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Abstract

An important problem is the removal of noise from input measurements and state
estimates. Reverse engineering, or approximation, of black boxes within systems is
also a highly relevant topic. Methods are given, including least squares methods and
a Bayesian inverse approach, to perform these approximations. Real time methods
are also considered, for example the Extended Kalman filter. A particular industrial
application, that of emissions control in a car engine, is used to highlight these and
test their suitability.
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Model Based Emissions Control 1 INTRODUCTION

1 Introduction

1.1 Motivation

Of critical importance in engineering, or any industrial application, is the consideration
of data analysis, in particular that of smoothing noisy data and of analysing relationships
between variables.

The former is a manifestation of the fact that any measurement taken of a physical
setting will have some noise associated to it, essentially due to the fact that in taking a
measurement, one disrupts the system one is trying to measure. This can occur through-
out applied sciences as one tries to understand the actual state of a system while any data
of that system will have associated noise of varying degree and type.

The latter comes from a black box type scenario (see figure 1), an unknown function,
where one has input and output data from this system with errors attached to both,
coming from inaccuracies in measurements and errors in models, and the goal is to recreate
the black box.

Figure 1: Black Box

This scenario could be due to companies using machinery or technology from external
sources who do not divulge the exact workings of the part, or could be from the use of
external computer programs to perform specific tasks, where the code is hidden.

1.2 Problem

We focus on the black box scenario. One has a time series x = (xi) of input measurements
where xi ∈ Rd for some d and xi ∼ N (x̃i, Qi) for some positive definite symmetric matrices
Qi and x̃i ∈ Rd, where in general Qi is independent of Qj for i 6= j.

We assume that the true system is given by ỹ = (ỹi) and one has some function f
that takes the inputs to the true system values.

One also has output measurements yi where yi ∼ N (ỹi, P i) where P i are positive
definite symmetric matrices.

Furthermore, no prior knowledge of the physical system is supposed.
The aim is to remove the noise from the measurements to predict the true system.

This motivates two further problems:
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1. Recreate, or approximate, the underlying function that maps, at time i, some pre-
vious number of estimated physical system measurements xi−l, ..., xi, and gives the
true system at the future time yi+1.

2. Specify a method that can run in real time, and with minimal computational power,
that gives an estimate ỹi of the physical system yi given the input data up until
that time.

This is a combination of two types of problem. The first is an inverse problem where
there is input and output data with noise from a black-box (an object where little is
known) and finding or approximating the black-box is the task.

There is a certain sense of linearity with these problems, as it makes more sense to
approach the first before the second, as the approximation of the black box can be used
in a real time environment where it is coupled with input data to recreate the black box
in real time or faster.

1.3 Exhaust Gas Recirculation in Modern Cars

A particular example of this is to be found within the realms of emissions optimisation
within a car power-train.

Figure 2a shows a schematic of the modern car, showing the intake of air into the
engine, and the flow through the cylinders, and then with the exhaust gas recirculation
(E.G.R.) system to the right, which is highlighted in figure 2b. This system varies the
amount of gas that is recirculated around the engine, in a controlled manner, with the
control by the electronic control unit (E.C.U.), so as to reduce the emissions of the car.
Good estimates on the amount of recirculation are useful so as to optimise this reduction.

(a) Schematic of a Car Engine

(b) Schematic of the EGR system

Figure 2: Diagrams of a Car engine

3 of 27



Model Based Emissions Control 1 INTRODUCTION

As such, the mass flow (M) and valve area (A) are desirable data values to know to a
high accuracy, as these are used in predicting the future amount of air to be recirculated.
The pressures upstream (PU ) and downstream (PD) are also needed to predict these
values.

In this context, we find a client who wishes to understand the mechanism used in the
E.C.U. so as to estimate these measurements.

