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The Problem

The aim is to model a black box type scenario, where one has
input measurements with noise, and output estimate with error.
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More Mathematical Formulation

I One has a time series x = (x i ) of input measurements where
x i ∈ Rd for some d and x i ∼ N (x̃ i ,Q i ) for some positive
definite symmetric matrices Q i and x̃ i ∈ Rd .

I We assume that the true system is given by ỹ = (ỹ i ).

I One also has output measurements y i where y i ∼ N (ỹ i ,P i )
where P i are positive definite symmetric matrices.

I No prior knowledge of the physical system is supposed.

The aim is to recreate the function f : Rd → Rd that maps the
input x i to the true system ỹ i .



The Problem (The practical outlook)

This Problem can be seen to be in two parts:

1. An inverse problem where there is input and output data with
noise from a black-box and finding or approximating the
black-box is the task.

2. This is to recreate the black-box object and possibly improve
so that with new input data the output data can be recreated
in real time or faster.

Once the first method is complete then the second problem can be
approached.



Why is this Useful?

In an industrial application, one has to consider data analysis, in
particular:

1. Smoothing noisy data (inherent noise associated to
measuring)

2. Analysing relationships between variables (for example
companies not communicating to keep intellectual property
for gains).

Thus companies from just input and output data want to invert
the process to gain the same knowledge.



Emissions optimisation-Engine

One technique to reduce emissions is to recirculate exhaust gases.



Emissions optimisation-Application

More accurate estimates of the system are desired to improve
optimisation of emissions.

This system is characterised by upstream and downstream pressure
denoted by PU and PD resp., the mass flow through the system M,
and the effective area of the valve A.

The black box model is suitable as we were kindly given input
measurements and output estimates of these four data streams to
model.



Data



Least Squares Minimisation

First introduced by Legendre and Gauss [1]. Produces an
approximation of the function that minimises the least squares
distance between the approximation and the function.

Since the method doesn’t try to exactly fit the data values, it is
suitable for removing noise in the input or output values.

For a choice of basis, this becomes a linear least squares regression
problem which is simpler to computationally solve.



Least Squares Minimisation

Given data (x i , y i ) ∈ R2d for i = 1, . . . ,N one aims to find the
function f : Rd → R in some space V which minimises

S =
N∑
i=1

∣∣f (x i )− y i
k

∣∣2
If dim V <∞ with basis {φj} then one can write the minimising
coefficients as

β = (XTX )−1XT yk

where Xij = φj(x i ) using the Gauss-Markov theorem.



Probabilistic framework

Again given data (x i , y i ) as before, and choosing some parameters
β one supposes that there is a relationship of the form

y i
k − f (x i |β) ∼ N (0,C i )

Thus y i
k − f (x i |β) ∝ e−|f (x i |β)−y i

k |
2
2 . Finding the Maximum

Likelihood estimator then corresponds to maximising

L(x1, . . . , xN) =
N∏
i=1

f (x i |β) ∝ e−
∑N

i=1 |f (x i |β)−y i
k |

2
2

and the maximum of this coincides with the minimum least squares
distance of f (x i |β) with y i

k for all i .



Choosing a basis

We see that if we choose a basis of the function space {φj} then
the least square regression above becomes a simpler linear
regression problem with the matrix C made of elements of the
evaluations of φj(x i )

N∑
i=1

|f (x i )− y i
k |2 =

N∑
i=1

∣∣∣∣∣∣
K∑
j=1

βjφj(x i )− y i
k

∣∣∣∣∣∣
2

= ‖Cβ − yk‖2
2



Choice of basis

Considering this result on existence and uniqueness of a minimiser
is independent of the basis, one is free to choose the space over
which one minimises.

Local Support

1. Gives the matrix X as
sparse, so computation is
less involved.

2. A poor approximation if
data is found only in a
small region of space.

Global Support

1. More involved computation
as to evaluate at a point,
all basis functions must be
used.

2. Useful if data is clustered,
and doesn’t fill the whole
space.

3. Can predict outside of the
data domain.



Choice of basis

If it is the case that the data is clustered, and prediction outside
these ranges is highly desirable, the a global basis consisting of a
partial Fourier basis could be used. This would take the form of

cos

(
x1 − s1

2n1π
i

)
cos

(
x2 − s2

2n2π
j

)
cos

(
x3 − s3

2n3π
k

)
cos

(
x4 − s4

2n4π
l

)
where i , j , k, l vary from 1, . . . ,K .



