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1 Incompressible Navier-Stokes

The majority of this course will focus on the incompressible Navier-Stokes equations.
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∇ · u = 0 (Incompressibility Condition) (1.2)

• The pressure gradient term will accelerate the flow in the direction from high pressure
areas to low pressure.

• The viscosity term arises due to the stress the fluid exerts on itself. This term will dampen
motion, a low viscosity will behave like water whereas a high viscosity will cause the fluid
to behave like syrup. The condition (1.2) comes from the fact that density ρ is constant
in the conservation of mass equation:

∂ρ

∂t
+∇ · (ρu) = 0 (1.3)

In practice fluids are compressible, however this is difficult to work with and the incom-
pressibility simplification is usually a very good approximation.

• The forcing term includes any external forcing such as gravity/buoyancy.

• The advection term describes the bulk movement of the fluid.

Working in 3D with u = (ux, uy, uz) = (u, v, w) and some quantity of interest f (eg. density or
a component of velocity) this advection term is written as

(u · ∇)f = [(ux, uy, uz) · (∂x, ∂y, ∂z)](fx, fy, fz)
= (ux∂x + uy∂y + uz∂z)(fx, fy, fz)

Here is a derivation of the advection term: ∂f
∂t is the rate of change of f at a fixed point (x, y, z)

in space. Now the time derivative following the fluid (material derivative) is
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2 Streamlines and Streamfunctions

Find the streamlines of a flow by solving
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, (2.1)

where the streamline is parameterised by s. For an incompressible (∇·u = 0), 2D (u = (u, v, 0))
flow we can find a streamfunction ψ such that

u =
∂ψ

∂y
, v = −∂ψ

∂x
. (2.2)

In polar coordinates this is,
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1

r
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, (2.3)

where u = (ur, uθ, uz). Streamlines are when the stream function ψ is constant, ie. level set of
the streamfunction.

Example 1. Consider the unsteady flow

u = u0, v = kt, w = 0, (2.4)

where u0, k are positive constants. Show that the streamlines are straight lines. Also show any
fluid particle follows a parabolic path as time proceeds.

We can find the streamlines by integrating
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to get

y =
kt

u0
x+ const, z = const. (2.6)

Alternatively, since this is a 2D flow, we may use the streamfunction found by solving:

u0 =
∂ψ

∂y
, kt = −∂ψ

∂x
, (2.7)

to get ψ = u0y− ktx. Now the streamlines are when the streamfunction is constant (ψ = const)
giving the streamlines as in equation (2.6), which are straight lines with gradient kt

u0
. The particle

paths may be found by solving
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where X = (X,Y, Z) are the Lagrangian coordinates. This gives

x = u0t+ F1(X), y =
1

2
kt2 + F2(X), z = F3(X), (2.9)

for some functions F1, F2, F3. We then use the fact that the Eulerian (fixed in space) and
Lagrangian (follow fluid) coordinates coincide at t = 0, ie. x = X, to get

x = u0t+X, y =
1

2
kt2 + Y, z = Z. (2.10)

Eliminating t gives,
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1

2
k

(
x−X
u0

)2

+ Y. (2.11)

Hence the particle paths are parabolic, see Figure 1. Notice that equation (2.10) gives the trans-
formation from Lagrangian coordinates to Eulerian coordinates x = ϕ(X, t).



Figure 1: Streamlines are straight lines for this flow. The red line indicates the path of a particle
originating from the origin.

Example 2. Find the streamlines of the 2D flow

u =
y

x2 + y2
, v = − x

x2 + y2
. (2.12)

For a 2D flow the streamfunction is found by solving,

u =
∂ψ

∂y
, v = −∂ψ

∂x
, (2.13)

which gives ψ = 1
2 log(x2 + y2). Streamlines are then when this function is constant, that is

x2 + y2 = const, ie. streamlines are circles.

Figure 2: Streamlines are circles (clockwise) for this flow.

3 Vorticity

Vorticity in 3D is defined as
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In polar coordinates the vorticity is
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If ω = 0 then the flow is irrotational.



For a 2D flow u = (u(x, y, t), v(x, y, t), 0) the vorticity is ω = (0, 0, ω) where

ω =
∂v

∂x
− ∂u

∂y
(3.3)

Vorticity is a measure of local rotation of fluid elements.

Example 3. Consider the flow u = (βy, 0, 0). The vorticity is ω = −β, and as seen in Figure
3 even though there is no global rotation, the fluid elements can be locally rotated.

Figure 3: Deformation of two momentarily perpendicular fluid line elements in a shear flow.

4 Velocity potential

An irrotational flow can be written as the gradient of a potential u = ∇φ, where φ is a
scalar function called the velocity potential. The gradient operator in polar coordinates is
( ∂∂r ,

1
r
∂
∂θ ,

∂
∂z ) = ∂

∂rer + 1
r
∂
∂θeθ + ∂

∂zez.

Example 4. (Point Vortex)

u =
Γ

2πr
eθ (4.1)

We can find the velocity potential by integrating

uθ =
1

r

∂φ

∂θ
⇒ φ =

Γθ

2π
. (4.2)

Similarly the streamfunction is found by integrating

uθ = −∂ψ
∂r
⇒ ψ = − Γ

2π
log(r). (4.3)

5 Kelvin’s Circulation Theorem

Theorem 1. In an ideal flow with a conservative force, let C(s, t) be a closed material contour.
Then the circulation

Γ =

∮
C(s,t)

u · dx =

∫
S
ω · n dS, (5.1)

is independent of time, where n is the surface normal.

This is an important theorem in fluid dynamics. Note that this only holds for non-viscous fluids.
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