
MA3D1 Fluid Dynamics Support Class 8 - More
Geophysical Flows; Gradient Winds and Rossby
Waves

7th March 2014

Jorge Lindley email: J.V.M.Lindley@warwick.ac.uk

1 Ekman Pumping

We have from lectures that the vertical velocity wI = 1/2(νΩ)1/2ε. We have seen before that (in
the Northern Hemisphere) the flow around a low pressure cell is cyclonic so ε > 0 and wI > 0,
therefore the ageostrophic flow points in at the bottom, dragging pressure lines in and steepen-
ing pressure gradients.

Figure 1: Ekman pumping.

Flow around a high pressure cell is anti-cyclonic so ε < 0 and wI < 0, this causes subsidence,
and pushes pressure lines out decreasing pressure gradients.

2 Gradient Wind

This is the correction to the geostrophic wind due to the centrifugal force u2
θ/r. We assume

stationarity, inviscid, axisymmetric flow. The geostrophic wind is
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We use the rotating Euler equations in polar coordinates:
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Axisymmetry means we have ∂θuθ = 0 and we also assume ur � uθ. Therefore the equations
reduce to
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Figure 2: Gradient wind around (a) low pressure cell and (b) high pressure cell.

Solving for the gradient wind uθ we get
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For cyclonic flow around a low pressure cell: we have
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Then using a Taylor expansion up to second order terms we have
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So the flow is slower than the geostrophic wind, called sub-geostrophic. Also |uθ| → G as r →∞,
and |uθ| → 0 as r → 0. There are solutions for all r > 0. There are strong pressure gradients
and strong geostrophic winds as observed in storms around low pressure cells.

For anticyclonic flow around a high pressure cell: we have
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Then using a Taylor expansion up to second order terms we have
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So the flow is faster than the geostrophic wind, called super-geostrophic. Also |uθ| → G as
r → ∞, however there are no solutions for small r < 4G/f . In nature this is resolved by
pressure gradients and G tending to zero as r → 0. There are low geostrophic winds.

3 Rotating Bucket Problem

In this problem we want to find the shape of the free surface of an ideal fluid in the presence of a
Rankine vortex, which has uniform vorticity ω = (0, 0,Ω). This is a rotating fluid with constant



angular velocity uθ = Ωr. The governing equations in rotating coordinates are
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To find the free surface we find surfaces of constant pressure. We are not in a rotating frame
so f = 0, we are considering a steady state so we can drop the time derivatives, also we assume
ur = 0. The equations then reduce to
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Note that we cannot use Bernoulii’s law here (p/ρ + u2/2 + gz is constant) since the flow is
not irrotational. The correct approach is to integrate (3.4) and (3.5) to get the equation for z.
Integrating (3.4) with respect to r gives
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Rearranging this and using the fact that the pressure at the free surface is equal to the atmo-
spheric pressure p0 gives the equation for z as
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where C is a constant depending on the depth of the fluid / choice of where you place the
coordinate axes.

Figure 3: Shape of the free surface in a rotating bucket.



4 Rossby Waves

Atmospheric Rossby waves emerge due to shear in rotating fluids so that the Coriolis force
changes along the sheared coordinate. Rossby waves are responsible for the jet stream in Earth’s
atmosphere. We approximate the Coriolis parameter with Taylor expansion
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y
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where a is the Earth’s radius. Take f0 = 2Ω sin(φ0) and β0 = 2Ω
a cos(φ0) then f = f0 + β0y.

The governing equations (from the Shallow Water equations) are
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where h = η + b0 is the depth with b0 being the mean depth. For planetary waves we assume h
is constant, define the potential vorticity as
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this is conserved by the shallow water equations (proved in lectures), that means
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Now we use the streamfunction Ψ with properties ω = −∆Ψ and u = ∂yΨ, v = −∂xΨ, put this
into (4.5) and linearise to get
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To find the dispersion relation put Ψ = Ψ̂ei(kx+ly−ωt) into the Charney equation to get
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Figure 4: Jet stream in the Northern Hemisphere. Cold air filled troughs can pinch off and form
low pressure cyclones. The jet stream transports weather systems around.



From this we get the phase speed
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notice that the x-component is negative, therefore waves propagate only to the west. The group
speed is
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This group speed may be in either direction, indeed consider long waves with the x-direction
wavelength λx larger than the y-direction wavelength λy, ie. 1/k > 1/l or l > k. Then the
x-component of the group velocity cg,x < 0, so long waves move west. However for short waves
with λy > λx or l < k then cg,x > 0 and so short waves move east. Note that the jet stream
blows east with the rest of the atmosphere and carries weather fronts westwards.

4.1 Coastal Rossby Waves

Rossby waves may also occur near coastal regions with sloping boundaries. In this case we have
varying depth h = b+ η with b = b0 + αxx+ αyy. Again we use the potential vorticity
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and using the streamfunction Ψ we get the version of the Charney equation for coastal Rossby
waves (assuming β0 = 0),
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These waves are often found travelling in the opposite direction to Kelvin waves, however they
are not restricted to the coast since they have a perpendicular component.


