## MA3D1 Fluid Dynamics Support Class 5 - Buoyancy Induced Waves

14th February 2014

Jorge Lindley email: J.V.M.Lindley@warwick.ac.uk

### 1 Deep Water Waves

We consider surface waves on deep water. Fluid motion will arise from a deformation of the water surface. Denote the free surface  $z = \eta(x, t)$ .



Figure 1: A group of surface waves on deep water.

Fluid particles on the surface remain on the surface. Define  $F(x, z, t) = z - \eta(x, t)$  which remains constant (in fact 0) for any fluid particle on the free surface, ie.

$$\frac{DF}{Dt} = \frac{\partial F}{\partial t} + (\boldsymbol{u} \cdot \nabla)F = 0 \text{ on } \boldsymbol{z} = \eta(\boldsymbol{x}, t), \tag{1}$$

which is equivalent to (using definition of F)

$$\frac{\partial \eta}{\partial t} + u \frac{\partial \eta}{\partial x} = w \text{ on } z = \eta(x, t).$$
(2)

# 2 Bernoulli's equation for unsteady flow

Consider Euler's equation

$$\frac{\partial \boldsymbol{u}}{\partial t} + (\nabla \times \boldsymbol{u}) \times \boldsymbol{u} = -\nabla \left(\frac{p}{\rho} + \frac{1}{2}\boldsymbol{u}^2 + \chi\right).$$
(3)

If the flow is irrotational  $(\nabla \times \boldsymbol{u} = 0)$  so that  $\boldsymbol{u} = \nabla \phi$  then

$$\frac{\partial \nabla \phi}{\partial t} = -\nabla \left( \frac{p}{\rho} + \frac{1}{2} \boldsymbol{u}^2 + \chi \right) \text{ where } \chi = gz.$$

Then integrate this to get

$$\partial_t \phi + \frac{p}{\rho} + \frac{1}{2}u^2 + \chi = G(t)$$

where G(t) is an arbitrary function of time. Bernoulli's equation can be used to find exact solutions.

**Example 1.** (Small Amplitude Waves) For the surface of deep water let the pressure be  $p = p_0 + \epsilon p_1$ , where  $p_0$  is atmospheric pressure,  $z = \epsilon \eta + z_0$ . Velocities are small perturbations from

rest  $u = \epsilon u_1, w = \epsilon w_1$  as is the velocity potential  $\phi = \epsilon \phi_1$ , where  $z_0$  is the average surface level and  $\eta$  the displacement. We wish to find an exact solution using the deep water equation

$$\frac{\partial \eta}{\partial t} = \underbrace{u \frac{\partial \eta}{\partial x}}_{O(\epsilon^2)} = w = \frac{\partial \phi}{\partial z}.$$
(4)

Now use Bernoulli and pick  $G(t) = \frac{p_0}{\rho} - gz_0$  with  $\chi = g(\eta + z_0)$  to get

$$\frac{\partial\phi}{\partial t} + \frac{1}{2}(u^2 + w^2) + g\eta = 0, \tag{5}$$

and combine with (4) to get

$$\frac{\partial^2 \phi}{\partial t^2} + g \frac{\partial \phi}{\partial z} = 0. \tag{6}$$

Assume solution of the form  $\eta = A\cos(kx - \omega t)$  and  $\phi = f(z)\sin(kx - \omega t)$ , where A is the amplitude of the displacement. Use the fact that  $\phi$  satisfies Laplace's equation

$$\frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial z^2} = 0$$

to find the condition on f,  $f'' - k^2 f = 0$  which has general solution  $f = Ce^{kz} + De^{-kz}$ . For a bounded solution as  $z \to \infty$  we need D = 0 so  $\phi = Ce^{kz} \sin(kx - \omega t)$ . Substitute into (4) and (5) to get  $C = A\omega/k$  and  $\omega^2 = gk$ .

To find the particle paths we use  $u = \frac{\partial \phi}{\partial x} = A\omega e^{kz} \cos(kx - \omega t)$  and  $w = \frac{\partial \phi}{\partial z} = A\omega e^{kz} \sin(kx - \omega t)$ . Assume the particles only move a small amount (x', z') from their mean position  $(\bar{x}, \bar{z})$ . Then

$$x' = -Ae^{k\bar{z}}\sin(k\bar{x}-\omega t), z' = Ae^{k\bar{z}}\cos(k\bar{x}-\omega t).$$

Therefore the particle paths are circular with radius decreasing with depth.



