ES441 Advanced Fluid Dynamics Support Class 1 - Basics

16th October 2015 Jorge Lindley email: J.V.M.Lindley@warwick.ac.uk

Website:http://www2.warwick.ac.uk/fac/sci/masdoc/people/studentpages/students2012/ lindley/fluid_dynamics/

1 Incompressible Navier-Stokes

The majority of this course will focus on the incompressible Navier-Stokes equations.

$$
\begin{align*}
\underbrace{\frac{\partial \boldsymbol{u}}{\partial t}}_{\begin{array}{c}
\text { Time } \\
\text { derivative }
\end{array}}+\underbrace{(\boldsymbol{u} \cdot \nabla) \boldsymbol{u}}_{\text {Advection }} & =\underbrace{-\frac{1}{\rho} \nabla p}_{\substack{\text { Pressure } \\
\text { gradient }}}+\underbrace{\nu \Delta \boldsymbol{u}}_{\text {Viscosity }}+\underbrace{\boldsymbol{f}}_{\text {Forcing }} \tag{1}\\
\nabla \cdot \boldsymbol{u} & =0 \quad \text { (Incompressibility Condition) } \tag{2}
\end{align*}
$$

- The pressure gradient term will accelerate the flow in the direction from high pressure areas to low pressure.
- The viscosity term arises due to the stress the fluid exerts on itself. This term will dampen motion, a low viscosity will behave like water whereas a high viscosity will cause the fluid to behave like syrup. The condition (2) comes from the fact that density ρ is constant in the conservation of mass equation:

$$
\begin{equation*}
\frac{\partial \rho}{\partial t}+\nabla \cdot(\rho \boldsymbol{u})=0 \tag{3}
\end{equation*}
$$

- The forcing term includes any external forcing such as gravity/buoyancy.
- The advection term describes the bulk movement of the fluid.

Working in 3D with $\boldsymbol{u}=\left(u_{x}, u_{y}, u_{z}\right)=(u, v, w)$ and some quantity of interest f (eg. density or a component of velocity) this advection term is written as

$$
\begin{aligned}
(\boldsymbol{u} \cdot \nabla) \boldsymbol{f} & =\left[\left(u_{x}, u_{y}, u_{z}\right) \cdot\left(\partial_{x}, \partial_{y}, \partial_{z}\right)\right]\left(f_{x}, f_{y}, f_{z}\right) \\
& =\left(u_{x} \partial_{x}+u_{y} \partial_{y}+u_{z} \partial_{z}\right)\left(f_{x}, f_{y}, f_{z}\right)
\end{aligned}
$$

Here is a derivation of the advection term (from Acheson $\S 1.2$): $\frac{\partial f}{\partial t}$ is the rate of change of f at a fixed point (x, y, z) in space. Now the time derivative following the fluid (material derivative) is

$$
\begin{equation*}
\frac{D}{D t} f=\frac{d}{d t} f(x(t), y(t), z(t), t) . \tag{4}
\end{equation*}
$$

We have

$$
\begin{equation*}
\frac{d x}{d t}=u, \frac{d y}{d t}=v, \frac{d z}{d t}=w . \tag{5}
\end{equation*}
$$

Using the chain rule we get

$$
\begin{aligned}
\frac{D f}{D t} & =\frac{\partial f}{\partial x} \frac{d x}{d t}+\frac{\partial f}{\partial y} \frac{d y}{d t}+\frac{\partial f}{\partial z} \frac{d z}{d t}+\frac{\partial f}{\partial t} \\
& =\frac{\partial f}{\partial t}+u \frac{\partial f}{\partial x}+v \frac{\partial f}{\partial y}+w \frac{\partial f}{\partial z} \\
& =\frac{\partial f}{\partial t}+(\boldsymbol{u} \cdot \nabla) f
\end{aligned}
$$

2 Streamlines and Streamfunctions

Find the streamlines of a flow by solving

$$
\begin{equation*}
\frac{1}{u} \frac{d x}{d s}=\frac{1}{v} \frac{d y}{d s}=\frac{1}{w} \frac{d z}{d s} \tag{6}
\end{equation*}
$$

where the streamline is parameterised by s. For an incompressible $(\nabla \cdot \boldsymbol{u}=0), 2 \mathrm{D}(\boldsymbol{u}=(u, v, 0))$ flow we can find a streamfunction ψ such that

$$
\begin{equation*}
u=\frac{\partial \psi}{\partial y}, v=-\frac{\partial \psi}{\partial x} \tag{7}
\end{equation*}
$$

