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energy spikes. Total Möbius energy = 265.5114 . . . . . . . . . . . . 27

3.7 Cutoff values ( θ1 = 0.05 too small for size 20 - no data for this step) 29

3.8 Graph of the above table with the smoothed curves, flattening approach 30

3.9 Graph of the above table with the smoothed curves double cutoff approach 31

iii



4.1 Example of membrane discretisation . . . . . . . . . . . . . . . . . . 34

6.1 C-shaped membrane approximation with N=100, 200 and 600 points,a =

3, r = 0.7, θ = π + 2.3 . . . . . . . . . . . . . . . . . . . . . . . . . . 47

6.2 the left shows the final mesh distribution after 600 timesteps. On the

right we see the graph of the energy peak at a detected intersection.

N = 200, a = 3, r = 0.7, θ = π + 2.3 . . . . . . . . . . . . . . . . . . 48

6.3 N = 200, a = 3, r = 0.7, θ = π + 2.3 . . . . . . . . . . . . . . . . . . 49

6.4 the left shows the final mesh distribution after 600 timesteps - and

visually showing an intersection. On the right we see the graph of the

energy that has not detected a peak. (The green bar represents the

threshold for detection)N = 200, a = 3, r = 0.7, θ = π + 2.3 . . . . . 49

6.5 the left shows the final mesh distribution after 500 timesteps. On the

right we see the graph of the energy peak at a detected intersection.

N = 200, a = 3, r = 0.7, θ = π + 2.3 . . . . . . . . . . . . . . . . . . 50

6.6 (q = 1.6) On the right we see no intersection has been detected - the

horizontal green bar shows the threshhold for detection . . . . . . . . 51

6.7 (q = 1.5) An intersection has been detected but with wide energy bound 52

6.8 (q = 1.415) A detected intersection with narrow energy bounds . . . 52

6.9 we increase θ1 = 0.03, 0.06 . . . , 0.21 keeping θ2 = 1.1θ1 . . . . . . . . 54

6.10 we increase θ2 = 0.03, 0.06 . . . , 0.21 keeping θ1 = 0.03. . . . . . . . . 54

6.11 Showing the difference between a smoothed and unsmoothed energy

during a typical intersecting evolution. (intersection occurs at step

880). We have θ1 = 0.05, θ2 = 0.06. . . . . . . . . . . . . . . . . . . 55

7.1 The mesh distribution in early timesteps. . . . . . . . . . . . . . . . 59

7.2 The mesh distribution at timestep 150 . . . . . . . . . . . . . . . . . 60

7.3 The mesh distribution at timestep 500. . . . . . . . . . . . . . . . . 60

7.4 The energy density in early timesteps. . . . . . . . . . . . . . . . . . 61

7.5 The energy density at timestep 150. . . . . . . . . . . . . . . . . . . 61

7.6 The energy density in at timestep 500. . . . . . . . . . . . . . . . . 62

9.1 Shows for k = 0,±1,±2, . . . and for N large, the behaviour of FN

where |pN (x)− pN (y)| � 1 . . . . . . . . . . . . . . . . . . . . . . . iii

iv



Acknowledgments

I would like to acknowledge those who have made this thesis possible. Firstly my

supervisors Björn Stinner and Andreas Dedner who have first constructed and then

supported my project throughout.

Secondly thanks to EPSRC, and MASDOC who provided the funding and

environment, in which I could work efficiently and comfortably.

Finally to the statistics department which has continually satisfied my thirst

for caffeine throughout my work period, and to Jake Dunn who helped with proof

reading.

v



Declarations

I, Oliver Dunbar, to the best of my knowledge have presented only my original work

and the products of my collaboration with Dr Björn Stinner, unless specifically

referenced or cited in the bibliography. I will also declare that the work produced

here has not been submitted for any other degree or qualification or at any other

university.

vi



Abstract

This thesis aims to study the effect implementing a knot energy, to detect and

possibly prevent self intersection of an evolving membrane with motion coupled

to a surface advection diffusion equation. We first study the famous Möbius knot

energy on smooth curves, using quadrature theory to analyse its convergence, and

smoothing techniques to improve this. We then construct a discretisation of the

energy, generalised from the proposed discretisation by Scholtes, to an energy which

can be implemented on unknown curves and study its convergence and methods

of increasing computational efficiency. We introduce a SFEM model proposed by

Elliot and Dziuk for a quantity on the membrane and couple this to one of two

evolution schemes, created by Dziuk and the other by Barrett-Garcke-Nürnberg.

Inserting the discretised knot energy, we then compare effectiveness of the different

methods of calculating the energy discretisation in these frameworks for detecting

self intersections. Finally we propose and implement briefly a possible method of

prevention of these membrane self intersections.
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Chapter 1

Introduction

1.1 Motivation

Cell motility is the ability for biological (in this case unicellular) organisms to move

in a coordinated way due to the presence of nearby stimuli. It is an important process

to understand, as even single cell motility encapsulates biological phenomena such

as metastasis of cancer, axon guidance, tissue regeneration and embryotic growth.

In essence the movement can be classified into the detection of the stimulus;

polarisation - that is the rearranging of chemical concentrations in the cell to attain

a “direction” of future movement; then the movement in the required direction

that is fueled by concentrations of chemicals distributed across the cell membranes

surface. Mathematically we can model the motility using geometric equations for

the shape of the cell membrane coupled to surface PDEs for the cell chemistry on

the membrane itself, see [8] with specific application to chemotaxis and pseudopod

driven migration.

During numerical experiments unphysical phenoma is sometimes observed,

one of these specifically is self-intersection of the membrane. One can imagine two

attractive stimuli either side of the cell, and the alignment may cause movement in

both directions leading to a ‘stretching out’ of the cell into a thin body, and the

boundary membrane may be so close as to touch or even cross in numerical approx-

imation. The aims of this paper will be to (a) detect these self-intersections with

the possible further research into techniques of (b) prevention the self-intersections

from occuring.
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Figure 1.1: Illustration of chemical distribution across the cell boundary due to a
stimulus

1.2 Outline

We begin with the central quantity of the project, which is the study of the Möbius

energy and its discretisation. This energy is a continuous functional, constructed in

such a way that if it is a function of a smooth embedded curve the energy will be a

small positive quantity (in fact the circle is a minimiser), however as a curve comes

close to self-intersection, the value of the energy will explode. This energy was first

used to study these detections in [15]. We use quadrature rules to calculate this

energy for a given fixed curve and analyse the convergence and discuss how different

rates can be attained.

We wish to discretise the integrand of the energy functional, so we must also

consider a choice of its discretisation: earlier work in this area can be found in [18]

and [17]. Previous research has been more concerned with topological properties of

the discrete energy, and thus we are required to modify and generalise from these

more algerbraically focused objects. In particular the aim for this chapter is to

create a modified Möbius energy which can be calculated efficiently and accurately,

on a curve with very little information. Specifically we calculate here on a piecewise

linear polynomial approximation to the curve of interest. We predict convergence

2



rates of the approximations, by analysing regularity of the integrand, and we apply

techniques such as cutting off and smoothing or alternative calculation methods.

These are then implemented numerically to see if we can improve on the previous

research available.

After working with fixed curves we discuss an important model and primary

motivation for our work, that is, the model for the cell that was proposed in [8],

showing derivations and discretisations. The equations governing the chemical con-

centrations on the surface of the membrane itself are given by a surface PDE. We

look at the mass conservation with source terms of a single chemical (possibly cor-

responding to the protein ‘Actin’ that drives the polymerisation reactions causing

cell extensions and retractions) - this derivation can be studied in more detail in [6]

and [7].

The other half of this model is dedicated to representing the membrane itself,

which is modelled by a geometric evolution law governed by curvature flow. This

represents the surface tension of the cell membrane, causing it to constantly wish

to be as short as possible. In order to prevent the shrinking of our cell volume to

zero, and to govern the motion of the cell we also include a forcing term into these

equations. We have study two such models proposed in [4] [1]

Next we implement this energy within the numerical schemes for our cell

membrane, and highlight some issues that needed to be overcome during this stage.

In particular different calculations of the energy - such as introduction of cutoff

functions or using a scheme based on equidistribution. We also observe the different

effects of the two evolution schemes - for example the BGN method will equidis-

tribute points, whereas Dziuks method enforces motion in only a normal direction

to the surface. Studying efficiency of the schemes also plays a large role and we com-

ment on the reduction of computational complexity in this chapter within numerical

simulations.

The next chapter gives some brief research and calculations (to reflect the

analysis and implementation of the previous chapters based on the detections of

intersections ) on the work of preventing the self-intersections. In particular the

addition of other force terms into our model that are constructed from the value of

our energy function.

Finally we discuss some conclusions of the work, and briefly remark on some

open problems.

3



Chapter 2

The Möbius energy

2.1 Form and simple properties

This project wishes to investigate an unwelcome phenomenon that arises in the

context of an evolution model (with a view of application in many other evolutionary

systems), which is the occurances of self-intersections. Most systems are designed

to model real world scenarios and such intersections of a body tends to indicate

unrealistic material properties or perhaps singularities/change of state in a model

and thus wish to be at the very least detected if not controlled or avoided.

To observe the intersections we use the well studied Möbius energy, (first

used in this context in [15]).

Definition 2.1.1. For any parametrisation of an embedded closed curve Γ ⊂ R2

by the function γ : [0, 1] → Γ. We define the geodesic distance or arc distance

between two points on the curve, through the respective points in the domain of

parametristion, i.e ∀x, y ∈ [0, 1]:

dγ(x, y) := min

{∫ y

x
|γ′(θ)| dθ,

∫ x

0
|γ′(θ)|dθ +

∫ 1

y
|γ′(θ)| dθ

} (
≥ |γ(x)− γ(y)|

)
(2.1)

Definition 2.1.2. we define the Möbius energy functional as

E(γ) =

∫∫
[0,1]2

(
1

|γ(x)− γ(y)|2
− 1

dγ(x, y)2

)
|γ′(x)||γ′(y)|dx dy (2.2)

We notice a few basic properties from the structure of the energy functional.

Firstly, the integrand is of the form of a difference between a function of the Eu-

clidean distance between any two points, and a function of geodesic distance between

4



Figure 2.1: Demonstrating comparison of Euclidean and Geodesic distances on a
curve Γ

two points, it is then naturally weighted via the parametrisation. This difference is

what will characterise the ‘proximity’ to self intersection - which is demonstrated in

Figure 2.1. It shows for two pairs of points on the curve, (one far and one close to

self intersection) the geodesic distance compared to the Euclidean distance. We see

that near self intersection there is a far greater disparity in these two distances, this

is thus measured by the integrand. In fact, as self-intersection occurs precisely when

the parametrisation becomes noninjective i.e. ∃ x̃, ỹ ∈ [0, 1] such that γ(x̃) = γ(ỹ)

but dγ(x̃, ỹ) > 0, this behaviour causes a singularity in (2.2).

Secondly, the inequality in (2.1) shows that this energy is always nonnegative,

which always proves a useful inequality.

The energy is scaling invariant, as the |γ′(x)||γ′(y)| cause the weights of

each term to be based on the proportion of the length of the curve. It is also

invariant under affine transformations i.e if f : R2 → R2 is an affine transformation

(f(x) = Mx+ b, with M ∈ R2×2, b ∈ R2) then E satisfies E(f ◦ γ) = E(γ).

Definition 2.1.3. A function f : X → Y is L-bi-lipschitz if f is an L-lipschitz

function and its inverse f−1 : f(X) → X is also L-Lipschitz. equivalently we may

write the inequality:

∀x, y ∈ X, ∃L > 0 s.t L−1dX(x, y) ≤ dY (f(x), f(y)) ≤ LdX(x, y)

Proposition 2.1.1. [10] Let Γ ⊂ R2 be a closed rectifiable (finite length) curve, and

γ : X → R2 an arc length parametrisation. If E(γ) is finite then γ is L-bi-Lipschitz

with L dependant only upon E(γ). Moreover,if γn is a sequence such that E(γn)→ 0

as n→∞ then L→ 1 .

5



In fact there are other properties described in [10] that are not detailed here,

such as the invariance under Möbius transformations and the energy value can be

used to bound the average number of crossings that a planar knot has (using a

projection from the curve R3 → R2 to create the knots), which leads to interesting

mathematics in knot theory.

Remark. This is just a subclass of an entire family of knot energies of the form:

Ej,p(γ) =

∫∫
[0,1]2

(
1

|γ(x)− γ(y)|j
− 1

dγ(x, y)j

)p
|γ′(x)||γ′(y)|dx dy

for (j, p) ∈ (0,∞) × (0,∞). This family has been studied in depth, especially

concerning the regularity of the curves for differing exponents (see [14][3]). In these

papers the authors show that for (j − 2)p ≥ 1, then the energy is infinite for all

smooth closed curves (if p ≥ 1) and for all polygons (if jp > 2) , for jp < 2 the

energy is finite even during self-intersection of Γ. Also it is shown that if jp ≤ 2,

and (j−2)p < 1 then this energy can be finite for curves that are non differentiable,

moreover one can choose nondifferentiable curves with energy arbitrarily close to

a minimisers energy. (Some necessary and sufficient conditions for bounded Ej,p

energy may be found in [2])

The choice of j = 2, p = 1 is therefore the correct candidate of powers

required, by having minimum regularity requirements on γ, and yet still becoming

infinite under self-intersection.

