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1 Baroclinicity

A barotropic fluid is one in which the pressure is a function only of the density p(ρ). Otherwise
the fluid is known as baroclinic, that is the fluid is stratified (∂ρ/∂z 6= 0).

Taking the curl of the compressible Euler equation gives the vorticity (ζ) equation
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In a baroclinic fluid, the term on the right hand side shows that vorticity can be produced
due to a misalignment of surfaces of constant density (isopycnals) and pressure (isobars). In a
barotropic fluid, these surfaces are parallel since pressure is a function of only density and the
cross product of the gradients is identically zero, therefore a barotropic fluid cannot produce
vorticity.

2 Thermal Wind

Suppose we have a mass of cool air at ground level that is wedged under a mass of warm air.
The density then varies in vertical and horizontal directions. Assuming that the flow is steady,
geostrophic and hydrostatic we have
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Taking the vertical z-derivative of (2.1) and (2.2) and eliminating the vertical pressure gradient
with (2.3) we obtain the thermal wind
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When assuming that density is a linear function of temperature T with thermal expansion α,
this can also be written as
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This relation shows us that due to the Coriolis force, the system can be maintained in equilibrium
without a tendency to level out the density variations. That is the rotation of the earth can
keep the system away from a rest state without any continuous supply of energy. The result is a
change in the horizontal velocities with height due to the horizontal temperature gradient, this
is what is known as the thermal wind. One important example of this is the powerful jet stream,
that increases in strength with height, which blows weather systems eastward at mid-latitudes
in the Northern-Hemisphere.



Figure 1: A westerly jet stream formed by a north-south temperature gradient.

3 Geostrophic Adjustment

In the atmosphere, it is often the case that fluid masses come into contact and have not yet had
time to achieve thermal-wind balance. The process of a flow system being adjusted to satisfy
this thermal-wind balance is known as geostrophic adjustment.

Example 1. (Geostrophic adjustment of a slab of cold air) Consider two fluid masses recently
brought into contact. One of the air masses of height H is cool with a density ρ1 = ρ0 + ∆ρ,
where ρ0 is the density of the warm air around the slab of cold air. We assume there is no
variation in the y-direction but allow for a velocity v in that direction. Using a reduced-gravity
constant g′ = g(ρ0 − ρ1)/ρ0 the shallow water equations are
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The initial conditions, as soon as the air masses come into contact, are u = v = 0, h = H for
x < 0, and h = 0 for x > 0. At the boundary we have u, v → 0 and h→ H as x→ −∞, whereas
the velocity component u at the front is given by the material derivative u = dx/dt where h = 0
at some x = a(t).

Solving this non-linear problem analytically is impossible. However we may observe that the
following potential vorticity is conserved by the governing equations,
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Initially v = 0 and h = H so that the potential vorticity q = f/H. Since this is conserved,
the fluid at the final state must also have q = f/H. This allows us to relate the initial state
of the fluid to the final state without having to solve for intermediate evolution. Once the final
steady state has been achieved, the time derivatives vanish and (3.3) implies that hu = c for
some constant c. Since we have h = 0 at x = a, this constant must be zero, therefore u = 0
everywhere. The shallow water equations now become

−fv = −g′dh
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Figure 2

This is a geostrophic balance between the velocity and the pressure gradient set by the sloping
interface. Conservation of potential vorticity provides a second equation,
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Eliminating h from (3.5) and (3.6) we get the second order differential equation
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Solving this with the boundary condition h = 0 at x = a and ignoring the exponential solution
that grows as x→ −∞ we have
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where R =
√
g′H/f . To find the value of a we must use conservation of mass, that is the

displacement of cold air on the left of x = 0 must be replaced by warm air on the right,∫ 0
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which gives a = R.

4 Thermal Wind Vectors

When the thermal wind pushes the geostrophic wind clockwise with height then the wind is
veering, this is associated with warm air advection and dynamics lifting. This brings calm we-
ather.



Figure 3

When the thermal wind pushes the geostrophic wind anti-clockwise with height then the wind
is backing, this is associated with cold air advection and dynamic sinking. This brings stormy
weather.

Example 2. Referring to the map in Figure 4 with solid contours for isobars of the mean sea
level pressure (MSLP) and dashed lines for isopleths of the thickness (measured in 10s of meters,
or decameters) between the 500 and 1000 hPa levels. Indicate the direction of the thermal wind
across the British Isles by adding denoted lines to this map.

Figure 4: The thermal wind goes from northwest to southeast.


