MA3D1 Fluid Dynamics Support Class 4 - Compressible Navier-Stokes and Waves

7th February 2014

Jorge Lindley email: J.V.M.Lindley@warwick.ac.uk

1 Compressible Navier Stokes Equations

So far we have been assuming incompressibility, however this is insufficient for sound/pressure waves. The compressible Navier-Stokes equations are,

Conservation of mass: $\partial_{t} \rho+\nabla \cdot(\rho v)=0$
Momentum: $\rho\left[\partial_{t} v+(v \cdot \nabla) v\right]=\mu \Delta v+\left(\lambda+\frac{1}{3} \mu\right) \nabla(\nabla \cdot v)-\nabla p+f$
Heat transform: $\rho c_{v}\left[\partial_{t} \theta+(v \cdot \nabla) \theta\right]=-p \nabla \cdot v+\kappa \Delta \theta+\Phi$

2 Polytropic Waves

A polytropic process is a thermodynamic process that obeys $p v^{n}=$ const. We have $n=\gamma=\frac{c_{p}}{c_{v}}$ the ratio of specific heats, (≈ 1.4 for air at normal temperature and pressure). Also $p=(\gamma-1) \rho \theta$ from the ideal gas law.

3 Entropy

The entropy (for our purposes) is given by $\eta=c_{v} \log \left(\frac{p}{\rho^{\gamma}}\right)$ and is a measure of the number of ways in which a thermodynamic system can be arranged, or a measure of disorder.

If we have an ideal gas and heat conductivity is negligible $(\kappa=0)$ then entropy remains constant, this can be written as,

$$
\begin{equation*}
\frac{D}{D t}\left(p \rho^{-\gamma}\right)=0 . \tag{4}
\end{equation*}
$$

This is then called an isentropic fluid, note that this means entropy remains constant on each fluid element, however may differ between elements. If the entropy is uniformly constant throughout the fluid then the fluid is homentropic.

4 Sound Waves

Sound propagates as waves of pressure causing local regions of compression. We aim to find the equation describing sound waves. Let the undisturbed state be one of rest, with constant pressure p_{0} and density ρ_{0}. We have a slight perturbation from this state of rest,

$$
\begin{equation*}
\boldsymbol{u}=\epsilon \boldsymbol{u}_{1}, p=p_{0}+\epsilon p_{1}, \rho=\rho_{0}+\epsilon \rho_{1} . \tag{5}
\end{equation*}
$$

We aim to linearise the equations ignoring $O\left(\epsilon^{2}\right)$ or higher order terms of the perturbation variables. We know entropy is conserved so $p \rho^{-\gamma}=p_{0} \rho_{0}^{-\gamma}$ everywhere. Thus

$$
\begin{array}{r}
\left(p_{0}+\epsilon p_{1}\right)\left(\rho_{0}+\epsilon \rho_{1}\right)^{-\gamma}=p_{0} \rho_{0}^{-\gamma}, \\
\Rightarrow\left(1+\frac{\epsilon p_{1}}{p_{0}}\right)\left(1+\frac{\epsilon \rho_{1}}{\rho_{0}}\right)^{-\gamma}=1 \\
\Rightarrow\left(1+\frac{\epsilon p_{1}}{p_{0}}\right)\left(1-\frac{\gamma \epsilon \rho_{1}}{\rho_{0}}+O\left(\epsilon^{2}\right)\right)^{-\gamma}=1 .
\end{array}
$$

Ignore $O\left(\epsilon^{2}\right)$ terms,

$$
\begin{align*}
& \Rightarrow \frac{p_{1}}{p_{0}}=\frac{\gamma \rho_{1}}{\rho_{0}} \\
& \Rightarrow p_{1}=c_{s}^{2} \rho_{1} \tag{6}
\end{align*}
$$

where

$$
\begin{equation*}
c_{s}=\sqrt{\frac{\gamma \rho_{1}}{\rho_{0}}} . \tag{7}
\end{equation*}
$$

The linearised equations for \boldsymbol{u}_{1} and ρ_{1} are

$$
\begin{array}{r}
\rho_{0} \frac{\partial \boldsymbol{u}_{1}}{\partial t}=-\nabla p_{1} \\
\frac{\partial \rho_{1}}{\partial t}+\rho_{0} \nabla \cdot \boldsymbol{u}_{1}=0 \tag{9}
\end{array}
$$

Take the divergence of (8) to get,

$$
\begin{equation*}
\rho_{0} \frac{\partial}{\partial t} \nabla \cdot \boldsymbol{u}_{1}=-\Delta p_{1} \tag{10}
\end{equation*}
$$

Finally we use (9) to remove the $\nabla \cdot \boldsymbol{u}_{1}$ term and (6) to get the wave equation

$$
\begin{equation*}
\frac{\partial^{2} p_{1}}{\partial t^{2}}=c_{s}^{2} \Delta p_{1} \tag{11}
\end{equation*}
$$

In one dimension this is

$$
\begin{equation*}
\frac{\partial^{2} p_{1}}{\partial t^{2}}=c_{s}^{2} \frac{\partial^{2} p_{1}}{\partial x^{2}} \tag{12}
\end{equation*}
$$

which has general solution

$$
\begin{equation*}
p_{1}=f\left(x-c_{s} t\right)+g\left(x+c_{s} t\right) \tag{13}
\end{equation*}
$$

the first/second term corresponding to right/left propagation of a wave with speed c_{s} without change of shape. We identify c_{s} as the speed of sound.