2.2 Fixed curve: Analysis

For this section we assume that we are given a parametrisation of a fixed closed curve

Γ by γ : [0, 1] → Γ which is C∞ - or at least sufficiently smooth for assumptions

required by the integrand regularity. We split the unit interval into N pieces and

denote ai = i
N .

2.2.1 Quadrature theory

Take a function F : [0, 1]× [0, 1]→ R, for which we will consider the integration

I(F ) :=

∫∫
[0,1]2

F (x, y) dx dy

We impose a tensor ansatz, which requires the structure of the meshgrid to be the

same in both x and y coordinates. This allows us to retain properties such as

symmetry and periodicity of the energy density when using quadrature (or later on,

6



when discretising). We may then apply quadrature rules such as the midpoint rule

in the following manner because of this:

Midpoint quadrature

The midpoint rule is the approximation of a function by a piecewise C0 polynomial,

followed by a weighted summation, given by
∫ b
a f(x) dx ≈ (b− a)f(a):∫ aj+1

aj

∫ ai+1

ai

F (x, y) dx dy ≈
∫ aj+1

aj

(ai+1−ai)F (ai, y) dy ≈ (aj+1−aj)(ai+1−ai)F (ai, aj)

Overall we sum up to an approximate integral.

IN (F ) =
1

N2

N∑
i 6=j
i,j=1

F (ai, aj)

Please note that we remark later on the diagonal terms. Standard numerical analysis

then obtains convergence orders based on the degree of accuracy of the quadrature

q (here for example q = 0) and the regularity of the funpction F. In particular we

will consider periodic functions (see for example [16])

Proposition 2.2.1. For a periodic function F ∈W k,p(R2), 1 < p <∞, and quadra-

ture rule over exactly one period with exact accuracy up to degree q and meshsize

N

|I(F )− IN (F )| = O
( 1

N s

)
where s = min{k, q + 1}

Thus for an W 2,p integrand one may expect that for an order of O( 1
N2 )

convergence as N → ∞ one may require a higher order quadrature rule such as

trapezoidal or Simpson’s rule (the latter can be found in the appendix).

Trapezoidal quadrature

The trapezoidal rule is given by
∫ b
a f(x) dx ≈ (b− a)

(
f(a)+f(b)

2

)
, Thus:

∫ aj+1

aj

∫ ai+1

ai

F (x, y) dx dy ≈
∫ aj+1

aj

(ai+1 − ai)
(
F (ai, y) + F (ai+1, y)

2

)
dy

≈ (aj+1 − aj)(ai+1 − ai)
4

[(
F (ai, aj) + F (ai+1, aj)

)
+
(
F (ai, aj+1) + F (ai+1, aj+1)

)]

7



by defining aN+1 := a1 then we represent the discretised integral as follows

IN (F ) =
1

4N2

N∑
i 6=j
i,j=1

[(
F (ai, aj) + F (ai+1, aj)

)
+
(
F (ai, aj+1) + F (ai+1, aj+1)

)]

We have not yet considered the form of our integrand F , from (2.2) we define

F (x, y) :=

(
1

|γ(x)− γ(y)|2
− 1

dγ(x, y)2

)
|γ′(x)||γ′(y)| (2.3)

The closedness of Γ and the tensor ansatz of F cause it to have a continuous periodic

extension F (with periodic cell [0, 1]2), i.e F (x, y) = F (x, y + 1) = F (x + 1, y)

∀x, y ∈ R2. Also we gain the property of symmetry about y = x naturally.

As we are integrating over exactly a single periodic cell one may shift this

cell by a transformation (x, y) 7→ (x + 1
2 , y + 1

2), before performing the trapezoidal

rule. Notice now that the nodes of the trapezoidal rule are exactly the nodes of the

midpoint rule on the original domain. This is important as it states that we should

see (for a W 2,p function) the same convergence rates of O( 1
N2 ) with the constant

quadrature rule or the trapezoidal rule.

Another upshot of the form of our integrand comes from the presence of a

singularity along the line x = y. As of yet we have not analysed the integrand F

and so we have näıvely assign these a value zero, as on a brief inspection we at least

see that it is a removable singularity and so the integrand does not explode here.

Remark. for more general results for the accuracy of piecewise polynomial quadra-

ture rules of periodic functions in multiple dimensions one may attempt to generalise

those found in [12] and [11].

We now look at the other limiting factor for the convergence order of our

energy. That is, the regularity.

2.2.2 Regularity of the integrand

The knot energy is historically considered a more topological or algebraic tool for

determining if a curve contains intersections and knots. Therefore there is plenty

of documentation of estimates of the curves regularity given that the energy attains

certain values or is bounded such as in Proposition 2.1.1. However, less has been said

about what happens to the energy’s integrand if provided with a curve of certain

regularity (As we have seen with quadrature this will certainly become problematic

8



Figure 2.2: The left: energy density of the exact unit circle, on the right: the cross
section plotted along the white line

for rates of convergence if it is nonsmooth). The main causes for concern in this

integrand for a smooth γ are where both the geodesic and Euclidean distances

between points are close to 0, and also the effect of the minimum function in dγ will

certainly lead to cusps.

We will consider a specific test example throughout this chapter, where

γ : [0, 1]→ S1, γ(t) =

(
cos(2πt)

sin(2πt)

)

the parametrisation of the unit circle, and consider the discretisation given in previ-

ous subsections. We wish to consider the most obvious case of where the integrand

F may develop problems with its regularity, the convergence of two points together,

i.e x, y ∈ S1 with x→ y.

The Euclidean distance between any two quadrature mesh points on the

circle ai = i
N , aj = j

N is given by:

|γ(ai)− γ(aj)|2 =

(
cos
(2πi

N

)
− cos

(2πj

N

))2

+

(
sin
(2πi

N

)
− sin

(2πj

N

))2
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and the (exact) arclength is given by (wlog i > j):

dγ(ai, aj)
2 =

2π(i− j)
N

Rearrangement of F given in (2.3) , shows that the difference in the integrand is

governed by just the difference of the squared distances. To this end, we multiply

out and using multiple angle formulae we obtain (assuming uniform mesh size)

|γ(ai)− γ(aj)|2 − dγ(ai, aj)
2 = 2− 2 cos

(2π(i− j)
N

)
− 4π2(i− j)2

N2

Then recalling i, j are close:

= 2− 2
(

1− 2π2(i− j)2

N2
+

2π4(i− j)4

3N4
+O

( 1

N6

))
− 4π2(i− j)2

N2

= −4π4(i− j)4

3N4
+O

( 1

N6

)
As N →∞, i−j = h̃→ 0 and we have anO(h̃4) rate of convergence of the integrand.

From this we may now seek to remove any irregularity in the integrand, so that we

may calculate the energy accurately and there are several ways of achieving this.

• Firstly the above calculation shows that the singularity at F (x, x) is a remov-

able singularity in this known fixed curve scenario, and thus one may replace

the point F (x, x) with the limit (which is well defined) of F (x, y) as y → x.

(in the case of the circle this is the point F (x, x) = 4π2

12 , ∀x (this calculation

can be found in the appendix). This will be an exact solution.

• Else we can use a smoothing operator (such as the flattening method described

in Section 3.2, as F not discretised here one may set R = 2 for example) to

reduce the error to the order of error to be small.

10



Figure 2.3: This gives the new cross section with the proposed smoothing (R=2), for

a circle with N = 200

Remark. Unfortunately the problem with the cusps cannot be solved so easily. It

is easy to construct a counterexample whereby the intersection will occur exactly

half-way along the curve. If we cutoff this area therefore we could remove much of

the resolution of the self intersection. One could investigate into some smoothing of

the cusps however this has not been investigated in detail, as the desired orders of

convergence were acheived without this. We can see the improvement in the table

below:

Grid size Error EOC Smoothed Error Smoothed EOC

20 0.2813 – 0.1226 –

40 0.1114 1.4113 0.0310 1.9784

80 0.0475 1.2780 0.0078 1.9932

160 0.0212 1.1663 0.0019 1.9976

320 0.0095 1.0920 0.0005 1.9991

640 0.0040 1.0485 0.0001 1.9996

1280 0.0013 – 0.0000 –

The convergence is clearly improved from order 1 to order 2 by smoothing the curve

as in Figure 2.3.
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Remark. A note on stability. It is important with the imbalance explored in this

subsection to consider possible instabilities of numerics where the Euclidean distance

is small, as large numbers are being taken from each other close to the singularity.

During testing there was not found any detectable instability for upto N = 5120.

2.3 Fixed curve: Discretisation of the integrand

We motivate this section by referencing to the application in later chapters, regard-

ing a time evolution of a closed curve. The question which is asked in application,

is not only whether we are able to modify and discretise the integrand fully, per-

haps for calculational purposes, but we put more emphasis on whether it is possible

for us to calculate a discrete approximate energy accurately without knowing what

explicitly Γ is. In other words, if we just have perhaps some form of approximation

ΓN based on N samples of Γ.

The simplest idea for dealing with the integration is to use the tensor ansatz

again on the double integral and then use quadrature to approximate the integral in

each spatial direction using the midpoint rule (Subsection 2.2.1). We approximate

the curve Γ by a piecewise linear (constructed from interpolating N points that we

use in the quadrature) polynomial ΓN ∈ PN with parametrisation pN : [0, 1]→ ΓN

and use the notation dN (ai, aj) for arc length of this approximation between ai and

aj mesh points in [0, 1].

2.3.1 Possibile discretisations

One possible candidate for a discrete energy can be found in the literature, [18]

Definition 2.3.1. Scholtes’s discrete energy uses an arc-length parametrisation pN

and is given by:

EN (pN ) =
1

N2

N∑
i 6=j
i,j=1

(
1

|pN (ai)− pN (aj)|2
− 1

dN (ai, aj)2

)
(2.4)

This simply ignores diagonal terms and allows the energy summand to be zero

here as we initially used in the continuous case. Here however it seems a viable

consideration as by the definition of pN here. if |ai − aj | = 1
N , then then this term

equals 0 too.

One important feature of this particular discretisation is that as N → ∞ we have

a notion of convergence to our original energy E( lim
N→∞

pN ), an even stronger result
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found in [18] :

Proposition 2.3.1. Let q ∈ [1, 2], then

EN
Γ−→ E on (C, ‖ · ‖W 1,q([0,1],R2)) as N →∞

Where C is the space of embedded closed curves ⊂ R2 with arclength 1.

Remark. Gamma convergence is defined by a “liminf inequality” (for lower semicon-

tinuity) and a “limsup inequality” (for a recovery sequence). That is, to prove the

statement above then the two following must be shown:

Let pN ∈ PN and pN → γ in W 1,1([0, 1],R2), then

E(γ) ≤ lim inf
N→∞

EN (pN )

Let γ ∈ C, then there are pN ∈ PN such that

pN
W 1,2([0,1],R2)−→ γ and lim

N→∞
EN (pN ) = E(γ)

Here Gamma convergence is with respect to the Sobolev W 1,q norm on our

domain [0, 1], and this type of convergence is specifically designed so that if it holds,

minimisers (or almost minimisers) of the energy EN will also converge to minimisers

(or almost minimisers) of E.

It is possible from this result to prove many corollaries as in [18] such as

the energy EN (pN ) for inscibed equilateral polygons pN will converge (after some

rescaling from the unit arclength 1) to E(γ). Also we can determine that the

unique minimiser of the energy EN in PN is the regular N-gon, which is important

for discretisation.

However, the framework in which the Scholtes energy was constructed was

intended for the gamma convergence results and other topological uses, for which

this energy performs admirably. For our applications we have a few difficulties. The

arclength parametrisation disallows the time evolution schemes that we wish to use

as it requires full information about the curve for the parametrisation. Also there

are problems with the regularity, a lack of smoothness similar to those we found in

Subsection 2.2.2 with the continuous problem. This leads to a low convergence rate

(Table shows values for the circle):
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Grid size Scholtes’s error Scholtes’s EOC

40 0.7712 –

80 0.3677 1.0760

160 0.1763 1.0531

320 0.0841 1.0307

640 0.0389 1.0165

1280 0.0166 1.0085

2560 0.0055 –

Our aim is to come up with a formula for a discrete energy which will improve

the convergence and rely less upon the parametrisation as Scholtes’s energy.

Definition 2.3.2. the discrete Möbius energy is given by:

EN (pN ) =
1

N2

N∑
i,j=1

(
1

|pN (ai)− pN (aj)|2
− 1

dN (ai, aj)2

)
|p′N (ai)||p′N (aj)| (2.5)

Remark. One should notice we have not specified what value the energy summand

FN will take at (ai, ai) - options here will be explored in subsection 2.3.2. Also it

should be noticed that this formulation does not depend on information given by γ

that will not be resolved by pN .

