# MA3D1 Fluid Dynamics Support Class 5 - Buoyancy Induced Waves 

14th February 2014

Jorge Lindley email: J.V.M.Lindley@warwick.ac.uk

## 1 Deep Water Waves

We consider surface waves on deep water. Fluid motion will arise from a deformation of the water surface. Denote the free surface $z=\eta(x, t)$.


Figure 1: A group of surface waves on deep water.
Fluid particles on the surface remain on the surface. Define $F(x, z, t)=z-\eta(x, t)$ which remains constant (in fact 0) for any fluid particle on the free surface, ie.

$$
\begin{equation*}
\frac{D F}{D t}=\frac{\partial F}{\partial t}+(\boldsymbol{u} \cdot \nabla) F=0 \text { on } z=\eta(x, t) \tag{1}
\end{equation*}
$$

which is equivalent to (using definition of $F$ )

$$
\begin{equation*}
\frac{\partial \eta}{\partial t}+u \frac{\partial \eta}{\partial x}=w \text { on } z=\eta(x, t) \tag{2}
\end{equation*}
$$

## 2 Bernoulli's equation for unsteady flow

Consider Euler's equation

$$
\begin{equation*}
\frac{\partial \boldsymbol{u}}{\partial t}+(\nabla \times \boldsymbol{u}) \times \boldsymbol{u}=-\nabla\left(\frac{p}{\rho}+\frac{1}{2} \boldsymbol{u}^{2}+\chi\right) \tag{3}
\end{equation*}
$$

If the flow is irrotational $(\nabla \times \boldsymbol{u}=0)$ so that $\boldsymbol{u}=\nabla \phi$ then

$$
\frac{\partial \nabla \phi}{\partial t}=-\nabla\left(\frac{p}{\rho}+\frac{1}{2} \boldsymbol{u}^{2}+\chi\right) \text { where } \chi=g z
$$

Then integrate this to get

$$
\partial_{t} \phi+\frac{p}{\rho}+\frac{1}{2} \boldsymbol{u}^{2}+\chi=G(t)
$$

where $G(t)$ is an arbitrary function of time. Bernoulli's equation can be used to find exact solutions.

Example 1. (Small Amplitude Waves) For the surface of deep water let the pressure be $p=$ $p_{0}+\epsilon p_{1}$, where $p_{0}$ is atmospheric pressure, $z=\epsilon \eta+z_{0}$. Velocities are small perturbations from
rest $u=\epsilon u_{1}, w=\epsilon w_{1}$ as is the velocity potential $\phi=\epsilon \phi_{1}$, where $z_{0}$ is the average surface level and $\eta$ the displacement. We wish to find an exact solution using the deep water equation

$$
\begin{equation*}
\frac{\partial \eta}{\partial t}=\underbrace{u \frac{\partial \eta}{\partial x}}_{O\left(\epsilon^{2}\right)}=w=\frac{\partial \phi}{\partial z} \tag{4}
\end{equation*}
$$

Now use Bernoulli and pick $G(t)=\frac{p_{0}}{\rho}-g z_{0}$ with $\chi=g\left(\eta+z_{0}\right)$ to get

$$
\begin{equation*}
\frac{\partial \phi}{\partial t}+\frac{1}{2}\left(u^{2}+w^{2}\right)+g \eta=0 \tag{5}
\end{equation*}
$$

and combine with (4) to get

$$
\begin{equation*}
\frac{\partial^{2} \phi}{\partial t^{2}}+g \frac{\partial \phi}{\partial z}=0 \tag{6}
\end{equation*}
$$

Assume solution of the form $\eta=A \cos (k x-\omega t)$ and $\phi=f(z) \sin (k x-\omega t)$, where $A$ is the amplitude of the displacement. Use the fact that $\phi$ satisfies Laplace's equation

$$
\frac{\partial^{2} \phi}{\partial x^{2}}+\frac{\partial^{2} \phi}{\partial z^{2}}=0
$$

to find the condition on $f, f^{\prime \prime}-k^{2} f=0$ which has general solution $f=C e^{k z}+D e^{-k z}$. For a bounded solution as $z \rightarrow \infty$ we need $D=0$ so $\phi=C e^{k z} \sin (k x-\omega t)$. Substitute into (4) and (5) to get $C=A \omega / k$ and $\omega^{2}=g k$.

To find the particle paths we use $u=\frac{\partial \phi}{\partial x}=A \omega e^{k z} \cos (k x-\omega t)$ and $w=\frac{\partial \phi}{\partial z}=A \omega e^{k z} \sin (k x-\omega t)$. Assume the particles only move a small amount $\left(x^{\prime}, z^{\prime}\right)$ from their mean position $(\bar{x}, \bar{z})$. Then

$$
x^{\prime}=-A e^{k \bar{z}} \sin (k \bar{x}-\omega t), z^{\prime}=A e^{k \bar{z}} \cos (k \bar{x}-\omega t) .
$$

Therefore the particle paths are circular with radius decreasing with depth.