In polar coordinates this is,

$$
\begin{equation*}
u_{r}=\frac{1}{r} \frac{\partial \psi}{\partial \theta}, u_{\theta}=-\frac{\partial \psi}{\partial r} \tag{8}
\end{equation*}
$$

where $\boldsymbol{u}=\left(u_{r}, u_{\theta}, u_{z}\right)$. Streamlines are when the stream function ψ is constant, ie. level set of the streamfunction.

Example 1. (Acheson Exercise 1.8) Consider the unsteady flow

$$
\begin{equation*}
u=u_{0}, v=k t, w=0 \tag{9}
\end{equation*}
$$

where u_{0}, k are positive constants. Show that the streamlines are straight lines. Also show any fluid particle follows a parabolic path as time proceeds.

We can find the streamlines by integrating

$$
\begin{equation*}
\frac{1}{u_{0}} \frac{d x}{d s}=\frac{1}{k t} \frac{d y}{d s}, 0=\frac{d z}{d s} \tag{10}
\end{equation*}
$$

to get

$$
\begin{equation*}
y=\frac{k t}{u_{0}} x+\text { const, } z=\text { const } . \tag{11}
\end{equation*}
$$

Alternatively, since this is a 2D flow, we may use the streamfunction found by solving:

$$
\begin{equation*}
u_{0}=\frac{\partial \psi}{\partial y}, k t=-\frac{\partial \psi}{\partial x} \tag{12}
\end{equation*}
$$

to get $\psi=u_{0} y-k t x$. Now the streamlines are when the streamfunction is constant $(\psi=$ const $)$ giving the streamlines as in equation (11), which are straight lines with gradient $\frac{k t}{u_{0}}$. The particle paths may be found by solving

$$
\begin{equation*}
\left.\frac{\partial x}{\partial t}\right|_{\boldsymbol{X}}=u_{0},\left.\frac{\partial y}{\partial t}\right|_{\boldsymbol{X}}=k t,\left.\frac{\partial z}{\partial t}\right|_{\boldsymbol{X}}=0 \tag{13}
\end{equation*}
$$

where $\boldsymbol{X}=(X, Y, Z)$ are the Lagrangian coordinates. This gives

$$
\begin{equation*}
x=u_{0} t+F_{1}(\boldsymbol{X}), y=\frac{1}{2} k t^{2}+F_{2}(\boldsymbol{X}), z=F_{3}(\boldsymbol{X}) \tag{14}
\end{equation*}
$$

for some functions F_{1}, F_{2}, F_{3}. We then use the fact that the Eulerian (fixed in space) and Lagrangian (follow fluid) coordinates coincide at $t=0$, ie. $\boldsymbol{x}=\boldsymbol{X}$, to get

$$
\begin{equation*}
x=u_{0} t+X, y=\frac{1}{2} k t^{2}+Y, z=Z \tag{15}
\end{equation*}
$$

Eliminating t gives,

$$
\begin{equation*}
y=\frac{1}{2} k\left(\frac{x-X}{u_{0}}\right)^{2}+Y \tag{16}
\end{equation*}
$$

Hence the particle paths are parabolic. Notice that equation (15) gives the transformation from Lagrangian coordinates to Eulerian coordinates $\boldsymbol{x}=\varphi(\boldsymbol{X}, t)$.

Figure 1: Streamlines are straight lines for this flow. The red line indicates the path of a particle originating from the origin.

Example 2. Find the streamlines of the $2 D$ flow

$$
\begin{equation*}
u=\frac{y}{x^{2}+y^{2}}, v=-\frac{x}{x^{2}+y^{2}} . \tag{17}
\end{equation*}
$$

For a $2 D$ flow the streamfunction is found by solving,

$$
\begin{equation*}
u=\frac{\partial \psi}{\partial y}, v=-\frac{\partial \psi}{\partial x} \tag{18}
\end{equation*}
$$

which gives $\psi=\frac{1}{2} \log \left(x^{2}+y^{2}\right)$. Streamlines are then when this function is constant, that is $x^{2}+y^{2}=$ const, ie. streamlines are circles.