Remark. Classically, the derivative of a piecewise linear function is not defined at

the interpolating points, we therefore take an average over the derivatives of the

coincident linear pieces. This choice is the natural extension from Scholtes’s energy

to a curve of general arc length.

Figure 2.4: Derivative approximation

Take a segment of curve, and recall the transformation (x, y) 7→ (x+ 1
2 , y +

1
2). If we take the trapezium rule after this transformation of its gridpoints, it is

equivalent to performing the midpoint rule on the original gridpoints. On each panel
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of the approximation:

∫ bi+1

bi

∫ bj+1

bj

F (x, y) dy dx ≈

(
F (bi, bj) + F (bi+1, bj)

)
+
(
F (bi, bj+1) + F (bi+1, bj+1)

)
4N2

and so, for consistency, we require here to take p′(bi) = p′(ai)
+ := limt↓ai p

′(t), and

p(bi+1) = p′N (ai+1)− := limt↑ai+1
p′N (t) in the formula for F, as p′ is defined at the

bi . Similarly from Figure 2.4 we see you get identically on the segment (ai−1, ai),

thus the combined contributions require

p′N (ai) :=
p(ai)

− + p(ai)
+

2
∀ i = 1, . . . , N

2.3.2 Regularity of the integrand

In view of the previous energy possibilities, we wish to improve on the energy (2.4)

in terms of convergence, clearly we must modify our energy in order to obtain the

regularity that will provide a better order of convergence. To this end we investigate

the circle example, and use the new discretisation proposed in Definition 2.3.2. Once

again the most clear case of where the integrand F may develop problems with its

regularity is where two mesh points are close in terms of the Euclidean distances.

The Euclidean distance between any two grid (for the quadrature and dis-

cretisation) points on the circle ai = i
N , aj = j

N is given by:

|pN (ai)− pN (aj)|2 =

(
cos
(2πi

N

)
− cos

(2πj

N

))2

+

(
sin
(2πi

N

)
− sin

(2πj

N

))2

and the discretised arclength is given by (wlog i > j):

dN (ai, aj) =
i−1∑
k=j

|pN (ak+1)− pN (ak)|

15



Figure 2.5: The left: energy density of the approximated unit circle, on the right:
the cross section plotted along the white line

Multiplying out terms we obtain (assuming constant mesh size):

|pN (ai)− pN (aj)|2 − dN (ai, aj)
2

= 2− 2 cos
(2π(i− j)

N

)
− (i− j)2

(
2− 2 cos

(2π

N

))2

= 2− 2 cos
(2π(i− j)

N

)
−
(

2(i− j)2 − 2(i− j)2 cos
(2π

N

))
= 2− 2

(
1− 2π2(i− j)2

N2
+

2π4(i− j)4

3N4

)
− 2(i− j)2 + 2(i− j)2

(
1− 2π2

N2
+

2π4

3N4

)
+O

( 1

N6

)
=

4π4(i− j)2(1− (i− j)2)

3N4
+O

( 1

N6

)
so we see that if i = j + 1 we have O(h6) error from the Taylor series. Otherwise

we have an error term of O(h4) for |i − j| ≥ 2. We look at this behaviour more

carefully in the appendix. We also attempt to solve the problem using this analysis

in the following chapter.
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Chapter 3

Calculation of the discrete

Möbius energy

In this chapter we wish to implement the Möbius energy efficently and attempt to

obtain convergence rates. For more information regarding the setup and numerical

test examples please consult Section 6.3.

One significant implementational issue arises with the discrete Möbius en-

ergy. The quantity in which issues originate is the calculation of arc length between

any two points on the approximating piecewise linear polynomial curve ∂N . If there

are N data points given on the membrane, then this quantity must be calculated

between O(N2) points, and the operation itself is O(N) (one must calculate the

distance by ‘walking’ around the curve length N). Thus the overall computational

complexity is O(N3).

We propose some solutions to this problem. Firstly we shall consider the

actions of a cutoff function, we also propose another possibility of calculation if we

may guarantee some form of closeness to equidistribution.

3.1 Linear cutoff function

Recall the formula for our continuous and discrete energy functions:

E(γ) =

∫∫
[0,1]2

(
1

|γ(x)− γ(y)|2
− 1

dγ(x, y)2

)
|γ′(x)||γ′(y)|dx dy

EN (pN ) =
1

N2

N∑
i 6=j
i,j=1

(
1

|pN (ai)− pN (aj)|2
− 1

dN (ai, aj)2

)
|p′N (ai)||p′N (aj)|
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We have chosen to cut 6off the function as a method of reducing the complexity,

due to a couple of natural properties of the energy. Firstly the inequality:

∀x, y ∈ Γ dγ(x, y) ≥ |γ(x)− γ(y)| (3.1)

this governs the idea of the cutoff function. Imagine the Euclidean distance is

relatively large then the geodesic distance will be even larger, and the integrand

of the energy will be a difference of two very small objects - thus not contributing

to the energy in a significant way. Moreover we are interested in self intersections,

thus we are keen to detect phenomena that occur only when Euclidean distances are

relatively very small. Another benefit is that not only can the Euclidean distance be

efficiently calculated but is needed in the energy itself anyway so we are not required

to compute any further quantities. These facts motivate why a cutoff based on the

value of the Euclidean distance is a sensible choice. We have chosen a linear cutoff

was chosen to avoid a loss of regularity, which as we have seen is an important

property to retain.

To this end, let L be the total arclength, then we define the linear cutoff

function, using the level sets of the Euclidean distance as a measure. We define some

inner cutoff value (θ1L s.t θ1 ∈ [0, 1]) we calculate the arc length fully; between θ1L

and an outer cutoff value (θ2L s.t θ2 ∈ [θ1, 1]) we contribute only a proportion of

the arc distance linearly dependent on the Euclidean distance between points, then

by θ2L the energy is 0. Let t(x, y) = |γ(x)− γ(y)|

d̃γ(x, y)2 =



dγ(x, y)2 if t(x, y) ≤ θ1L

1
(θ2−θ1)L

(
|γ(x)− γ(y)|2(t(x, y)− θ1L) if θ1L < t(x, y) ≤ θ2L

+dγ(x, y)2(θ2L− t(x, y))
)

|γ(x)− γ(y)|2 if t(x, y) > θ2L

Definition 3.1.1. The cutoff Möbius energy functional as

Ẽ(γ) =

∫∫
[0,1]2

(
1

|γ(x)− γ(y)|2
− 1

d̃γ(x, y)2

)
|γ′(x)||γ′(y)|dx dy

Then discretising as with the original energy with d̃N (·, ·) analogously de-

fined:
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Definition 3.1.2. The discrete cutoff Möbius energy functional

ẼN (pN ) =
1

N2

N∑
i 6=j
i,j=1

(
1

|pN (ai)− pN (aj)|2
− 1

d̃N (ai, aj)2

)
|p′N (ai)||p′N (aj)|

Taking a limit as N → ∞ would yield an energy in the continuous setting

that is ‘equivalent’ to the original Möbius energy as firstly Ẽ bounds E from below

(so a singularity of Ẽ is a singularity of the Möbius energy) and also we can find an

upper bound as the cutoff is quantifiable due to the inequality |γ(x)−γ(y)| > θ2L in

the definition d̃γ(x, y) and the bound (3.1). The similar bound dN (x, y) ≥ |pN (x)−
pN (y)| will show this holds in the discrete case too. One should notice that this

discrete cutoff energy will display a lower resolution for phenomena taking place

between points greater than θ2L distance apart

Remark. we have chosen a cutoff function with θ1, θ2 independent of N . Although

this choice seems plausible in the discrete setting, in taking limits one must have

convergence of {θ2(N) → (θ > 0)} or {θ2(N) → 0}. In the first case in numerics

we do not observe any real noticeable difference compared to setting θ2 = θ. The

second case produces a ‘delta function’ discontinuity at zero, which is troublesome

for the convergence analysis and moreover it causes the resolution of the the energy

in the discrete setting to become very fine, that is, for larger N the energy spike is

sharper and sharper (which if we are considering the extension in Chapter 7 would

lead to undesirably sharp behaviour with the forcing term).

Remark. The values of θ1 and θ2 are left upto the user, as it is mostly in regards to

efficiency. During testing I found with N > 200 points you may θ1 as low as 0.05 or

so and still acheived accurate sharp peaks. One must be careful that this cutoff is

large enough to not interfere with the smoothing described in the next chapter.
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Figure 3.1: θ1 = 0.06, θ2 = 0.12 N = 300 on a C-shape membrane (see Section 6.3),

the value 1 indicates d̃γ = dγ, the value 0 indicates the ẼN = 0.

From the parametrisation of this shape (given in the appendix), we can

describe the behaviour of Figure 3.1. The red strip along the diagonal represents

neighbouring points in the parametrisation (and so are naturally close in Euclidean

distance) are taken into account. The red path that crosses the diagonal represents

that for each point on the inner part of the membrane, the closest points on the

outer part of the membrane are taken into account. The two red diamonds represent

the ends of the C-shape being close. Recalling the periodicity takes into account

the other behaviour.

3.2 Smoothing the integrand

We wish to avoid also the problematic areas where the geodesic (and by (3.1),

Euclidean) distances tend to be very small. These lead to the difference in the

integrand becoming very large and so may cause instability. We have seen that if

one implemented the continuous integrand on for example the circle then one would

just have to set the singular value for points F (γ(ai), γ(aj)) where i = j equal to

value at F (γ(ai+1), γ(ai)). This is because we know from Subsection 2.2.2, that the

singularity is only at 0, and also the convergence is very rapid, so there is little error
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in this change.

However, in the discrete integrand case we have two further problems. Our

linear polynomial approximation pN leads to the Euclidean distance and discrete

geodesic distances coincide for neighbouring gridpoints - so setting our values

F (γ(ai), γ(ai)) = F (γ(ai+1), γ(ai)) will not alter the behaviour of the integrand

therefore we must alter these values further from the core of the instability.

3.2.1 Flattening method

Figure 3.2: The left: smoothed energy density of estimated unit circle, on the right:

the cross section plotted along the white line (see Figure 2.5 for unsmooth case)

The smoothing function can vary, however we pose a couple in this paper, the first

I have called ‘the flattening method’. It takes a radius R ∈ {1, . . . , bN2 c} and there

are aR− , aR+ ∈ {x : |γ(ai)− γ(x)| = R} then set

F (γ(x), γ(ai)) = F (γ(aR+), γ(ai)), ∀x ∈ {−aR−+1, . . . , aR+−1} (3.2)

This leads to the creation of the smoothed energy profiles seen in Figure 3.2

Remark. The choice of the radius R can be made in many ways, but it can be an im-
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portant factor in determining the convergence, thus a sensible choice must be made.

For a fixed point x on Γ as we have seen the energy integrand is an approximation

of a inverted-quadratic-like function (See the appendix for the derivation)

Fx(y) =


α(1− 1

(y−(x−h))2 ) y < x− h

0 x− h ≤ y ≤ x+ h

α(1− 1
(y−(x+h))2 ) y > x+ h

where, for example the unit circle α = π2

3 . Near the instability we are interested

on fixing a value of F as in (3.2), thus one would invert this relation to observe the

behaviour of the region of influence. i.e let x̃ = y− (x+ h) then for the y > (x+ h)

branch:

x̃ =

√
1

1− 3
π2F

Thus if we wished to fix a value of such as Fx(y) = π2

3 −
1
N (which seems a sensible

choice as it will converge to the value of the limiting value at x as N → ∞), we

would require the radius of the cutoff to be:

R =

√
1

1− 3
π2 (π

2

3 −
1
N )

=

√
π2

3
N = C

√
N

Which indicates that we would wish the radius to be of order
√
N . This is promising

as it means that the section of the curve that is smoothed will shrink to 0 as N →∞.

The constant α, on a general surface will be a function α(x) of the curvature

κ(x) at x, motivating my choice of radius here (to construct Figure 3.2)

R =
1

κ̃
N

1
2 where κ̃ = max

i=1,...,N
κ(ai)
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3.2.2 A smoothing cutoff function

Figure 3.3: The left: smoothed energy density of estimated unit circle, on the right:

the cross section plotted along the white line (see Figure 2.5 for unsmooth case)

Another alternative is to use another cutoff function but instead of for the purpose

of efficiency we use a quadratic smoothing to improve the regularity. One simply has

to use a function whose value is zero around the singularity and one at prescribed

radius about the singularity, and also to keep the regularity one must ensure the

derivatives vanish at the endpoints of the interval. We opt to use to cutoff values ψ1,

ψ2 and as in the linear case, these are fixed as a proportion of the total (approximate)

arclength of the curve.

