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1 Compressible Navier Stokes Equations

So far we have been assuming incompressibility, however this is insufficient for sound/pressure
waves. The compressible Navier-Stokes equations are,

Conservation of mass: ∂tρ+∇ · (ρv) = 0 (1)

Momentum: ρ[∂tv + (v · ∇)v] = µ∆v + (λ+
1

3
µ)∇(∇ · v)−∇p+ f (2)

Heat transform: ρcv[∂tθ + (v · ∇)θ] = −p∇ · v + κ∆θ + Φ (3)

2 Polytropic Waves

A polytropic process is a thermodynamic process that obeys pvn = const. We have n = γ =
cp
cv

the ratio of specific heats, (≈ 1.4 for air at normal temperature and pressure). Also p = (γ−1)ρθ
from the ideal gas law.

3 Entropy

The entropy (for our purposes) is given by η = cv log
(
p
ργ

)
and is a measure of the number of

ways in which a thermodynamic system can be arranged, or a measure of disorder.

If we have an ideal gas and heat conductivity is negligible (κ = 0) then entropy remains constant,
this can be written as,

D

Dt
(pρ−γ) = 0. (4)

This is then called an isentropic fluid, note that this means entropy remains constant on each fluid
element, however may differ between elements. If the entropy is uniformly constant throughout
the fluid then the fluid is homentropic.

4 Sound Waves

Sound propagates as waves of pressure causing local regions of compression. We aim to find
the equation describing sound waves. Let the undisturbed state be one of rest, with constant
pressure p0 and density ρ0. We have a slight perturbation from this state of rest,

u = εu1, p = p0 + εp1, ρ = ρ0 + ερ1. (5)

We aim to linearise the equations ignoring O(ε2) or higher order terms of the perturbation
variables. We know entropy is conserved so pρ−γ = p0ρ

−γ
0 everywhere. Thus

(p0 + εp1)(ρ0 + ερ1)
−γ = p0ρ

−γ
0 ,

⇒
(

1 +
εp1
p0

)(
1 +

ερ1
ρ0

)−γ
= 1

⇒
(

1 +
εp1
p0

)(
1− γερ1

ρ0
+O(ε2)

)−γ
= 1.



Ignore O(ε2) terms,

⇒ p1
p0

=
γρ1
ρ0

⇒ p1 = c2sρ1 (6)

where

cs =

√
γρ1
ρ0

. (7)

The linearised equations for u1 and ρ1 are

ρ0
∂u1

∂t
= −∇p1 (8)

∂ρ1
∂t

+ ρ0∇ · u1 = 0. (9)

Take the divergence of (8) to get,

ρ0
∂

∂t
∇ · u1 = −∆p1. (10)

Finally we use (9) to remove the ∇ · u1 term and (6) to get the wave equation

∂2p1
∂t2

= c2s∆p1. (11)

In one dimension this is
∂2p1
∂t2

= c2s
∂2p1
∂x2

, (12)

which has general solution
p1 = f(x− cst) + g(x+ cst), (13)

the first/second term corresponding to right/left propagation of a wave with speed cs without
change of shape. We identify cs as the speed of sound.

The wavenumber k is a measure of the number of times a wave has the same phase per unit of
space.

The wavelength λ is the distance between repeating units of a propagating wave of a given
frequency, it is related to the wavenumber by

λ =
2π

k
. (14)

The phase speed cph describes the motion within a wave packet. Velocity at which a phase of
any one frequency component of the wave will propagate within the packet,

cph =
ω

k
. (15)

Here ω is the frequency and the dispersion relation is the relation ω(k) between ω and the
wavenumber k. In higher dimensions this is

cph = k̂
ω

|k|
, (16)

where k is a vector of the wavenumbers in each direction and k̂ = k
|k| .

The group velocity cg describes the motion of the whole wave packet,

cg =
∂ω

∂k
(= ∇kω in higher dimensions). (17)

If cg 6= cph then the waves are dispersive.



Example 1. (Sound Waves are not dispersive) Sound waves satisfy (in 1D)

∂2p

∂t2
= c2s

∂2p

∂x2
(18)

where p is the pressure and cs the speed of sound. Wave solutions are of the form,

p(x, t) = Aei(kx−ωt). (19)

Put this into (18) and we get

Aω2ei(kx−ωt) = Ak2c2se
i(kx−ωt)

so ω = csk. Then the phase speed is

cph =
ω

k
= cs,

and the group speed is

cg =
∂ω

∂k
= cs = cph.

Therefore sound waves are not dispersive.

Example 2. (Internal Gravity Waves) These are waves generated by buoyancy forces. We use
the following linearised equations for a stratified fluid with small 2D motion,

ρ0
∂u1
∂t

= −∂p1
∂x

, ρ0
∂v1
∂t

= −∂p1
∂y
− ρ1g,

∂u1
∂x

+
∂v1
∂y

= 0,
∂ρ1
∂t

+ v1
∂ρ0
∂y

= 0.

Find the dispersion relation ω(k), we assume solutions of the form

u1 = û1e
i(kx+ly−ωt), v1 = v̂1e

i(kx+ly−ωt),

p1 = p̂1e
i(kx+ly−ωt), ρ1 = ρ̂1e

i(kx+ly−ωt).

Put these into the linearised equations and eliminate û1, v̂1, p̂1, ρ̂1 to get

ω2 =
k2N2

(l2 + k2)
where N2 =

−g
ρ0

∂ρ0
∂y

.

Figure 1: Propagation of a 2D packet of internal gravity waves; the crests denote lines of constant
phase kx+ ly − ωt.



The phase velocity is then ( where k = (k, l))

cph =
ωk

|k|2
=

ω

(k2 + l2)
(k, l),

and the group velocity is then

cg =

(
∂

∂k
,
∂

∂l

)
ω =

ωl

k(k2 + l2)
(l,−k).

So we can see that cph ∝ (k, l) is perpendicular to cg ∝ (l,−k). As time proceeds the crests move
in direction (k, l) and the packet moves in the perpendicular direction (l,−k).