Figure 2: Streamlines are circles (clockwise) for this flow.

3 Vorticity

Vorticity in 3D is defined as

$$
\begin{equation*}
\boldsymbol{\omega}=\nabla \times \boldsymbol{u}=\left(\frac{\partial u_{z}}{\partial y}-\frac{\partial u_{y}}{\partial z}, \frac{\partial u_{x}}{\partial z}-\frac{\partial u_{z}}{\partial x}, \frac{\partial u_{y}}{\partial x}-\frac{\partial u_{x}}{\partial y}\right) . \tag{19}
\end{equation*}
$$

In polar coordinates the vorticity is

$$
\boldsymbol{\omega}=\frac{1}{r}\left|\begin{array}{ccc}
e_{r} & r e_{\theta} & e_{z} \tag{20}\\
\partial_{r} & \partial_{\theta} & \partial_{z} \\
u_{r} & r u_{\theta} & u_{z}
\end{array}\right| .
$$

If $\boldsymbol{\omega}=0$ then the flow is irrotational.

For a 2D flow $\boldsymbol{u}=(u(x, y, t), v(x, y, t), 0)$ the vorticity is $\boldsymbol{\omega}=(0,0, \omega)$ where

$$
\begin{equation*}
\omega=\frac{\partial v}{\partial x}-\frac{\partial u}{\partial y} \tag{21}
\end{equation*}
$$

Vorticity is a measure of local rotation of fluid elements.
Example 3. (Acheson §1.4) Consider the flow $\boldsymbol{u}=(\beta y, 0,0)$. The vorticity is $\omega=-\beta$, and as seen in Figure 3 even though there is no global rotation, the fluid elements can be locally rotated.

Figure 3: Deformation of two momentarily perpendicular fluid line elements in a shear flow.

4 Velocity Potential

An irrotational flow can be written as the gradient of a potential $\boldsymbol{u}=\nabla \phi$, where ϕ is a scalar function called the velocity potential. The gradient operator in polar coordinates is $\left(\frac{\partial}{\partial r}, \frac{1}{r} \frac{\partial}{\partial \theta}, \frac{\partial}{\partial z}\right)=\frac{\partial}{\partial r} \boldsymbol{e}_{r}+\frac{1}{r} \frac{\partial}{\partial \theta} \boldsymbol{e}_{\theta}+\frac{\partial}{\partial z} \boldsymbol{e}_{z}$.
Example 4. (Point Vortex)

$$
\begin{equation*}
\boldsymbol{u}=\frac{\Gamma}{2 \pi r} \boldsymbol{e}_{\boldsymbol{\theta}} \tag{22}
\end{equation*}
$$

We can find the velocity potential by integrating

$$
\begin{equation*}
u_{\theta}=\frac{1}{r} \frac{\partial \phi}{\partial \theta} \Rightarrow \phi=\frac{\Gamma \theta}{2 \pi} \tag{23}
\end{equation*}
$$

Similarly the streamfunction is found by integrating

$$
\begin{equation*}
u_{\theta}=-\frac{\partial \psi}{\partial r} \Rightarrow \psi=-\frac{\Gamma}{2 \pi} \log (r) \tag{24}
\end{equation*}
$$

5 Bernoulli's equation for unsteady flow

Consider Euler's equation

$$
\begin{equation*}
\frac{\partial \boldsymbol{u}}{\partial t}+(\nabla \times \boldsymbol{u}) \times \boldsymbol{u}=-\nabla\left(\frac{p}{\rho}+\frac{1}{2} \boldsymbol{u}^{2}+\chi\right) . \tag{25}
\end{equation*}
$$

If the flow is irrotational $(\nabla \times \boldsymbol{u}=0)$ so that $\boldsymbol{u}=\nabla \phi$ then

$$
\frac{\partial \nabla \phi}{\partial t}=-\nabla\left(\frac{p}{\rho}+\frac{1}{2} u^{2}+\chi\right) \text { where } \chi=g z
$$

Then integrate this to get

$$
\partial_{t} \phi+\frac{p}{\rho}+\frac{1}{2} \boldsymbol{u}^{2}+\chi=G(t)
$$

where $G(t)$ is an arbitrary function of time. Bernoulli's equation can be used to find exact solutions.