Then we use the smoothing function which is based on the cubic polynomial

t2(3− 2t). Let t(x, y) = |pN (x)− pN (y)|:

d̃γ(ai, aj)
2 =



|pN (ai)− pN (aj)|2 if t(ai, aj) < ψ1L

|pN (ai)− pN (aj)|2 +
(
t(ai,aj)−ψ1

(ψ2−ψ1)L

)2 (
3− 2

t(ai,aj)−ψ1

(ψ2−ψ1)L

)
if ψ1L ≤ t(ai, aj) < ψ2L

·
(
dN (ai, aj)

2 − |pN (ai)− pN (aj)|2
)

dN (ai, aj)
2 if ψ2L ≤ t(ai, aj)
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Remark. We could use a similar quadratic for the efficiency cutoff above but no

noticeable difference was seen in the convergence, however I did not see a significant

difference compared to added computational costs.

3.3 Equidistribution method

Another possibility which can be implemented in the discrete setting and without

the need of a cutoff function is to get efficiently computable upper and lower bounds

on the energy. Given N data points on the membrane so in the discrete setting we

are working on a linear interpolation of the membrane between these N points.

Recall that dN (ai, aj) (wlog i < j) is therefore a sum of the lengths of neighbouring

edges
∑j

k=i+1 |γ(ak)− γ(ak−1)|. So we can obtain bounds on the arc lengths on the

interpolated curve Γh by finding the minimum and maximum edge lengths:

let qmin be such that qmin = min
i=1,...,N

|γ(ai)− γ(ai−1)|

let qmax be such that qmax = max
i=1,...,N

|γ(ai)− γ(ai−1)|

(indices modulo N)then define the minimal and maximal total arclength of Γh by

Lmin = Nqmin, Lmax = Nqmax. Finally we may define the new geodesic distances

by

d̃min,N (ai, aj) = min{(j − i)qmin , Lmin − (j − i)qmin}

d̃max,N (ai, aj) = max{(j − i)qmax , Lmax − (j − i)qmax}

This operation is now O(1) so reduces the overall complexity to O(N2) of the cal-

culation. However we must be able to control the deviation of qmin from qmax, as

clearly we observe that the error in this approximation increases significantly if the

ratio qmax

qmin
� 1.

To obtain control of this ratio, one could use the BGN method for the surface

evolution as a remeshing step, this is possible as it contains the tangential equidis-

tribution motion across the membrane. One simply must condition on performing

timestep only if for example the ratio 1 ≤ qmax

qmin
< 1.3, then if this condition is not

satisfied you use the BGN with a very small timestep τ̃ = τ2 or τ3 to remesh until

the ratio is satisfied.
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3.4 Numerics for fixed curve

Please consult Section 6.3 for details on the testing setup.

Shapes: (A) circle, (B) ellipse, (C) C-shape

3.4.1 EOC for the discrete energy

The following table displays the original generalisation of Scholtes’s energy (2.4) to

for curves of arbitrary arclength. That is, the energy

EN (pN ) =
1

N2

N∑
i 6=j
i,j=1

(
1

|pN (ai)− pN (aj)|2
− 1

dN (ai, aj)2

)
|p′N (ai)||p′N (aj)|

Grid size A error A EOC B error B EOC C error C EOC

20 0.6904 – 1.1382 – 20.6350 –

40 0.3453 0.9812 0.5289 1.1431 7.5140 1.4183

80 0.1704 0.9927 0.2531 1.0631 2.6047 1.6755

160 0.0826 0.9969 0.1211 1.0257 1.0678 1.3287

320 0.0386 0.9986 0.0562 1.0108 0.4560 1.1806

640 0.0165 0.9993 0.0240 1.0048 0.1860 1.1051

1280 0.0055 – 0.0080 – 0.0605 –
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Figure 3.4: Graph of the above table for our original discrete Möbius energy

As you can see the convergence for all shapes is of order 1. So we have not yet

improved upon the convergence that the original energy had, although generalisation

has not decreased the orders convergence either.

Aside from obtaining convergence rates, the central purpose of this energy is

to actually detect curve intersections. The graphs on the following page demonstrate

this for one of the test shapes for N = 200. There is a definite spike even with a

relatively low N , with almost 4 times the energy at intersection, also one can see

this energy density is entirely concentrated with small support around the the tips

with spikes of height 1, 800, 000. This reinforces that if we implemented a cutoff

function outside these areas should not affect the energy value significantly.
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Figure 3.5: Energy integrand density. Total Möbius energy = 75.6439

Figure 3.6: Energy integrand density. White circles indicate the position of the

energy spikes. Total Möbius energy = 265.5114
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3.4.2 EOC for the discrete cutoff Möbius energy

We now show some EOC tables for the energy with varying cutoff values θ1, θ2, the

numbers represented below give the value of θ1, and we set t2 = 1.1θ1.

Grid size 0.3 error 0.3 EOC 0.2 error 0.2 EOC 0.1 error 0.1 EOC

20 29.6968 – 29.8614 – 26.0196 –

40 12.2574 1.0582 12.2682 1.0688 11.5349 0.8665

80 3.8826 1.7542 3.8811 1.7562 3.5905 1.8243

160 1.4000 1.5314 1.3982 1.5315 1.3472 1.4497

320 0.5411 1.3690 0.5394 1.3730 0.5259 1.3484

640 0.2086 1.2113 0.2078 1.2127 0.2034 1.2120

1280 0.0650 – 0.0647 – 0.0642 –

Grid size 0.05 error 0.05 EOC

40 6.9325 –

80 2.8303 1.3525

160 1.2239 1.2104

320 0.5297 1.1989

640 0.2273 1.1405

1280 0.0902 1.1981

2560 0.0304 –

We still appear to get convergence to order 1 as with the original energy. We

note that the increasing cutoff although asymptotically will not affect the limit of

1, (as one expects because it does not bottleneck more than the regularity issues),

it does appear to reduce the actual values attained. The more of the curve is cutoff

the lower the convergence order - which may cause practicality issues with actual

error values.

I believe the computational benefits far outweigh this slight reduction in con-

vergence, as you are capable of performing more EOC steps as general calculations

are upto about 10 times faster and thus more accuracy can be with a smaller θ1, θ2

due to the increase in mesh points available. To see the effects on the energy peak

one can see the numerics in Section 6.3.4.
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Figure 3.7: Cutoff values ( θ1 = 0.05 too small for size 20 - no data for this step)

3.4.3 EOC of the discrete Möbius energy with smoothing

Finally we display the convergence rates using the smoothed discrete energy from

Section 3.2

Grid size A error A EOC B error B EOC C error C EOC

20 0.2779 – 0.2563 – 23.7102 –

40 0.0714 2.1045 0.1808 -0.2613 9.6285 0.9348

80 0.0234 1.4712 0.0903 0.9347 2.2622 2.1641

160 0.0060 2.0298 0.0429 0.7769 0.6185 1.8521

320 0.0018 1.6463 0.0153 1.2780 0.1633 1.9884

640 0.0004 2.0522 0.0039 1.9867 0.0485 1.6789

1280 0.0001 – 0.0010 – 0.0127 –

This regularistion appears to cause the convergence to increase to 2 as predicted.

An open question arises which is to attempt to generalise the results of [11] and [12]

to many dimensions. Certainly with our ansatz and periodicity one could predict

our findings.
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Figure 3.8: Graph of the above table with the smoothed curves, flattening approach

We now use the method of a smooth cutoff function to smooth the curve at

the irregularities with values that scale with N, in this case we have taken ψ1 = N
80

and ψ2 = N
40 .

Grid size A error A EOC B error B EOC C error C EOC

20 0.8747 – 1.3590 – 30.5559 –

40 0.3679 1.0296 0.5496 1.1321 12.1853 1.0425

80 0.1197 1.2556 0.1802 1.2673 3.2665 1.7874

160 0.0157 3.1423 0.0268 2.9470 0.6829 2.3336

320 0.0039 1.9757 0.0069 1.9430 0.1703 2.0318

640 0.0009 1.9834 0.0017 1.9454 0.0450 1.7777

1280 0.0002 – 0.0004 – 0.0084 –
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Figure 3.9: Graph of the above table with the smoothed curves double cutoff approach
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Chapter 4

Surface PDE model for

quantities on the membrane

4.1 Derivation

We now proceed with the model of the membrane, which is acheived with an evolving

hypersurface Γ = {Γ(t)}t with given material velocity v : (0, T ) × Γ → R2, where

G = {(t,Γ(t))|t ∈ [0, T ]}
The material derivative is denoted ∂•t f := ∂tf+v ·∇f and is in some sense the

correct time derivative (to be seen later) when dealing with quantities that evolve

over time on a moving body.

Now first we let u : Γ → R denote a density on a surface of a conserved

quantity. Neglecting reactions with any other species, the postulate a diffusion with

tangential flux q(t) = −D∇Γ(t)u(t), (D constant), and assume there is a source term

f : Γ → R of this quantity. With G ⊂ Γ with smooth boundary and unit conormal

µ, we may write the balance of mass equations:

d

dt

∫
G(·)

u(·, x) dHn−1(x)
∣∣∣
t︸ ︷︷ ︸

Mass change in G

= −
∫
∂G(t)

q(t, x) · µ(t.x) dHn−2(x)︸ ︷︷ ︸
net flux over ∂G

+

∫
G(t)

f(t, x) dHn−1(x)︸ ︷︷ ︸
source of u

(4.1)

From this we may construct the strong form of the surface PDE, as the above holds

∀G ⊂ Γ. We obtain a Divergence Theorem type result for the surfaces.∫
Γ(t)
∇Γ(t) · v dHn−1 = −

∫
Γ(t)

v · κdHn−1 +

∫
∂Γ(t)

v · µdHn−2

The derivation of this can be found in the Appendix.
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We may now derive the strong form of the surface PDE, using (4.1) and the

divergence theorem derived yield:

−
∫
∂G
q·µdHn−2 = −

∫
∂G
D∇Γ(t)u·µdHn−2 = −

∫
G
D∇Γ(t)u · κdHn−1︸ ︷︷ ︸
=0 (tangential flow)

−
∫
G
D∆Γ(t)udHn−1

Using the transport identity (9.2) we obtain,

d

dt

∫
G
u(·, x) dHn−1

∣∣∣
t

=

∫
G

(∂•t u+ u∇Γ(t) · v) dHn−1,

so substitute all into (4.1)∫
G

(∂•t u+ u∇Γ(t) · v) dHn−1 = −
∫
G
D∆Γ(t)udHn−1 +

∫
G
f dHn−1

as G is arbitrary, we can remove the integrals to obtain the strong form of our

problem:

Problem 4.1.1. For v : G → R2, f : G → R given, find u ∈ C2(G) such that

∂•t u+ u∇Γ(t) · v −D∆Γ(t)u = f on Γ(t)

with u(x, 0) = u0(x) ∈ C2(Γ(0)) and we impose the Neumann boundary conditions

q(t) · µ(t) = g(t) at ∂Γ(t) where g : {(t, ∂Γ(t))|t ∈ [0, T ]} → R

4.2 Weak form

(For the sake of bevity we now drop the t in ∇Γ(t) and Γ(t).) The derivation of this

weak form can be found in the Appendix. Our weak problem can now be stated

(using the notation of Lp(a, b;V ) to denote the Bochner space on [a, b] and V )

Problem 4.2.1. for f ∈ L2(Γ), g ∈ L2(∂Γ) and v given, find u ∈ L2(0, T ;H1(Γ))

such that for all test functions φ ∈ L2(0, T ;H1(Γ))

d

dt

(∫
Γ(·)

uϕ dHn−1
)∣∣∣∣∣
t

+

∫
Γ
−u∂•t ϕ+D∇Γu·∇Γϕ dHn−1 =

∫
Γ
fϕ dHn−1−

∫
∂Γ
gϕ dHn−2

(4.2)

with u(x, 0) = u0(x)∀x ∈ H1(Γ(0)), and Neumann boundary q(t) · µ(t) = g(t) on

∂Γ(t)

Proposition 4.2.1. [6] Well posedness of and energy estimates of (4.2)
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4.3 Discretisation with ESFEM

Figure 4.1: Example of membrane discretisation

Setting up the evolving surface finite element scheme for this system requires

a finite element space and basis functions on our curve Γ(·). To this end we consider

the discretisation of Γ(t) into Γh(t) set up in Section 2.3, where h = 1
N (see Figure

4.1) for each t, and wish to consider isoparametric linear finite elements (the local

to global mapping will be piecewise affine). It is now possible to define the space

Sh(t) := {f ∈ C0(Γh(t))
∣∣ f |T affine linear polynomial on T ∈ Γh(t)}

and {bi(·, t), i ∈ I} the corresponding basis functions for Sh(t): let {xi(t)}Ni=1 be

the mesh point coordinates on Γh(t), then bi(xj(t), t) = δij .

We have written the Continuous problem and for the closed curve problem we get

(4.2) with g = 0.

For ease of notation, let Gh = {(t, xh)|xh ∈ Γh(t), t ∈ [0, T ]}. Also we define

the lift fh as the discretisation and projection of f onto Γh, We can then define the

Semi-discrete problem, by this discretisation in space.

