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1 Internal Waves

Example 1. Internal waves in stratified fluids
In this problem we will study waves that arise due to stratification of the fluid density: the so-
called internal waves. They play important roles in both atmospheric and ocean dynamics. In
particular in the oceans they provide the principal mechanism for bringing the global conveyor
belt currents from the ocean’s bottom to the surface, and as such they are one of the key ingre-
dients in climate dynamics.

Equations for inviscid incompressible fluid in the presence of a density stratification and gravity
f = −gẑ are

∂tu + (u · ∇)u = −1

ρ
∇p− gẑ, (1.1)

∇ · u = 0, (1.2)

∂tρ+ u · ∇ρ = 0. (1.3)

Consider an incompressible fluid subject to gravity, which at rest has an exponential density
profile,

ρ = ρ0(z) = ρ0(0)e−z/h. (1.4)

1. Find the equilibrium pressure profile p0(z).

2. Consider perturbations around the equilibrium state,

ρ = ρ0(z) + ρ̃, u = ũ,

and linearise the fluid equations (1.1) and (1.3).



3. Consider perturbations in the form of a harmonic wave

ũ = Re

[
A√
ρ0(z)

ei(kx−ωt)

]
, (1.5)

ρ̃ = Re
[
R
√
ρ0(z)e

i(kx−ωt)
]
, (1.6)

p̃ = Re
[
P
√
ρ0(z)e

i(kx−ωt)
]

(1.7)

where k ∈ R3 is the wave vector, ω ∈ R is the frequency, A ∈ C3 is a constant vector and
R,P ∈ C are constant scalars.

Substituting (1.5), (1.6) and (1.7) into the linearised equations find the wave dispersion
relation, ω = ω(k).

4. Are these waves dispersive or non-dispersive? Isotropic or anisotropic? Explain why.
Consider the short-wave limit kh � 1. Find the group velocity for the inertial waves and
comment on its relative direction with respect to the wave vector.



Figure 1: Propagation of a 2D packet of internal gravity waves; the crests denote lines of constant
phase kx+ ly − ωt.

2 Rayleigh-Taylor Instability

Example 2. Rayleigh-Taylor instability
Consider an ideal incompressible fluid at rest subject to gravity in the negative y-direction. The
fluid has density ρ+ in the upper half space y ≥ 0 and density ρ− in the lower half space y < 0.

This setup is at a steady state equilibrium which is unstable if ρ+ > ρ−, i.e. when the upper
fluid is heavier than the lower one (e.g. water above oil). We will study such an instability by
considering evolution of small irrotational perturbations of the specified configuration.

1. Use Bernoulli’s theorem for time dependent irrotational flow and formulate the pressure
boundary conditions at infinity and on the velocity discontinuity surface. Linearise the
resulting equation.

2. Formulate the kinematic boundary conditions on the discontinuity interface corresponding
to the top and the bottom side of this surface. Linearise this condition.

3. Write the incompressibility conditions above and below the interface.



4. Consider a plane wave solution

φ±(x, y, t) = Re
[
A±(y)ei(kx−ωt)

]
, h±(x, y, t) = Re

[
Hei(kx−ωt)

]
, (2.1)

where A±(y) are real functions, H is complex number, k is the perturbation wavenumber
and ω is frequency. Substitute this plane wave solution into the incompressibility conditions
and find the shape of the function A±(y).

5. Substitute this plane wave solution into the linearised pressure and the kinematic boundary
conditions at the interface which you found in the previous parts. Find ω in terms of k
from the resolvability condition of the resulting equations. Find the condition under which
the values of ω are purely imaginary and one of them has a positive imaginary part, i.e.
that the wave perturbations experience an exponential growth (Rayleigh-Taylor instability).

Figure 2: Rayleigh-Taylor instability simulation



3 Sound Waves

Sound propagates as waves of pressure causing local regions of compression. We aim to find
the equation describing sound waves. Let the undisturbed state be one of rest, with constant
pressure p0 and density ρ0. We have a slight perturbation from this state of rest,

u = εu1, p = p0 + εp1, ρ = ρ0 + ερ1. (3.1)

We aim to linearise the equations ignoring O(ε2) or higher order terms of the perturbation
variables. We know entropy is conserved so pρ−γ = p0ρ

−γ
0 everywhere. Thus

(p0 + εp1)(ρ0 + ερ1)
−γ = p0ρ

−γ
0 ,

⇒
(

1 +
εp1
p0

)(
1 +

ερ1
ρ0

)−γ
= 1

⇒
(

1 +
εp1
p0

)(
1− γερ1

ρ0
+O(ε2)

)−γ
= 1.

Ignore O(ε2) terms,

⇒ p1
p0

=
γρ1
ρ0

⇒ p1 = c2sρ1 (3.2)

where

cs =

√
γρ1
ρ0

. (3.3)

The linearised equations for u1 and ρ1 are

ρ0
∂u1

∂t
= −∇p1 (3.4)

∂ρ1
∂t

+ ρ0∇ · u1 = 0. (3.5)

Take the divergence of (3.4) to get,

ρ0
∂

∂t
∇ · u1 = −∆p1. (3.6)

Finally we use (3.5) to remove the ∇ · u1 term and (3.2) to get the wave equation

∂2p1
∂t2

= c2s∆p1. (3.7)

In one dimension this is
∂2p1
∂t2

= c2s
∂2p1
∂x2

, (3.8)

which has general solution
p1 = f(x− cst) + g(x+ cst), (3.9)

the first/second term corresponding to right/left propagation of a wave with speed cs without
change of shape. We identify cs as the speed of sound.

The wavenumber k is a measure of the number of times a wave has the same phase per unit of
space.



The wavelength λ is the distance between repeating units of a propagating wave of a given
frequency, it is related to the wavenumber by

λ =
2π

k
. (3.10)

The phase speed cph describes the motion within a wave packet. Velocity at which a phase of
any one frequency component of the wave will propagate within the packet,

cph =
ω

k
. (3.11)

Here ω is the frequency and the dispersion relation is the relation ω(k) between ω and the
wavenumber k. In higher dimensions this is

cph = k̂
ω

|k|
, (3.12)

where k is a vector of the wavenumbers in each direction and k̂ = k
|k| .

The group velocity cg describes the motion of the whole wave packet,

cg =
∂ω

∂k
(= ∇kω in higher dimensions). (3.13)

If cg 6= cph then the waves are dispersive.

Example 3. (Sound Waves are not dispersive)
Sound waves satisfy (in 1D)

∂2p

∂t2
= c2s

∂2p

∂x2
(3.14)

where p is the pressure and cs the speed of sound. Wave solutions are of the form,

p(x, t) = Aei(kx−ωt). (3.15)

Put this into (3.14) and we get

Aω2ei(kx−ωt) = Ak2c2se
i(kx−ωt)

so ω = csk. Then the phase speed is

cph =
ω

k
= cs,

and the group speed is

cg =
∂ω

∂k
= cs = cph.

Therefore sound waves are not dispersive.