Figure 2: Motion of particles in deep water.

Most of the energy of a surface wave is contained within half a wavelength below the surface.

## **3** Boussinesq Approximation

Variations of all properties other than density are ignored. Variations of density ignored except when they give rise to a gravitational force (multiplied by g), that is ignored in inertia terms but not buoyancy terms.

### 4 Anelastic Approximation

Eliminates sound waves by assuming flow has velocities much smaller than the speed of sound. Assumes density as a decreasing function of height.

Example 2. (Exam Question - Master Equation)
(a) Explain the difference between the anelastic and Boussinesq approximations.
Answer: See above.

(b) Consider gravity waves with no mean shear and the average density is a function of height. What does the master equation reduce to?

$$\hat{w}'' + \frac{\bar{\rho}'}{\bar{\rho}}\hat{w}' + \left[\frac{N^2}{(c-U)^2} + \frac{U''}{c-U} + \frac{\rho_0'}{\rho_0}\frac{U'}{(c-U)} - k^2\right]\hat{w} = 0$$
(7)

where  $c = \omega/k$ , U(y) is the shear flow and the vertical velocity  $w = \hat{w}e^{i(kx-\omega t)}$ .

**Answer:** No mean shear gives U = 0. If mean density is a function of height then  $\frac{\overline{\rho}'}{\overline{\rho}} = \frac{\rho'_0}{\rho_0}$  so the master equation (7) reduces to

$$\hat{w}'' + \frac{\rho_0'}{\rho_0}\hat{w}' + \left(\frac{N^2}{c^2} - k^2\right)\hat{w} = 0.$$
(8)

(c) What is N and what does it represent a balance between?

**Answer:**  $N^2 = -\frac{g}{\rho_0} \frac{d\rho_0}{dz}$  is the Brunt Väisälä frequency. It represents a balance between buoyancy and gravity, and is the frequency at which a vertically displaced air parcel will oscillate in a stable environment.

Now assume no mean shear and allow for density as a function of height  $\rho(z)$ .

(d) Assume  $\bar{\rho}(z) = \rho_0 e^{-\frac{z}{H}}$ . What is the dispersion relation for a wave  $w(x, z, t) = w_0 e^{\frac{z}{aH}} e^{i(kx+lz-\omega t)}$ where (k, l) are horizontal and vertical wavenumbers, and  $\omega$  the frequency.

**Answer:** Substitute  $w(x, z, t) = w_0 e^{\frac{z}{aH}} e^{i(kx+lz-\omega t)}$  into (8) noting that  $\frac{\rho'_0}{\rho_0} = -\frac{1}{H}$  to get,

$$\left[ \left( \frac{1}{aH} + il \right)^2 + \frac{\rho'_0}{\rho_0} \left( \frac{1}{aH} + il \right) + \left( \frac{N^2}{c^2} - k^2 \right) \right] w_0 = 0$$
  
$$\Rightarrow \left[ \frac{1}{a^2 H^2} + \frac{2il}{aH} - l^2 - \frac{1}{H} \left( \frac{1}{aH} + il \right) + k^2 \left( \frac{N^2}{\omega^2} - 1 \right) \right] w_0 = 0$$
(9)

(e) Why is a = 2 the proper choice?

**Answer:** If a = 2 the complex term in (9) vanishes, the complex part would cause the waves to decay as they rose.

(f) Find the dispersion relation  $\omega(k, l)$  with a = 2. Answer: Use a = 2 in (9) to get

$$\omega^2 = \frac{k^2 N^2}{k^2 + l^2 + \frac{1}{4H^2}} \tag{10}$$

(g) How would you apply the Boussinesq approximation, what would the dispersion relation be? **Answer:** We assume height variations are small ( $\ll$  H) and H  $\gg \lambda = \frac{2\pi}{(k^2+l^2)^{1/2}}$  so (10) becomes

$$\omega^2 = \frac{N^2 k^2}{k^2 + l^2}.$$