Problem 4.3.1. Find uh : Gh → R with u ∈ Sh(t)∀t ∈ [0, T ] with initial data

uh(x, 0) = u0(x) on Γh(0), and ϕh : Γh → R (test function):

∫
Γh

fhϕh dHn−1 =
d

dt

(∫
Γh(·)

uhϕh dHn−1
)∣∣∣∣∣
t

+

∫
Γh

−uh∂
•(vh)
t ϕh+D∇Γhuh·∇Γhϕh dHn−1

(4.3)

We use the discretised material derivative ∂
•(vh)
t uh := ∂tuh + vh · ∇uh. An

important property of this quantity is that the information it contains is completely
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contained in the basis functions of the elements, i.e we have the identity ∂
•(vh)
t bi = 0

for all i ∈ I. The notation fh and u0h are any appropriate discretisations.

Definition 4.3.1. The Mass matrix {Mij}i,j∈I and Stiffness matrix {Sij}i,j∈I are

the following matrices:

Mij(t) :=

∫
Γh

bi(x, t)bj(x, t) dHn−1 and Sij(t) :=

∫
Γh

∇Γhbi(x, t) · ∇Γhbj(x, t) dHn−1

We represent our solution with the Galerkin approximation

uh(t, x) =
∑

i∈I ui(t)bi(x, t), and substitute in (4.3), and for each j ∈ I use test

function ϕ = bj , the basis functions.

∫
Γh

fhbj dHn−1 =
d

dt

(∫
Γh(·)

uhbj dHn−1
)∣∣∣∣∣
t

+

∫
Γh

−uh ∂
•(vh)
t bj︸ ︷︷ ︸

=0

+D∇Γhuh·∇Γhbj dHn−1

∑
i∈I

fi(t)

∫
Γh

bibj dHn−1 =
d

dt

(∑
i∈I

ui(·)
∫

Γh(·)
bibj dHn−1

)∣∣∣∣∣
t

+D
∑
i∈I

ui(t)

∫
Γh

∇Γhbi · ∇Γhbj dHn−1

Now we may write this in terms of our mass and stiffness matrices.

∑
i∈I

fi(t)Mij(t) =
d

dt

(∑
i∈I

ui(·)Mij(·)
)∣∣∣∣∣
t

+D
∑
i∈I

ui(t)Sij(t)

M(t)f(t) =
d

dt

(
M(·)u(·)

)∣∣∣
t
+DS(t)u(t)

To fully discretise the scheme we employ the backwards Euler scheme (a fully implicit

scheme):

Problem 4.3.2. Given initial data u0, timestep τ , solve for n = 0, 1, 2, 3, ...

Mn+1un+1 −Mnun

τ
+ Sn+1un+1 = Mn+1fn+1

=⇒
(1

τ
Mn+1 + Sn+1

)
un+1 =

1

τ
Mnun +Mn+1fn+1 (4.4)
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4.4 Discretisation with ALE ESFEM

The above evolving surface finite element method does have a restriction, which

when combined with certain schemes such as 5.2 may lead to inaccuracy. That is,

it is constructed such that the meshpoints of the grid we have created, is assumed

to move only respect to the material velocity (previously denoted v). The Barrett-

Garcke Nürnberg scheme referenced in 5.2 will move the meshpoints in the normal

direction as in accordance with material velocity but also introduces some surface

curvature flow in the tangential direction, which (as it is constructed within the

scheme) will be unrelated to the material body motion.

If this is not taken into account then we could have serious accuracy problems,

which is fundementally based on the idea of mass conservation and transfer over the

surface. If points in the mesh are moved in a different manner to that which is

perceived by the finite elements, we will assign mass to a point x say, when actually

it is assigned to x̃, then the difference x → x̃ should cause mass flux in (4.1) to be

altered (but it is not).

We have chosen to use a similar scheme created in [9] known as ALE ESFEM.

The key idea of this finite element method is to weaken the dependancy of the

meshpoints on the material body, so as to allow arbitrary tangential flow of points

along a body. The cost of this weakening is that one has to include another matrix

in the discretisation to keep track of how exactly the mass change is affected by the

new arbitrary movement.

We decompose the material velocity into tangential and normal components: v :=

vτ + vν . Consider the velocity of our mesh grid to be of the form (depending on h)

w := vν + wτ where wτ · ν = 0, but wτ 6= vτ .

We use the same finite element space as in the previous method, recall the

definition: Sh(t) := {f ∈ C0(Γh(t))
∣∣ f |T affine linear polynomial on T ∈ Γh(t)}

and {bi(·, t), i ∈ I} the corresponding basis functions for Sh(t).

Definition 4.4.1. for mesh points {xi(t)}i∈I on Γh(t), material velocity v, define

the mesh material velocity and the interpolated material velocity by

wh(x, t) =
∑
j∈I

∂txj(t)bj(x, t) and vh(x, t) =
∑
j∈I

v(xj(t), t)bj(x, t)

and recall the associated material derivatives:

∂
•(wh)
t f := ∂tf + wh · ∇f and ∂

•(vh)
t f := ∂tf + vh · ∇f
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Remark. In the section 4.3 it is assumed that we have ∂t(xi(t)) = vh(xj(t), t), leading

to wh = vh above, and from there we could obtain the transport identity ∂
•(vh)
t bi =

0, ∀i for the basis functions. Here we actually have ∂t(xi(t)) = wh(xj(t), t), and we

obtain the transport identity (by definition) ∂
•(wh)
t bi = 0, ∀i. This leads (via the

definition of material derivative) to ∂tbi = −wh ·∇bi. So we also obtain the identity

∂
•(vh)
t bi = (vh − wh) · ∇bi ∀ i ∈ I (4.5)

Consider once again the discretised weak formulation of our surface PDE

(4.3), and for j ∈ I let the test functions ϕh ∈ H1(Γh(t)), be given by the basis

functions ϕh(·) = bj(·, t). Then we use identity (4.5)∫
Γh

fhbj dHn−1 =
d

dt

(∫
Γh

uhbj dHn−1
)

+

∫
Γh

uh(wh−vh)·∇bj+D∇Γhuh·∇Γhbj dHn−1

Then notice:

(wh − vh) · ∇bi = (wh · ∇bi − (vh · ∇Γhbi + vh · (∇bi · ν)ν)︸ ︷︷ ︸
=vν ·(∇bi·ν)ν

)

= wh · ∇Γhbi + wh · (∇bi · ν)ν︸ ︷︷ ︸
=vν ·(∇bi·ν)ν

−(vh · ∇Γhbi + vν · (∇bi · ν)ν)

= (wh − vh) · ∇Γhbi

Definition 4.4.2. For mesh points {xi(t)}i∈I on Γh(t), define the matrix {Tij}i,j∈I :

Tij(t) :=

∫
Γh

bi(wh−vh)·∇Γhbj(x, t) dHn−1

(
=
∑
k∈I

∫
Γh

bi(∂txkbk − v(xk)bk) · ∇Γhbj dHn−1

)

Using the Galerkin approximation for u, with the mass and stiffness matrices M

and S we obtain the matrix equation

M(t)f(t) =
d

dt

(
M(·)u(·)

)∣∣∣
t
+DS(t)u(t) + T (t)u(t)

With a backwards Euler scheme the fully discrete problem is as follows.

Problem 4.4.1. Given initial data u0, timestep τ , solve for n = 0, 1, 2, 3, ...

Mn+1un+1 −Mnun

τ
+ Sn+1un+1 + Tn+1un+1 = Mn+1fm+1

=⇒
(1

τ
Mn+1 + Sn+1 + Tn+1

)
un+1 =

1

τ
Mnun +Mn+1fn+1 (4.6)
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Chapter 5

Evolution laws for the

membrane

We model the membrane of the cell by a moving embedded curve ⊂ R2. The move-

ment itself is completely controlled by the imbalances between forces on the surface.

We include the force given by the surface tension of the membrane, this would resist

any stretching force of the boundary. It turns out this force, is described by the cur-

vature of the membrane. We also couple this model to the chemical concentration

model described in Chapter 4, by including a protrusive force acting normal to the

membrane, (for example - if the concentration corresponded to deposits of Actin on

a cell’s membrane it would have this effect).

5.1 Dziuk method

This method (found in [4], and further analysis in[5]) describes the evolution of the

curve by noticing that by definition of curvature (which we denote κ) we have the

identity κν = ∆Γx. We also assume any kinetic constants to be unit for simplicity,

we also assume we know the concentration on our surface (for all times c : [0, T ]→
R). The force balance can then be represented by the evolution law:

Problem 5.1.1. For T > 0, f : R → R given, find x : R2 × [0, T ] → R2 such that

∀ t ∈ [0, T ]

∂tx = ∆Γx+ f(c)ν (5.1)

with initial data x(·, 0) = x0(·)

We may now formulate a weak formulation of our problem on Γ, for all test
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functions ψ, ∫
Γ
∂tx · ψ −∆Γx · ψ − f(c)ν · ψ dx = 0

Notice the above the map x, denotes the identity mapping on the curve Γ. We

now parametrise the curve with respect to a variable θ ∈ [0, 1] and reuse x as the

parametrisation mapping x : [0, 1] × [0, T ] → G, a subtle difference. For arc length

parameter s, and substituting ∆Γx = ∂ssx, in (5.1), our problem becomes

Problem 5.1.2. For T > 0, f : R→ R given, find x : [0, 1]× [0, T ]→ R2 such that

∀ θ ∈ [0, 1], t ∈ [0, T ]

∂tx =
1

|xθ|

(
xθ
|xθ|

)
θ

+ f(c)

(
x⊥θ
|xθ|

)
with initial data x(θ, 0) = x0(θ) and periodic boundary conditions x(0, t) = x(1, t).

We choose a periodic boundary because we are considering a closed curve.

We now write these equations in variational form. Let θ ∈ [0, 1] = I, for all ψ test

functions ∫
I
∂tx · ψ|xθ| dθ =

∫
I

(
1

|xθ|

(
xθ
|xθ|

)
θ

· ψ + f(c)

(
x⊥θ
|xθ|

)
· ψ)

)
|xθ|dθ

integrate by parts =⇒ 0 =

∫
I
∂tx · ψ|xθ|+

xθ · ψθ
|xθ|

− f(c)x⊥θ · ψ dθ

So we have the variational formulation:∫
I
∂tx · ψ|xθ|+

xθ · ψθ
|xθ|

dθ =

∫
I
f(c)x⊥θ · ψ dθ

5.1.1 Discretise in space and mass lumping

We now discretise in space, meshsize h = 1
N by taking nodes θk, k = 1, . . . , N in

[0, 1] and choose a surface finite element space with respect to the triangulation Th
on {θk}k of our surface, Vh = {v ∈ C0(Γh)

∣∣ v|T is an affine function ∀T ∈ Th} ⊂
H1(Γh). Let ψh = bi ∀i = 1, 2, . . . N be the finite element basis elements of the

space Vh (the finite element space is assumed independent of time unless one were

doing mesh adaption techniques). The discrete space problem reads:

Problem 5.1.3. For T > 0, f : R → R given, find xh ∈ Vh ∀t ∈ [0, T ], such that

∀ψh ∈ Vh and ∀ θ ∈ I, t ∈ [0, T ]∫
I
∂txh · ψh|xhθ|+

xhθ · ψhθ
|xhθ|

dθ =

∫
I
f(ch)x⊥hθ · ψh dθ
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with initial data xh(θ, 0) = x0h(θ) and periodic boundary conditions xh(0, t) =

xh(1, t).

In practise however we use the technique known as ‘mass lumping’ which

proceeds to use in place of the standard finite element interpolation function which

we denoted Jh(x) := xh above, but we use a further interpolation function

Ih : C0 → Vh defined by Ih(x)(θi) := x(θi). Without mass lumping we obtain,

for some arbitrary function uh ∈ Vh with the ansatz uh =
∑

j uj(t)bj(θ) that,

∀i = 1, . . . , N∫ 1

0
uhbi|xhθ|dθ =

∑
j

uj(t)

∫ 1

0
bj(θ)bi(θ)|xhθ| dθ =

∑
j

Mijuj(t)

Where Mij is a standard weighted mass matrix by |xhθ|.

With the mass lumping however we would be considering this problem:∫ 1

0
Ih(uhbi)|xhθ|dθ =

∫ 1

0

∑
j

uj(t)Ih(bjbi)|xhθ|dθ

=
∑
k

∑
j

uj(t)Ih(bibk)(θk)|xhθ|

=
∑
k

∑
j

uj(t) bj(θk)bi(θk)︸ ︷︷ ︸
δij

|xhθ|

=
∑
k

ui(t)bi(θk)|xhθ|

=

∫ 1

0
ui(t)bi(θ)|xhθ|dθ

Notice how this will produce a mass matrix M which is weighted by |xhθ|, but most

importantly it will be a diagonal matrix - making operations even more efficient.

We may calculate the integral given from the mass lumping explicitly, as we

have a linear interpolated SFEM - and this can be seen in the appendix.