Figure 2: Motion of particles in deep water.
Most of the energy of a surface wave is contained within half a wavelength below the surface.

## 3 Boussinesq Approximation

Variations of all properties other than density are ignored. Variations of density ignored except when they give rise to a gravitational force (multiplied by $g$ ), that is ignored in inertia terms but not buoyancy terms.

## 4 Anelastic Approximation

Eliminates sound waves by assuming flow has velocities much smaller than the speed of sound. Assumes density as a decreasing function of height.

Example 2. (Exam Question - Master Equation)
(a) Explain the difference between the anelastic and Boussinesq approximations.

Answer: See above.
(b) Consider gravity waves with no mean shear and the average density is a function of height. What does the master equation reduce to?

$$
\begin{equation*}
\hat{w}^{\prime \prime}+\frac{\bar{\rho}^{\prime}}{\bar{\rho}} \hat{w}^{\prime}+\left[\frac{N^{2}}{(c-U)^{2}}+\frac{U^{\prime \prime}}{c-U}+\frac{\rho_{0}^{\prime}}{\rho_{0}} \frac{U^{\prime}}{(c-U)}-k^{2}\right] \hat{w}=0 \tag{7}
\end{equation*}
$$

where $c=\omega / k, U(y)$ is the shear flow and the vertical velocity $w=\hat{w} e^{i(k x-\omega t)}$.
Answer: No mean shear gives $U=0$. If mean density is a function of height then $\frac{\bar{\rho}_{\bar{\rho}}^{\prime}}{\bar{\rho}} \frac{\rho_{0}^{\prime}}{\rho_{0}}$ so the master equation (7) reduces to

$$
\begin{equation*}
\hat{w}^{\prime \prime}+\frac{\rho_{0}^{\prime}}{\rho_{0}} \hat{w}^{\prime}+\left(\frac{N^{2}}{c^{2}}-k^{2}\right) \hat{w}=0 . \tag{8}
\end{equation*}
$$

(c) What is $N$ and what does it represent a balance between?

Answer: $N^{2}=-\frac{g}{\rho_{0}} \frac{d \rho_{0}}{d z}$ is the Brunt Väisälä frequency. It represents a balance between buoyancy and gravity, and is the frequency at which a vertically displaced air parcel will oscillate in a stable environment.

Now assume no mean shear and allow for density as a function of height $\rho(z)$.
(d) Assume $\bar{\rho}(z)=\rho_{0} e^{-\frac{z}{H}}$. What is the dispersion relation for a wave $w(x, z, t)=w_{0} e^{\frac{z}{a H}} e^{i(k x+l z-\omega t)}$ where ( $k, l$ ) are horizontal and vertical wavenumbers, and $\omega$ the frequency.

Answer: Substitute $w(x, z, t)=w_{0} e^{\frac{z}{a H}} e^{i(k x+l z-\omega t)}$ into (8) noting that $\frac{\rho_{0}^{\prime}}{\rho_{0}}=-\frac{1}{H}$ to get,

$$
\begin{align*}
{\left[\left(\frac{1}{a H}+i l\right)^{2}+\frac{\rho_{0}^{\prime}}{\rho_{0}}\left(\frac{1}{a H}+i l\right)+\left(\frac{N^{2}}{c^{2}}-k^{2}\right)\right] w_{0} } & =0 \\
\Rightarrow\left[\frac{1}{a^{2} H^{2}}+\frac{2 i l}{a H}-l^{2}-\frac{1}{H}\left(\frac{1}{a H}+i l\right)+k^{2}\left(\frac{N^{2}}{\omega^{2}}-1\right)\right] w_{0} & =0 \tag{9}
\end{align*}
$$

(e) Why is $a=2$ the proper choice?

Answer: If $a=2$ the complex term in (9) vanishes, the complex part would cause the waves to decay as they rose.
(f) Find the dispersion relation $\omega(k, l)$ with $a=2$.

Answer: Use $a=2$ in (9) to get

$$
\begin{equation*}
\omega^{2}=\frac{k^{2} N^{2}}{k^{2}+l^{2}+\frac{1}{4 H^{2}}} \tag{10}
\end{equation*}
$$

(g) How would you apply the Boussinesq approximation, what would the dispersion relation be? Answer: We assume height variations are small $(\ll H)$ and $H \gg \lambda=\frac{2 \pi}{\left(k^{2}+l^{2}\right)^{1 / 2}}$ so (10) becomes

$$
\omega^{2}=\frac{N^{2} k^{2}}{k^{2}+l^{2}} .
$$