Conditioning of the Problem

One also needs to ensure that the data is not being over-fitted,
namely one chooses a dimension of the minimisation space that is
very much smaller than the number of data points used in the
minimisation.

There are methods of functional principal component analysis
(P.C.A.) that give values of the largest dimension of space that is
suitable for consideration. [2]



Results



Results



Kalman Filtering

Problem: black-box object recreation

Kalman filtering is an algorithm that tries to reconcile outputs
from a mathematical model of a physical system and observations
of the same system.

Filtering combines the approximation function for the black-box
with the observations in such a way as to smooth out noise coming
from inaccurate observations in an effort to more accurately
estimate the true state of the system at the present time.



Kalman Filtering cont.

Consider the process x ∈ Rd given by the stochastic difference
equation, for A ∈ Rd×d

x i = Ax i−1 + w i−1 (1)

and consider also measurements, for H ∈ Rl×d ,

z i = Hx i + v i (2)

where w and v represent noise terms, and are assumed to be
independent multivariate normals with distributions

w ∼ MVN(0,Q) v ∼ MVN(0,R). (3)

It should be recognised that this is somewhat of a special case of
the usual Kalman filter, [3], because one may well expect the noise
to vary over time, and so then the above would be indexed by i .



Kalman Filtering cont.

The algorithm is as follows

1. At time n, given the
previous a posteriori
estimates xn−1, ..., xn−l of
the system, a prediction
x̂n|n−1 is made based upon
the prior belief or physical
dynamics of the system at
time n.

2. The system is observed at
time n and this observation
zn is used to correct the a
priori estimate x̂n|n−1 and
produce an updated
estimate x̂n|n

3. Repeat for time n + 1.



Kalman Filter Update Equations

In the case, as above, where one has Gaussian noise, one can
explicitly write the estimation formulas as follows:

x̂k|k−1 = Ax̂k−1|k−1

Pk|k−1 = APk−1|k−1AT + Q

K k = Pk|k−1HT
(

HPk|k−1HT + R
)−1

x̂k|k = x̂k|k−1 + K k
(

z i − Hx̂k|k−1
)

Pk|k = (I − K kH)Pk|k−1



Extended Kalman Filtering

A modification of the Kalman filter where one has a non-linear
update equation of the form

x i+1 = f (x i ) + w i

where w is again the noise term, and we have measurements

z i = h(x i ) + v i .

One linearises the f and the h with the derivative and then uses
the Kalman filter as above with this linearisation.
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MCMC

The object is to find an unknown function f in a Banach space V ,
possibly the space of continuous functions.

I A Gaussian prior distribution N (m,C ) where C : V → V is
the covariance operator is a natural choice to model an
unknown function

I Karhunen-Loève is used to sample from this distribution

I Implement a Markov Chain Monte Carlo (MCMC) algorithm
to sample from the posterior.



MCMC example

Click above to play video



Other Function Spaces

The physics of the problem may well suggest a more natural space
to consider minimisation over.
Other global basis functions that could be better especially if the
function was in higher dimensions are radial functions, defined as
follows:

Given a smooth function f : Rd → Rd and points Ξ where one
knows the evaluations of this function f (ξi ) for these values, then
a radial basis function is the composition of a continuous function
φ : R+ → R with the Euclidean norm. In other words one can write
a function ν as

ν(x) =
∑
ξ∈Ξ

λξφ (‖x − ξ‖2)

for some λξ.



Constrained Minimisation

One could instead consider minimisation of the form

Minimise ‖Cα− d‖2
2 in V subject to Aα ≤ γ

where the Aα ≤ γ corresponds to some estimate on the norm of
the gradient of the function. This is equivalent to the
regularisation problem of Tychonov.

Theorem (Tychonov)

Let A : H → K be a linear operator between Hilbert Spaces such
that R(A) is a closed subspace of K. Let Q : H → H be self
adjoint and positive definite, and b ∈ K and x0 ∈ H be given as
well. Then

x̂ ∈ argminx∈H
(
‖Ax − b‖2 + ‖x − x0‖2

Q

)
⇐⇒ (A?A + Q)x̂ = A?b + Qx0
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