5.1.2 Discretise in time

Then discretise in time with timestep τ , to obtain a fully discrete scheme:

Problem 5.1.4. Solving for n = 1, 2, 3, . . .

for f : R→ R, τ > 0 small and xn−1
h given, find xnh := xh(tn) ∈ Vh, (tn = nτ) such
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that ∀ψh ∈ Vh and ∀ θ ∈ I∫
I

xnh − x
n−1
h

τ
· ψh|xn−1

θ |+
xnhθ · ψhθ
|xn−1
hθ |

dθ =

∫
I
f(cn−1

h )x⊥n−1
hθ · ψh dθ

with initial data xh(θ, 0) = x0
h(θ) and periodic boundary conditions xnh(0, tn) =

xnh(1, tn).

Denoting xh =

(
yh

zh

)
(coefficients with respect to the finite element basis

(bi)i). We call |xn−1
hθ | = gn−1

h we may construct:

(
Mn−1
gh

)
i,j

=

∫
I
bn−1
i bn−1

j gn−1
h dθ and

(
Sn−1
gh

)
i,j

=

∫
I

∇bn−1
i · ∇bn−1

j

gn−1
h

dθ

the weighted mass and weighted stiffness matrices, similarly we may construct the

diagonalised ‘mass lumping’ versions. Then we represent our equation in matrix

form:(
1
τM

n−1
gh

0

0 1
τM

n−1
gh

)(
ynh
znh

)
+

(
Sn−1
gh

0

0 Sn−1
gh

)(
ynh
znh

)

=

(
1
τM

n−1
gh

0

0 1
τM

n−1
gh

)(
yn−1
h

zn−1
h

)
+

(
f(yn−1)

f(zn−1)

)
(5.2)

5.2 Barrett Garcke Nürnberg method

We now consider the defining equation for the curvature as a coupled system which

separates out the motion in the normal and the tangential direction. Rather than

restricting the motion to be entirely in the normal direction (as with Dziuk), the

equation will now admit solutions that may also have a tangential component of

the velocity governed by the curvature (surface tension) flow, as seen given in the

second equation. We consider the following problem:

Problem 5.2.1. For T > 0, f : R → R given, find x : R2 × [0, T ] → R2 such that

∀ t ∈ [0, T ]{
∂tx = κν + f(c)ν

κν = ∆Γx
which becomes

{
∂tx · ν = κ+ f(c)

κν = ∆Γx

with initial data x(·, 0) = x0(·)
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as in the Dziuk scheme above we write our equations in variational form, for

all ψ test fucntions. 
∫

Γ
∂tx · νψ − κψ dx =

∫
Γ
f(c)ψ dx∫

Γ
κφ · ν + ∆Γx · φ dx = 0

As before we can parametrise our equations to obtain the parametrised formulation

with respect to θ ∈ [0, 1] and recall the notation for the parametrisation mapping is

given by x : [0, 1]× [0, T ]→ R2.
∂tx ·

x⊥θ
|xθ|

= κ+ f(c)

κ
x⊥θ
|xθ|

=
1

|xθ|

(
xθ
|xθ|

)
θ

Integration by parts yields the parametrised version of the weak form:
∫
I

(
∂tx ·

x⊥θ
|xθ|

ψ − κψ
)
|xθ| dθ =

∫
I
f(c)ψ|xθ| dθ∫

I

(
κφ ·

x⊥θ
|xθ|

+
xθ · φθ
|xθ|2

)
|xθ| dθ = 0

5.2.1 Discretise in space

Then we discretise in space. We use the same space Vh = {v ∈ C0(Γh)
∣∣ v|T affine ∀T ∈

Th} ⊂ H1(Γh), as in the Dziuk method. We obtain,

Problem 5.2.2. For T > 0, f : R → R given, find xh ∈ Vh ∀t ∈ [0, T ], such that

∀ψh, φh ∈ Vh and ∀ θ ∈ I, t ∈ [0, T ]
∫
I
∂txh · x⊥hθψh − κhψh|xhθ| dθ =

∫
I
f(c)hψh|xhθ| dθ∫

I
κhφh · x⊥hθ +

xhθ · φhθ
|xhθ|

dθ = 0

with initial data xh(θ, 0) = x0h(θ) and periodic boundary conditions xh(0, t) =

xh(1, t).

With regards to mass lumping an identical procedure has been applied to

the mass and stiffness matrices as in subsection §5.1.1. So our problem may be

formulated with respect to further discretisation function Ih : C0 → Vh such that

Ih(x)(θi) = x(θi).
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
∫
I
Ih(∂txh · ψh)x⊥hθ − κhψh|xhθ|dθ =

∫
I
Ih(f(c)hψh)|xhθ|dθ∫

I
κhφh · x⊥hθ +

Ih(xhθ · φhθ)
|xhθ|

dθ = 0

This can be incorporated into the formulation, and should be taken into account as

a further approximation step in the method.

5.2.2 Discretise in time and the scheme

Finally discretise in time to give the scheme, We use an iterative update method,

thus solve for (xnh − x
n−1
h ), as the updating variable:

Problem 5.2.3. Solving for n = 1, 2, 3, . . .

for f : R→ R, τ > 0 small and xn−1
h given, find xnh := xh(tn) ∈ Vh, (tn = nτ) such

that ∀ψh, φh ∈ Vh and ∀ θ ∈ I
∫
I

xnh − x
n−1
h

τ
· x⊥n−1

hθ ψh − κnhψh|xn−1
hθ | dθ =

∫
I
f(cn−1

h )ψh|xn−1
hθ | dθ∫

I
κnhφh · x⊥n−1

hθ +
(xnhθ − x

n−1
hθ ) · φhθ

|xn−1
hθ |

dθ = −
∫
I

xn−1
hθ · φhθ
|xn−1
hθ |

dθ

with initial data xh(θ, 0) = x0
h(θ) and periodic boundary conditions xnh(0, tn) =

xnh(1, tn).

Taking ψh, φh = bi ∀i = 1, 2, . . . N as the finite element basis elements of the

space Vh and denoting xh =

(
yh

zh

)
(coefficients with respect to this basis). We

call |xn−1
hθ | = gn−1

h and create:

(
Nn−1
xh

)
i,j

=

∫
I
bi · bj x⊥n−1

hθ,j |x
n−1
hθ |dθ

The system may then be represented in matrix form (Fh is the matrix that represents

the right hand side forcing on κ). −τM
n−1
gh

Nn−1
yh

Nn−1
zh

N⊥n−1
yh

Sn−1
gh

0

N⊥n−1
zh

0 Sn−1
gh


 κnh

ynh − y
n−1
h

znh − z
n−1
h

 =

 τFh Nn−1
yh

Nn−1
zh

0 −Sn−1
gh

0

0 0 −Sn−1
gh


 κn−1

h

yn−1
h

zn−1
h


(5.3)
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5.2.3 Consequence of tangential motion

Remark. Now we have seen the introduction of a tangential component into the

evolution we can see it is required that one uses an alternative discretisation to

the ESFEM presented in Section 4.3. This alternative must take into account the

added motion across the surface that is not governed by just the surface PDE, and

consequentially 4.4 is used in the coupling implementation.

Remark. Section 3.3 presented a method of caluclation of the knot energy using a

proportional technique. As the BGN-ALE scheme we propose has a structure that

has contains a tangential flow, and moreover this flow equidistributes points around

the surface, it is an ideal candidate for this proposed method.
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Chapter 6

Implementation and Numerics

of moving curves

The numerical simulations were performed on MATLAB v2013b

6.1 Implementational structure

The overall algorithm that we wish to implement is the following:

Inputs

• Initial shape of body (corresponding to x0
h in Chapter 5.1.2).

• Initial concentrations of quantity u (corresponding to u0 in Chapter 4.3).

• Number of segments of curve N(= 1
h).

• Timestep τ , for stability we will assume in the numerics later that this is

O(h2).

• Initial forcing coefficient f for the surface evolution scheme (again see 5.1.2).

Main steps

• Perform one timestep of the surface evolution scheme (either Dziuk (5.2) or

Barrett Garcke Nürnberg (5.3)) using the forcing quantity given initially or

constructed from the concentration of the conserved surface quantity u (from

previous timestep).

• Calculate the discrete Möbius energy of this evolved surface using (2.5).
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• Calculate the new concentration of quantity u on the new surface using derived

matrix equation (4.4) (or if using BGN - the equation (4.6)).

Outputs at step n

• The position of the curve at time nτ - i.e xnh .

• The concentration of our quantity on the curve - un .

• The (discrete) Möbius energy of the curve at time nτ .

6.2 Detection

Finally we must state how we going to indicate the detection of an intersection itself.

We use a two step process, an activation of the sensor and then - once activated, we

use a detector to decider whether a self intersection has occured.

In the continuum model we get an explosion of the energy, and thus we would

seek out a significant energy spike in our discrete model. The size of this peak

will become more pronounced with increased timesteps and meshsize, due to the

increased accuracy of the model and so we would allow our model to ‘assume’ that

a smooth steep rise in energy would correspond to an approach to self-intersection,

then a peak at the point of self intersection.

To this end, we could implement something as follows: we record a running

mean or baseline, and the standard deviation of the energy. At timestep n we have

M(n) =
1

n

n∑
i=1

E(pN (ti)), and S(n) =

√√√√ n∑
i=1

(E(pN (ti))−M(n))2

This is what we measure our significance of peak with, using a threshold α so that

if E(pN (tn)) ≥ M(n) + αS(n), we may switch on the sensor to detect a peak in

our energy (for example let α = 3). We do this numerically, and simply require

if E(pN (tn)) − E(pN (tn−1)) < 0, then we have obtained a peak. The motivation

of this is that we wait for a “statistically significant” value of the energy given the

behaviour of it previously.

This will be effective as once the energy starts to spike, it becomes a strictly

increasing function (as it approximates a sharp interface) until it has acheived in-

tersection.
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6.3 Setup and framework

For the testing we use a couple of different initial configurations. We approximate

three different shapes, firstly the unit radius circle, and secondly, an ellipse with di-

ameter ratio of 1 : 2.5 and thirdly what we shall call the “C-shape” with outer radius

a and radius of the width of the cell is r, and angle of rotation θ (the parametrisation

of these shapes can be found in the appendix).

Figure 6.1: C-shaped membrane approximation with N=100, 200 and 600 points,a =
3, r = 0.7, θ = π + 2.3

The initial force that we apply for the purpose of the force term in the

surface PDE is initially given as 2+2cos(πt) i.e at timestep n = 0 has value 4 at the

beginning and end of the parametrisation interval and 0 in the middle. For example

on the C shape curve in Figure 6.1 this corresponds to the highest force value being

the arm centered about the points (a− r, 0).

6.3.1 Dziuk scheme

We present two tests to demonstrate the Dziuk scheme, first with an equidistributed

initial distribution and secondly with an initial distribution designed to show pos-

sible flaws between the evolution and the Möbius energy’s ability to detect a self-

intersection.
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Figure 6.2: the left shows the final mesh distribution after 600 timesteps. On the

right we see the graph of the energy peak at a detected intersection. N = 200, a =

3, r = 0.7, θ = π + 2.3

Now we us another distributed C-shape to demonstrate a difficult scenario

for the Dziuk scheme. That is, one where there is a larger concentration away from

the areas of self intersections. The initial distribution is given on the next page:
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Figure 6.3: N = 200, a = 3, r =

0.7, θ = π + 2.3

With this initial start mesh distribu-

tion we see a significant change in the ef-

fectiveness of the scheme. As the scheme

is unable to equidistribute points effec-

tively (motion in the normal direction of

the surface only) we see a lack of resolu-

tion below and an intersection is unable to

be detected (the peak is not sharp enough

to breach the green horizontal threshold).

Figure 6.4: the left shows the final mesh distribution after 600 timesteps - and

visually showing an intersection. On the right we see the graph of the energy that

has not detected a peak. (The green bar represents the threshold for detection)N =

200, a = 3, r = 0.7, θ = π + 2.3
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6.3.2 BGN scheme

We demonstrate the benefit of equidistribution property of the BGN-ALE ESFEM

scheme over that of Dziuk with the following evolution of the C-shape with initial

distribution given by (6.3).

Figure 6.5: the left shows the final mesh distribution after 500 timesteps. On the

right we see the graph of the energy peak at a detected intersection. N = 200, a =

3, r = 0.7, θ = π + 2.3

Note that there is a well pronounced peak and the distribution is near equi-

librium already. Also notice that this does alter the appearence and evolution di-

rection of the curve. Also I have not included the BGN evolution from the initially

equidistributed mesh points because the behaviour is quite stable under this initial

condition, and thus the motion is similar.

6.3.3 Proportional geodesic distance calculation

One other idea that was mentioned with regards to the BGN scheme and efficiently

calculating the Möbius energy was the use of proportional summation of segments

of the curve to calculate the geodesic distances between points (which consisted of
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the bulk of the calculation time). This enforced a bound on the mesh size range for

any given curve by a number q = qmax

qmin
, then these bounds may be used to calculate

a bound of the energy from above or below.

