum Spin Systems

Correlation inequalities were proposed by Griffiths for classical spin systems [8]]. A more general framework was
laid out by Ginibre [7] which included quantum systems, however it is not easy to check a given quantum systems
satisfies the conditions required. It was proved [2] that XY models with general interactions for all temperatures in
spin-% and for the ground state in spin-1 fits this framework. The extension of this result to positive temperatures
in higher spins would be well received by the community. Such results are useful for showing, for example,
infinite volume limits of correlation functions and monotonicity of spontaneous magnetisation. A conjecture for
this result would be the same as theorem 3 for higher spins. The model of Nachtergaele [13] was for the spin-1
result, this model can also be used for higher spins. Careful consideration of the framework of Ginibre could yield
ideas or results allowing progress. Currently it seems the full Heisenberg model is out of reach however a general
result for XY models would be a useful first step.
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