The wavenumber k is a measure of the number of times a wave has the same phase per unit of space.

The wavelength λ is the distance between repeating units of a propagating wave of a given frequency, it is related to the wavenumber by

$$
\begin{equation*}
\lambda=\frac{2 \pi}{k} \tag{14}
\end{equation*}
$$

The phase speed $c_{p h}$ describes the motion within a wave packet. Velocity at which a phase of any one frequency component of the wave will propagate within the packet,

$$
\begin{equation*}
c_{p h}=\frac{\omega}{k} . \tag{15}
\end{equation*}
$$

Here ω is the frequency and the dispersion relation is the relation $\omega(k)$ between ω and the wavenumber k. In higher dimensions this is

$$
\begin{equation*}
c_{p h}=\hat{\boldsymbol{k}} \frac{\omega}{|\boldsymbol{k}|}, \tag{16}
\end{equation*}
$$

where \boldsymbol{k} is a vector of the wavenumbers in each direction and $\hat{\boldsymbol{k}}=\frac{\boldsymbol{k}}{|\boldsymbol{k}|}$.
The group velocity c_{g} describes the motion of the whole wave packet,

$$
\begin{equation*}
c_{g}=\frac{\partial \omega}{\partial k}\left(=\nabla_{\boldsymbol{k}} \omega \text { in higher dimensions }\right) \tag{17}
\end{equation*}
$$

If $c_{g} \neq c_{p h}$ then the waves are dispersive.

Example 1. (Sound Waves are not dispersive) Sound waves satisfy (in 1D)

$$
\begin{equation*}
\frac{\partial^{2} p}{\partial t^{2}}=c_{s}^{2} \frac{\partial^{2} p}{\partial x^{2}} \tag{18}
\end{equation*}
$$

where p is the pressure and c_{s} the speed of sound. Wave solutions are of the form,

$$
\begin{equation*}
p(x, t)=A e^{i(k x-\omega t)} . \tag{19}
\end{equation*}
$$

Put this into (18) and we get

$$
A \omega^{2} e^{i(k x-\omega t)}=A k^{2} c_{s}^{2} e^{i(k x-\omega t)}
$$

so $\omega=c_{s} k$. Then the phase speed is

$$
c_{p h}=\frac{\omega}{k}=c_{s},
$$

and the group speed is

$$
c_{g}=\frac{\partial \omega}{\partial k}=c_{s}=c_{p h} .
$$

Therefore sound waves are not dispersive.
Example 2. (Internal Gravity Waves) These are waves generated by buoyancy forces. We use the following linearised equations for a stratified fluid with small 2D motion,

$$
\begin{array}{rr}
\rho_{0} \frac{\partial u_{1}}{\partial t}=-\frac{\partial p_{1}}{\partial x}, & \rho_{0} \frac{\partial v_{1}}{\partial t}=-\frac{\partial p_{1}}{\partial y}-\rho_{1} g \\
\frac{\partial u_{1}}{\partial x}+\frac{\partial v_{1}}{\partial y}=0, & \frac{\partial \rho_{1}}{\partial t}+v_{1} \frac{\partial \rho_{0}}{\partial y}=0
\end{array}
$$

Find the dispersion relation $\omega(k)$, we assume solutions of the form

$$
\begin{aligned}
& u_{1}=\hat{u}_{1} e^{i(k x+l y-\omega t)}, \quad v_{1}=\hat{v_{1}} e^{i(k x+l y-\omega t)}, \\
& p_{1}=\hat{p_{1}} e^{i(k x+l y-\omega t)}, \quad \rho_{1}=\hat{\rho_{1}} e^{i(k x+l y-\omega t)} .
\end{aligned}
$$

Put these into the linearised equations and eliminate $\hat{u_{1}}, \hat{v_{1}}, \hat{p_{1}}, \hat{\rho_{1}}$ to get

$$
\omega^{2}=\frac{k^{2} N^{2}}{\left(l^{2}+k^{2}\right)} \text { where } N^{2}=\frac{-g}{\rho_{0}} \frac{\partial \rho_{0}}{\partial y} .
$$

Figure 1: Propagation of a 2D packet of internal gravity waves; the crests denote lines of constant phase $k x+l y-\omega t$.

The phase velocity is then (where $\boldsymbol{k}=(k, l)$)

$$
c_{p h}=\frac{\omega \boldsymbol{k}}{|\boldsymbol{k}|^{2}}=\frac{\omega}{\left(k^{2}+l^{2}\right)}(k, l)
$$

and the group velocity is then

$$
c_{g}=\left(\frac{\partial}{\partial k}, \frac{\partial}{\partial l}\right) \omega=\frac{\omega l}{k\left(k^{2}+l^{2}\right)}(l,-k) .
$$

So we can see that $c_{p h} \propto(k, l)$ is perpendicular to $c_{g} \propto(l,-k)$. As time proceeds the crests move in direction (k, l) and the packet moves in the perpendicular direction $(l,-k)$.