A difficulty presented itself with this method was how to determine a ratio q

that was small enough to have enough information to determine an energy spike, and

large enough to still remain efficient. Three different effects are observed regarding

this balance of efficiency and accuracy. As previously all simulations have been

conducted with N = 200, a = 3, r = 0.7, θ = π + 2.3.

Figure 6.6: (q = 1.6) On the right we see no intersection has been detected - the

horizontal green bar shows the threshhold for detection
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Figure 6.7: (q = 1.5) An intersection has been detected but with wide energy bound

Figure 6.8: (q = 1.415) A detected intersection with narrow energy bounds
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The first figure 6.6 has wide bounds on the energy and it is too inaccurate to

even determine whether an intersection has taken place, in this scenario the energy

has not yet required remeshing and the calculation is very quick.

The next scenario, figure 6.7,undergoes some remeshing steps that make the

energy bounds slightly tighter but takes more time, and there is enough of a peak

at timestep 440 for the model to determine an intersection. However the bounds

are still too wide, and the energy in between these bounds could have not suffered

any perturbation and so from the graph there is not enough information given to

determine whether we have really witnessed a self-intersection.

The final graph 6.8 does have a sharp peak and this is sharp enough for there

to be no question as to whether an energy bounded in between the curve plotted had

indeed spiked. This therefore is the optimal scenario, however if we used q ≤ 1.415

as a tolerance for the BGN-ALE method, for every timestep we had to perform

hundreds or more remeshing steps to acheive this q. These remesh steps are costly

when performed so many times and this evolution took even longer than the original

evolution without.

If one could use another equidistribution method such as using a harmonic

map calculation at every step (numerically solving a relatively uncomplicated PDE -

whose solution provides a map that equidistributes mesh points), this method could

be used very efficiently. An example of their use can be found in [13]. We merely

propose this scheme in this project due to time constraints.

6.3.4 Linear cutoff and smoothing

We first demonstrate that we can use very small cutoff values of θ1 and θ2 without

effecting an energy curve of a C-shape intersection. We use the values N = 300, a =

3, r = 0.7, θ = π + 2.3 for the initial shape.
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Figure 6.9: we increase θ1 = 0.03, 0.06 . . . , 0.21 keeping θ2 = 1.1θ1

Figure 6.10: we increase θ2 = 0.03, 0.06 . . . , 0.21 keeping θ1 = 0.03.
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Although the energy is effected very little, having a large cutoff increases

efficiency a vast amount as you can use (for large N) just a few points of interest

close and the geodesic calculation as despite staying O(N3), we reduce the bound

constant significantly.

Finally, we plot an error graph of another intersecting scenario, but we now

look at the difference between using a smoothed and unsmoothed energy. The

intersection takes place at 880th timestep.

Figure 6.11: Showing the difference between a smoothed and unsmoothed energy

during a typical intersecting evolution. (intersection occurs at step 880). We have

θ1 = 0.05, θ2 = 0.06.

As anticipated, considering the values of the energy at the start is E = 36.070,

and around the point of intersection we have E = 1706.8898. The difference of

smoothing is negligible. The cutoff function also has little effect, so long as the

smoothing radius is lower than the minimum cutoff. The step-like nature of the

graph is due to the curvature and length of the curve to altering over time. This

causes a jump in our smoothing function (involves a floor function) or the cutoff

function to effect more or less points, giving a discrete step in the error.
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Chapter 7

An extension: Prevention of

self-intersections

7.1 The Energy variation

Recall our energy is given by the parametrisation of a membrane Γ ⊂ R2 by the

function γ : [0, 1]→ Γ. We denote the geodesic/arc distance between two points on

the curve by dγ(x, y), then:

E(γ) :=

∫∫
[0,1]2

(
1

|γ(x)− γ(y)|2
− 1

dγ(x, y)2

)
|γ′(x)||γ′(y)| dx dy

We wish to consider the variation of this quantity denoted δE,with respect

to the variation v

〈δE(u), v〉 =

∫
δE

δu(r)
v(r) dr = lim

ε↓0

E(u(r) + εv(r))− E(u(r))

ε
=

d

dε
E(u+ εv)

∣∣∣∣
ε=0

Then the first variation of the energy functional is denoted (with δu(r) = εv(r), the

variation of u):

δE(u) :=

∫
δE

δu(r)
δu(r) dr
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Thus we split our energy into 3 parts:

〈δE(γ), ϕ〉 :=

∫∫
[0,1]2

d

dε

[( A︷ ︸︸ ︷
1

|γ(x)− γ(y) + ε(ϕ(x)− ϕ(y))|2
−

B︷ ︸︸ ︷
1

dγ+εϕ(x, y)2

)
·

|γ′(x) + εϕ′(x)||γ′(y) + εϕ′(y)|︸ ︷︷ ︸
C

]
dx dy

∣∣∣∣∣
ε=0

terms C and A can be dealt with relatively easily:

C :
d

dε

(
|γ′(x) + εϕ′(x)||γ′(y) + εϕ′(y)|

)∣∣∣
ε=0

=
〈γ′(x), ϕ′(x)〉
|γ′(x)|

|γ′(y)|+ 〈γ
′(y), ϕ′(y)〉
|γ′(y)|

|γ′(x)|

A :
d

dε

( 1

|γ(x)− γ(y) + ε(ϕ(x)− ϕ(y))|2
)∣∣∣
ε=0

= −2
〈γ(x)− γ(y), ϕ(x)− ϕ(y)〉

|γ(x)− γ(y)|4

For the final term, we write out in full:

dγ+εϕ(x, y) = min
{∫ y

x
|γ′(s) + εϕ′(s)| ds︸ ︷︷ ︸

B1(ε)

,

∫ x

0
|γ′(s) + εϕ(s)|ds+

∫ 1

y
|γ′(s) + εϕ(s)| ds︸ ︷︷ ︸

B2(ε)

}

Then, the derivatives of each quantity are, (in a similar way to C)

d

dε
min{B1(ε),B2(ε)}

=


d

dε
B1(ε) =

∫ y

x

〈γ′(s), ϕ′(s)〉
|γ′(s) + εϕ′(s)|

ds if B1(ε) < B2(ε)

d

dε
B2(ε) =

∫ x

0

〈γ′(s), ϕ′(s)〉
|γ′(s) + εϕ′(s)|

ds+

∫ 1

y

〈γ′(s), ϕ′(s)〉
|γ′(s) + εϕ′(s)|

ds if B2(ε) < B1(ε)

= χ{B1(ε)<B2(ε)}

∫ y

x

〈γ′(s), ϕ′(s)〉
|γ′(s) + εϕ′(s)|

ds

+ χ{B2(ε)<B1(ε)}

(∫ x

0

〈γ′(s), ϕ′(s)〉
|γ′(s) + εϕ′(s)|

ds+

∫ 1

y

〈γ′(s), ϕ′(s)〉
|γ′(s) + εϕ′(s)|

ds

)

where χ is the characteristic function. This can be made rigorous using mollifica-

tion of the characteristic functions,to smooth them so that the derivatives are well

defined, then taking limits gives the above. We then set ε = 0 and the chain rule
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yields that

B :
d

dε

1

(min{B1(ε),B2(ε)})2

∣∣∣
ε=0

=



−2

∫ y
x
〈γ′(s),ϕ′(s)〉
|γ′(s)| ds(∫ y

x γ
′(s) ds

)3 if B1(0) < B2(0)

−2

(∫ x
0
〈γ′(s),ϕ′(s)〉
|γ′(s)| ds+

∫ 1
y
〈γ′(s),ϕ′(s)〉
|γ′(s)| ds

)
(∫ x

0 γ
′(s) ds+

∫ 1
y γ
′(s) ds

)3 if B2(0) < B1(0)

=: −2Fγ,ϕ(x, y)

Overall, we combine our forms for A,B,C:

〈δE(γ), ϕ〉 =

∫∫
[0,1]2

−2

(
〈γ(x)− γ(y), ϕ(x)− ϕ(y)〉

|γ(x)− γ(y)|4
− Fγ,ϕ(x, y)

)
|γ′(x)||γ′(y)|

+

(
1

|γ(x)− γ(y)|2
− 1

dγ(x, y)2

)(
〈γ′(x), ϕ′(x)〉
|γ′(x)|

|γ′(y)|+ 〈γ
′(y), ϕ′(y)〉
|γ′(y)|

|γ′(x)|
)

dx dy

(7.1)

Remark. We also gain from this a simple identity: 〈δE(γ), γ〉 = 0

Remark. We do not proceed in detail through the discretisation, but one may employ

the 2 dimensional midpoint rule with a tensor ansatz, and discrete geodesic distance

of a degree 1 polynomial approximation ΓN of Γ parameterised by PN : [0, 1]→ ΓN

as seen throughout this paper.

7.2 Numerical results

We implement (7.1) the above formula for the energy variation as a force in the

BGN scheme. This is acheived by including it as an explicit term in the right hand

side of the equation of Problem 5.2.3:


∫
I

xnh − x
n−1
h

τ
· x⊥n−1

hθ ψh − κnhψh|xn−1
hθ |dθ =

∫
I
f(cn−1

h )ψh|xn−1
hθ |dθ − 〈δE(xn−1

h ), ψh〉∫
I
κnhφh · x⊥n−1

hθ +
(xnhθ − x

n−1
hθ ) · φhθ

|xn−1
hθ |

dθ = −
∫
I

xn−1
hθ · φhθ
|xn−1
hθ |

dθ
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Thus with the surface finite elements we are required to evaluate the above

form for every basis function φj , ∀j = 1, . . . , N . and follow through the implementa-

tion as before. We approximate the geodesic and Euclidean distances as previously

discussed in this project.

As an extension of the project, we were unable to implement cutoffs and

smoothing to this new system, we implement the original discrete mobius energy that

is set to 0 on the diagonal (in a similar way to Scholtes’s energy) as an engineering

solution, as we have already seen that this area has little effect. The numerics

below demonstrate the effect of this esnergy at timestep 1, 150 and 500 (chosen

for behavioural significance). The step size is on the order of 10−9, far smaller

than in previous implementation to retain stability which was affected by the new

forcing terms. We suspect due to the equidistribution, when neighbouring points

are very close and are subjected to forces based on the energy, which is only loosely

coupled to the scheme, they may be pushed past one another. The following have

N = 140, a = 3, r = 0.7, θ = π + 2.3.

Figure 7.1: The mesh distribution in early timesteps.
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Figure 7.2: The mesh distribution at timestep 150

Figure 7.3: The mesh distribution at timestep 500.
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Figure 7.4: The energy density in early timesteps.

Figure 7.5: The energy density at timestep 150.
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Figure 7.6: The energy density in at timestep 500.

From the numerics we observe most importantly that the intersection does

not occur despite the previous forcing, and that the new force even pushes the ends

away from each other to the extent that the curve shortening flow then governs the

motion. In the density graphs we see how at first the two red patches (that represent

the ends almost touching ) are reduced by timestep 150. Then after timestep 150

the prevailing peak in the energy density is seen as a band that passes across the

diagonal (it represents the distance across the width of the cell, from the inner to

the outer edges of the ‘C’). This is then reduced again by time 500 - making the C

shape smoother and more like a circle. The instability would usually start to occur

after this formation due to insufficiently small timesteps however in the future one

could hope that there are other ways round this problem. This hopefully serves

to demonstrate that, with correct and finely tuned implemention and with greater

efficiency (which becomes an issue once again due to the complexity of this function),

that this displays the good behaviour which we seek that will prevent intersections

in such membranes from occuring.
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Chapter 8

Conclusions

To conclude, we have studied in detail the form and convergence of the Möbius

energy and its density function. We have found that, given one knows the exact

smooth curve, one may use simple quadrature theory to approximate the integral,

and this will give you O(h) convergence. We saw how one could improve upon this

by looking by defining F (x, x) := h limN→∞ F (x, x± 1
N ), or considering a smoothing

around this point, this increase obtained O(h2) convergence.

Similarly with the discretisation, we first inspected Scholtes energy, which is

a reliable starting point. However once again it did not prove to have the correct

convergence and relied upon an arclength parametrisation. We generalised this to

arbitrary parametrisation, and then again considered the limits limN→∞ F (ai, ai ±
1
N ) for each i. We try two different smoothing methods and find both improve the

order to O(h2), although this requires a choice the radius of smoothing in each case

- of which I have provided one solution for each. We also create some solutions for

the efficiency of the methods such as the cleverly chosen cutoff or an equidistribution

scheme.

The motivation of this project was the biological membrane motion due to

actin, and so we have implemented two different models for this. We see that Dziuk-

ESFEM coupling performs well in the short scale for detection of intersections,

however the lack of equidistribution which may arise over time can severely affect

its effectiveness. The BGN coupling is shown to dominate this scheme at detection

in similar scenarios.

