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1 Boussinesq Equations

A standard approximation to make in geophysical fluid dynamics is the Boussinesq Approxima-
tion. This approximation is based on the fact that the density of a geophysical fluid does not
vary greatly from a mean value. We therefore express density as

ρ = ρ0 + ρ′(x, y, z, t) (1)

where |ρ′| � ρ0. Inserting this into the continuity equation and ignoring terms of order ρ′ we
get incompressibility
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For the x and y momentum equations in Navier-Stokes, any term multiplied by ρ is dominated
by ρ0 and terms multiplied by density variations can be ignored. With the assumption of a
Newtonian fluid the stress tensor τ is defined as
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where µ is the coefficient of dynamic viscosity. Dividing the x and y momentum equations by
ρ0 and setting the kinematic viscosity ν = µ/ρ0 we have
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For the z momentum equation we define the hydrostatic pressure p0 which varies only in z so
that for some reference pressure P0

p = p0(z) + p′(x, y, z, t) where p0(z) = P0 − ρ0gz. (6)

This gives
dp0
dz

= −ρ0g, (7)

then the z momentum equation becomes
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The ρ′g term is important for buoyancy force in the equations, therefore ignoring it would result
in a bad geophysical model. Finally the energy equation (sometimes called density equation or
buoyancy equation) with diffusion coefficient κ is
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Since the variables ρ and p do not appear explicitly in the equations we drop the prime notation
on the variations ρ′ and p′ to get the Boussinesq Equations.
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∇ · u = 0 (13)
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Example 1. (Internal Gravity Waves) These are waves generated by buoyancy forces. We use
the following linearised equations for an inviscid, stratified fluid with small 2D motion. These
equations can be derived from the Boussinseq equations above by setting u = εu1, p = p0+εp1, ρ =
ρ0 + ερ1 and ignoring any terms of order greater than ε.
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Find the dispersion relation ω(k), we assume solutions of the form

u1 = û1e
i(kx+mz−ωt), w1 = ŵ1e

i(kx+mz−ωt),
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Put these into the linearised equations and eliminate û1, ŵ1, p̂1, ρ̂1 to get
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Figure 1: Propagation of a 2D packet of internal gravity waves; the crests denote lines of constant
phase kx+mz − ωt.

The phase velocity is then ( where k = (k,m))
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and the group velocity is then
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So we can see that cph ∝ (k,m) is perpendicular to cg ∝ (m,−k). As time proceeds the crests
move in direction (k,m) and the packet moves in the perpendicular direction (m,−k).

Example 2. (Question from McWilliams, Fundamentals of Geophysical Fluid Dynamics)
Consider inertia-gravity waves with small amplitude fluctuations in 3D Boussinesq equations
with ρ = ρ0(1− αT ) for basic state of rest (this is the Boussinesq approximation for density in
seawater) with uniform rotation f = f0 and stratification ρ̄(z) = ρ0(1−N2

0 z/g) in an unbounded
domain. The linearised equations are

∂tu− fv = ∂xφ (15)

∂tv + fu = ∂yφ (Momentum equations) (16)

∂tw = ∂zφ+ b (17)

∇ · u = 0 (Incompressibility) (18)

∂tb+N2w = 0 (Conservation of internal energy) (19)

with φ = p/ρ0 the geopotential and b = gρ/ρ0 the buoyancy.

(a) Derive the dispersion relation.
Answer: Look for solutions u = u0e

i(kx+ly+mz−ωt), v = v0e
i(kx+ly+mz−ωt), w = w0e

i(kx+ly+mz−ωt),
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i(kx+ly+mz−ωt). Follow a similar method as for the inertial waves

in a rotating fluid and substitute solutions into the equation to get the dispersion relation,
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(This calculation is messy, but don’t worry about it too much.)

(b) Demonstrate that ω depends only on the direction of u and not its magnitude K = |u|.
Answer: Express k = (k, l,m) in polar form u = (K, θ, λ) with k = K cos(θ) cos(λ), l =
K cos(θ) sin(λ),m = K sin(θ). Then

ω = ±(N2 cos2(θ) + f2 sin2(θ))
1
2 . (21)

So it depends on the orientation θ but is independent of the magnitude K.

(c) Show that N and f are the largest/smallest frequencies allowed for inertial-gravity modes.
(Assume f < N).
Answer: If f < N then

max |ω| = N, for m = 0, l = 0, k = K (θ = 0, nπ for n ∈ N)

min |ω| = f, for m = K, l = 0, k = 0 (θ = nπ/2 for n odd).

(d) Demonstrate that the phase and group velocities
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are orthogonal and have opposite signed vertical components for the inertial-gravity mode.



Figure 2: Plot of the dispersion relation (21).

Answer:

cph =
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Taking the dot product shows they are orthogonal, cg · cph = 0. Also

sign[cph] = sign[ω]sign[m], sign[cg] = sign[ω]sign[m]sign[f2 − ω2],

and since f < N
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so f2 − ω2 < 0.


