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1 Kelvin’s Circulation Theorem

Theorem 1. In an ideal flow with a conservative force, let C(s, t) be a closed material contour.
Then the circulation

Γ =

∮
C(s,t)

u · dx =

∫
S
ω · ndS, (1.1)

is independent of time.

This is an important theorem in fluid dynamics. Note that this only holds for non-viscous fluids.

2 Complex Potential

If a flow is 2D, incompressible and irrotational then the velocity field can be represented as

u =
∂φ

∂x
=
∂ψ

∂y
, v =

∂φ

∂y
= −∂ψ

∂x
, (2.1)

where φ is the velocity potential and ψ is the streamfunction. These are the Cauchy-Riemann
equation, which in Complex Analysis implies there is an analytic function called the complex
potential,

χ = φ+ iψ, (2.2)

which is a function of z = x+ iy, then ∂zχ = u− iv is the complex velocity.

3 Irrotational Flow Around a Cylinder

We are given that the complex potential of uniform flow of speed U0 in the x-direction around
a cylinder of radius a is

χ = U0

(
z +

a2

z

)
. (3.1)

This comes from something called Milne-Thomson’s circle Theorem, (Acheson §4.4, §4.5). If the
cylinder has circulation Γ then

χ = U0

(
z +

a2

z

)
− iΓ

2π
log z, (3.2)

(see complex potential of point vortex). To find velocities ur and uθ we use the polar form
z = reiθ to get

χ = U0

(
reiθ +

a2e−iθ

r

)
− iΓ

2π
(log r + iθ) ,

and using the identity eiθ = cos θ + i sin θ,

χ = U0

(
r +

a2

r

)
cos θ +

Γθ

2π︸ ︷︷ ︸
φ

+i

(
U0

(
r − a2

r

)
sin θ − Γ

2π
log r

)
︸ ︷︷ ︸

ψ

. (3.3)

Then using

ur =
1

r

∂ψ

∂θ
, uθ = −∂ψ

∂r
or ur =

∂φ

∂r
, uθ =

1

r

∂φ

∂θ
,



we get

ur = U0

(
1− a2

r2

)
cos θ, uθ = −U0

(
1 +

a2

r2

)
sin θ +

Γ

2πr
. (3.4)

Theorem 2. (Bernoulli’s Theorem) In a steady flow of an ideal fluid,

H =
p

ρ
+

1

2
u2 + ϕ (3.5)

is constant along streamlines. (g = ∇ϕ).

This is an important theorem, the main consequence is that we if we know either one of pressure
or velocity, then we may obtain the other.

We now calculate the lift on a rotating cylinder. In lectures it was shown that r = a is a
streamline, hence p + 1

2ρu
2 = const. Using this and ur = 0, uθ = −2U0 sin θ + Γ

2πa at r = a to
get pressure. Then integrate the y-component of force on a small element dθ which is −pa sin θdθ
to get Fy = −ρU0Γ, this is the lift on a rotating cylinder.

4 Kutta-Zhukovski Lift Theorem

Theorem 3. For a steady flow, which is uniform at infinity with speed U0 in the x-direction,
past a 2D body, the cross section of which is some simple closed curve. Let circulation around
the body be Γ. Then the force on the body will be F = (0,−ρU0Γ).

We have already proved this for the case of the cylinder, the full proof requires Blasius’ Theorem
and conformal mappings. This theorem provides the basis for calculating lift on aerofoils, hence
is important for flight.

5 Conformal Mapping

A conformal mapping Z = f(z) preserves local shapes and angles, with inverse z = F (Z) and is
an analytic function of Z = X+iY . The complex potential in the Z -plane is X(Z) = χ(F (Z)) =
Φ(X,Y ) + iΨ(X,Y ).

Conformal mappings allow us to work on the simple case of a cylinder and transform to more
useful bodies like an aerofoil. The Zhukovsky transformation is Z = z + 1

z .

Figure 1: Zhukovsky transformation transforms a circle to an aerofoil. Moving the center of the
circle generates different aerofoil shapes.

However the problem with this is that we get singularities at the tail end of the aerofoil. This
can be resolved by changing the circulation Γ so that the flow leaves the aerofoil smoothly and
parallel to the horizontal axis. This particular value of the circulation is given below.

Theorem 4. (Kutta-Zhukovsky Hypothesis) The critical value of circulation Γk for a wing in
flow of speed U0 at an angle of attack α and length L is Γk = −πLU0 sinα.

Thus the total lift on a wing is Fy = πU0
2ρL sinα.



6 D’Alembert’s Paradox

We have Fx = 0 ie. no drag. This contradicts the wakes in experimental observations, the reason
is we have not taken viscosity into account.

What happens in reality is we get vortex shedding from the wing tip. Note that the circulation
of the flow around an aerofoil is zero when at rest, hence by Kelvin’s Circulation Theorem it
should remain zero. In fact it does, since the circulation around the aerofoil and the trailing
vortex cancel as seen in Figure 2. Vortex shedding continues until the circulation around the
aerofoil reaches the Kutta-Zhukovsky value and flow leaves the aerofoil smoothly, generating lift.

Figure 2: Net circulation is zero.

Example 1. (Problem 4.1 - Airplane Lift and Trailing Vortices) (a) Explain why the vortex
near the wing surface (responsible for the circulation round the aerofoil) must continue into a
trailing vortex through the wing tip. What is the relation between the circulation around the wing
and around its trailing vortex?

Answer: Near the wing surface, velocity is nearly tangential to the surface and variations are
in the normal direction to the surface, so vorticity is parallel to the wing (vorticity is the curl
of velocity). Vortex lines cannot end within the fluid since the velocity field is solenoidal (diver-
gence free), ie. fluid is incompressible. They must continue beyond the wing tips which means
vorticity flux remains the same. Hence the circulation around the trailing vortices is equal with
opposite sign to the circulation around the wing.

(b) Consider an airplane of mass M , speed V with air density ρ. Each wing is L meters long.
Find the circulation around each trailing vortex.

Answer: To keep the plane flying, the weight of the plane must balance the lift, so

Mg = ρV Γ(2L)⇒ Γ =
Mg

2ρV L
. (6.1)

(c) Assume trailing vortices originating at both wings are parallel to each other and their vor-
ticity is concentrated in thin tubes separated by D = 2L. Find the downdraft velocity produced
by these trailing vortices at the mid point between them.

Answer: Velocity at midpoint is two times the velocity at a distance of D/2 from a point vortex,

U =
Γ

2π(D/2)
× 2 =

2Γ

πD
. (6.2)