We also attempt to use a proportional calculation that is very efficient but

only for tight equidistribution, if one can find a good scheme for this equidistribution

it may prove far more efficient due to the order reduction of an O(h3) complexity

down to O(h2) for the discrete energy. However the BGN-ALE ESFEM does not
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seem quite effective enough, due to the equidistributing flow’s proximity to its min-

imum distribution. We then ensured that none of the cutting off or smoothing

procedures improved efficiency and did not effect the models ability to detect inter-

section in our implementation.

Lastly we presented the implementation for the prevention of self intersec-

tions. This demonstrated that the variation could be effectively implemented to pre-

vent intersection, however the computational complexity was inefficient due to the

complexity of the equations involved. However by the construction and behaviour of

the energy itself before in the paper one could see that some cleverly defined cutoff

functions would no doubt be of use, or perhaps more simplified constructions, would

be of use.

The analysis of regularity and convergence such energy variation discretisa-

tions is also is still open for study. Also at present the increase in dimension to

3 dimensions is open for research and seems highly nontrivial, and of course the

further increase in complexity may prove difficult to overcome with this energy in

this setting.
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Chapter 9

Appendix

Simpson’s quadrature

The Simpson’s quadrature rule is given by
∫ b
a f(x) dx ≈ b−a

6

(
f(a) + 4f(a+b

2 ) + f(b)
)
,

Thus we obtain:∫ aj+1

aj

∫ ai+1

ai

F (x, y) dx dy

=

∫ aj+1

aj

ai+1 − ai
6

(
F (ai, y) + 4F

(
ai + ai+1

2
, y

)
+ F (ai+1, y)

)
dy

=
(ai+1 − ai)(aj+1 − aj)

36

[(
F (ai, aj) + 4F

(ai + ai+1

2
, aj

)
+ F (ai+1, aj)

)
+ 4

(
F
(
ai,

aj + aj+1

2

)
+ 4F

(ai + ai+1

2
,
aj + aj+1

2

)
+ F

(
ai+1,

aj + aj+1

2

))
+

(
F (ai, aj+1) + 4F

(ai + ai+1

2
, aj+1

)
+ F (ai+1, aj+1)

)]
=: (ai+1 − ai)(aj+1 − aj)G(ai, aj)

Once again, if we define the point aN+1 := a1 we can represent the discretised

integral as

IN (F ) =
1

36N2

N∑
i,j=1

G(ai, aj)

The error term associated to this composite simpsons rule over an interval [a, b] with

meshsize h is given by a term − 1
180(b− a)h4f (4)(ξ) (with ξ ∈ (a, b)).
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Limit point of the integrand F (x, x) of the continuous Möbius energy

We show that for F (x, y) the continuous integrand of our energy and letting y → x,

due to invariance under rotations and translations on the unit circle we consider

x = 0, and we can take 0 < y � 1. We have shown previously in Section 2.2.2 that

|γ(ak)− γ(0)|2 − dγ(ak, 0)2 = −4π4k4

3N4
+O

( 1

N6

)
and so - anywhere in the unit circle we have |γ′(x)| = 2π:

F (ak, 0) = 4π2

(
1

|γ(ak)− γ(0)|2
− 1

dγ(ak, 0)2

)
= 4π2

(
dγ(ak, 0)2 − |γ(ak)− γ(0)|2

dγ(ak, 0)2|γ(ak)− γ(0)|2

)
= −4π2

(
−4π4k4

3N4
+O

( 1

N6

)) N2

4π2k2 · (4π2k2

N2 − 4π4k4

3N4 +O( 1
N6 ))

=

(
16π6k4

3N4
+O

( 1

N6

)) N4

16π4k4 · (1− π2k2

3N2 +O( 1
N4 ))

=
π2

3 +O( 1
N2 )

1− π2k2

3N2 +O( 1
N4 )

We now apply the power series 1
1−x = 1 + x+O(x2)

=
(π2

3
+O

( 1

N2

))(
1 +

π2k2

3N2
+O

( 1

N4

))
=
π2

3
+
π4k4

9N2
+O

( 1

N6

)
So setting k = 0 yields a natural limit for F (x, x) = π2

3 will be the natural limit for

this function

Behaviour of the integrand F (x, y) of the discrete Möbius energy for

|pN (x)− pN (y)| � 1

We show that for F (x, y) the discrete integrand of our energy and taking y close to

x. Due to invariance under rotations and translations on the unit circle we consider

x = 0, and we can take 0 < y � 1. We have shown previously in Section 2.3.2 that

|pN (ak)− pN (0)|2 − dN (ak, 0)2 =
4π4k2(1− k2)

3N4
+O

( 1

N6

)
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Thus, as |∂′N (ak)| = 2π ∀ k in the approximated circle (using our discrete derivative

formula):

FN (ak, 0)

= 4π2

(
1

|pN (ak)− pN (0)|2
− 1

dN (ak, 0)2

)
= 4π2

(
dN (ak, 0)2 − |pN (ak)− pN (0)|2

dN (ak, 0)2|pN (ak)− pN (0)|2

)
= −4π2

(
4π4k2(1− k2)

3N4
+O

( 1

N6

))
· 1(

4π2k2

N2 − 4π4k2

3N4 +O( 1
N6 )
)(

4π2k2

N2 − 4π4k4

3N4 +O( 1
N6 )
)

=

(
16π6k2(k2 − 1)

3N4
+O

( 1

N6

))
· N4

16k4π4
(
1− π2

3N2 +O( 1
N4 )
)(

1− 2π2k2

3N2 +O( 1
N4 )
)

=

π2(k2−1)
3 +O( 1

N2 )

k2
(
1− π2(k2+1)

3N2 +O( 1
N4 )
)

We now apply the power series 1
1−x = 1 + x+O(x2)

=
1

k2

(π2(k2 − 1)

3
+O

( 1

N2

))(
1− π2(k2 + 1)

3N2
+O

( 1

N4

))
=
π2(k2 − 1)

3k2
+O

( 1

N2

)
so we let N →∞ and obtain a discrete limiting curve of F (ak, 0) = π2(k2−1)

3k2 . If we

let |k| become large then this will converge towards π2

3 .

Figure 9.1: Shows for k = 0,±1,±2, . . . and for N large, the behaviour of FN where

|pN (x)− pN (y)| � 1
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Gauss-Green formula

The hypersurface Γ = {Γ(t)}t with given material velocity v : (0, T )×Γ→ R2, where

G = {(t,Γ(t))|t ∈ [0, T ]}∫
Γ
∇Γf dHn−1 = −

∫
Γ
fκdHn−1 +

∫
∂Γ
fµ dHn−2 (9.1)

Transport identity

d

dt

∫
Γ(·)

f(·, x) dHn−1(x)
∣∣∣
t

=

∫
Γ(t)

(∂•t f(t, x) + f(t, x)∇Γ(t) · v(t, x)) dHn−1(x) (9.2)

Divergence Theorem for surfaces∫
Γ(t)
∇Γ(t) · v dHn−1 = −

∫
Γ(t)

v · κdHn−1 +

∫
∂Γ(t)

v · µdHn−2 (9.3)

Proof. We define ∂iΓ(t)
f := ∂if − (∇f · ν)νi = (∇Γ(t)f) · ei. Then, we use Gauss-

Green formula to show∫
Γ(t)
∇Γ(t) · v dHn−1 =

∫
Γ(t)

tr
(
{∂iΓ(t)

vj}ij
)

dHn−1

=

n∑
i=1

∫
Γ(t)

(∇Γ(t)vi) · ei dHn−1

(9.1)
= −

n∑
i=1

∫
Γ(t)

(viκ) · ei dHn−1 +

n∑
i=1

∫
Γ(t)

(viµ) · ei dHn−2

= −
n∑
i=1

∫
Γ(t)

viκi dHn−1 +
n∑
i=1

∫
Γ(t)

viµi dHn−2

= −
∫

Γ(t)
(v · κ) dHn−1 +

∫
Γ(t)

v · µ dHn−2

Derivation of Weak form of the surface PDE

(For the sake of notation we now drop the t in ∇Γ(t) and Γ(t).)

Now we have obtained the strong form, we seek a weak form to derive the estimates

we require. Firstly recall the Neumann boundary conditions q(t) · µ(t) = g(t) on
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∂Γ(t) and initial data u(0, x) = u0(x), with u0 : Γ(0) → R. For any test function

ϕ : Γ→ R∫
Γ
fϕdHn−1 =

∫
Γ
(∂•t u+ u∇Γ · v −D∆Γu)ϕdHn−1

=

∫
Γ
ϕ∂•t u+ uϕ∇Γ · v +D∇Γu · ∇ΓϕdHn−1 +

∫
∂Γ
gϕdHn−2

=

∫
Γ

(ϕ∂tu+ u∂tϕ+ vϕ · ∇u︸ ︷︷ ︸
=∂t(ϕu)+v·∇(ϕu)

+uϕ∇Γ · v)− u∂tϕ− uv · ∇ϕ

+D∇Γu · ∇ΓϕdHn−1 +

∫
∂Γ
gϕdHn−2

Note that the blue terms come from the product rule vϕ ·∇u+uv ·∇ϕ = v ·∇(ϕu).

Continuing, we have∫
Γ
fϕdHn−1 =

∫
Γ

(∂•t (uϕ) + uϕ∇Γ · v)︸ ︷︷ ︸
(transport identity)

− (u∂tϕ+ uv · ∇ϕ)︸ ︷︷ ︸
=u∂•t ϕ

+D∇Γu · ∇ΓϕdHn−1 +

∫
∂Γ
gϕdHn−2

(9.2)
=

d

dt

(∫
Γ
uϕdHn−1

)
+

∫
Γ
−u∂•t ϕ+D∇Γu · ∇ΓϕdHn−1 +

∫
∂Γ
gϕdHn−2

Which is a weak form of the PDE we wish to look at.

Explicit mass lumping for linear SFEM

For each i = 1, . . . , N consider a particular basis function:∫ 1

0
bi(θ)|xhθ| dθ =

∫ θi

θi−1

θ − θi−1

θi − θi−1
N |xi − xi−1|︸ ︷︷ ︸

qi

dθ +

∫ θi+1

θi

θi+1 − θ
θi+1 − θi

N |xi+1 − xi|︸ ︷︷ ︸
qi+1

dθ

=
1

2
N2qi (θ − θi−1)2

∣∣θi
θi−1

+
1

2
N2qi+1 (θi+1 − θ)2

∣∣θi+1

θi

=
1

2
(qi + qi+1)

For uh(θ) = xh(θ). Firstly let xi = x(θi), ∀i, then

xh(θ)|(θi−1,θi)
=

θ − θi−1

θi − θi−1
xi +

θi − θ
θi − θi−1

xi−1, xhθ|(θi−1,θi)
=
xi − xi−1

θi − θi−1
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Previously this would need to be incorporated into the integral calculation. Now

however we merely multiply xi(
1
2(qi + qi+1)).

Similarly we may apply to the RHS to obtain the form with uh = f(ch),thus

ui = f(ci) and knowing

x⊥hθ

∣∣∣
(θi−1,θi)

=
(xi − xi−1)⊥

θi − θi−1
=

(
0 −1

1 0

)
xi − xi−1

θi − θi−1

Parametrisations for numerical test shapes

The unit circle

γ(t) =

(
sin(2πt)

cos(2πt)

)
∀ t ∈ [0, 1]

The ellipsoid

γ(t) =

(
2 sin(2πt)

0.8 cos(2πt)

)
∀ t ∈ [0, 1]

The “C-shape”, for r, a, θ > 0, and L = 2aθ + 2r(π − θ) the total arclength let

L1 =
aθ

L

L2 =
aθ + rπ

L

L3 =
(2a− 2r)θ + rπ

L

γ(t) =



(a cos(Lta ), a sin(Lta )) ∀t ∈ [0, L1]

(r cos( tLr −
(a−r)θ
r ) + (a− r) cos(θ), r sin( tLr −

(a−r)θ
r ) + (a− r) sin(θ)) ∀t ∈ [L1, L2]

((a− 2r) cos( tL
2a−r −

r(π+θ)−aθ
2a−r ), (a− 2r) sin( tL

2a−r −
r(π+θ)−aθ

2a−r )) ∀t ∈ [L2, L3]

r cos( tLr −
2(a−r)θ

r ) + (a− r), r sin( tLr −
2(a−r)θ

r ) ∀t ∈ [L3, 1]

Estimated Order of convergence

We calculate our EOC based on the values of the energy functional E at certain

grid sizes. As we do not know what the limiting energy is in some cases we use a

formula that does not require an exact solution, the penalty is that for any grid size

h, the values of E(2h) and E(h2 ) must be known for the calculation.

EOC(h) = log2

(
E(2h)− E(h)

E(h)− E(h2 )

)
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for example E(h) ∼ Chp (i.e order 2) then,

EOC(h) = log2

(
2pCh2 − Ch2

Ch2 − C
2ph

2

)
= log2

(
2p − 1

1− 1
2p

)
= log2(2p) = p

vii