The aim would be, given the input time series of the data x = ((pid, p
i
u,m

i, ai))Ni=1

together with the corresponding outputs y = ((P iD, P
i
U ,M

i, Ai))Ni=1, to construct the
function f :

∏4
k=1 Ik →

∏4
k=1 Ik for suitable closed and bounded intervals Ik of R, that

describes the black box procedure, see figure 3. That is, to find the function that attempts
to take the input value xi and map it to the true state of the system ỹi. This is a problem
in reverse engineering.

Figure 3: Black Box

We briefly highlight the techniques that can be used for this type of system, and
discuss them in more detail in later sections.

1.4 Reverse Engineering of Physical System

1.4.1 Linear Interpolation

A linear interpolation of the data is used to approximate a function, with limitations due
to the noise in the system. It is shown that noisy measurements severely restrict the use
and results from this method.

1.4.2 Minimisation of Functionals

A least squares approximation of the form

I[f ] =

N∑
i=1

∣∣f(xi)− yi
∣∣2 (1.1)

is used to approximate functions f : R4 → R4 in a suitable space of functions W . It is
shown that the space must be chosen carefully to ensure the basis functions have certain
desired properties for the example in hand.
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1.5 Real Time Computation

Considering that the operations run need to be performed in real time, the only feasible
method is one which involves linear algebra, and if smoothing is required, it will involve
an algorithm like that in the Kalman filter [6]. Methods are suggested for which such an
algorithm can be employed.

1.6 Numerical Results

Certain success is met with choosing a Fourier basis of cosines where approximations are
taken using a space of dimension 44 = 256 on the first 10000 data points to simulate the
remaining data. Note the good conditioning of this method. The results are summarised
in table 1, where the values show the relative error improvement in each method in
the stated statistic, namely (7.1) and (7.2). Note the fact that we have not used the
downstream pressure here, since one cannot give a percentage increase since the input
data is exactly the output data. In other words, one calculates

‖input stream− approximation‖
‖input stream− output stream‖

Method for |b·c|1 PU error change M error change A error change

Input Data 1 1 1

Fourier 2.4928 0.3995 0.3787

EKF 1.1511 0.9106 0.6930

Method for |b·c|2 PU error change M error change A error change

Input Data 1 1 1

Fourier 2.606 0.4658 0.3676

EKF 1.102 0.9654 0.6747

Method for ‖·‖∞ PU error change M error change A error change

Input Data 1 1 1

Fourier 0.9925 1.0483 1.0310

EKF 0.9941 1.0945 0.7083

Table 1: Summary of the improvement of relative error with methods shown.

In the table the red numbers are those that are particularly good, and the blue are
values that are a good improvement on the error.

In other words, both our methods improve the approximation by the input data for the
mass flow and valve area in |b·c|1 and |b·c|2 and only slightly improve the approximation
in ‖·‖∞. If one would add in constraints upon the valve area and mass flow not being
negative, then one would expect better improvements.
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2 Data Interpolation

Interpolation is the process where one has a collection (xi, yi) of data which is taken
from some function f : Rd → Rd and one creates an approximation of the entire function
by assuming the function to be linear, or a certain function, between these points. For
simplicity, only linear interpolation is considered.

To evaluate the function at a point x∗ ∈ Rd, the process is as follows:

1. Find amongst {xi}Ni=1, the d + 1 points {xi1 , xi2 , . . . , xid+1} that are closest to x∗

such that x∗ is contained in the convex hull of {xi1 , xi2 , . . . , xid+1}

2. Calculate the hyperplane spanning those points

3. Calculate the value at the evaluation point x? on this hyperplane.

The advantage of this method is the simplicity and speed of the computation of the
interpolation. However, due to the fact that the method assumes that the values of the
data given are the truth, if the noise in the measurement of the data is significant with
regards to its data, then the interpolation will be poor.

If the function to be interpolated is twice differentiable, the error associated to the
interpolation is of the order of the second derivative in magnitude, and so for a function
that fluctuates wildly, this will be very large. This result is a consequence of Rolle’s
theorem.

In the situation where the order of magnitude of the variance of the noise is much
smaller than the magnitude of the values of the data, linear interpolation is suitable since
the noise will not affect the interpolation values so much.

3 Least Squares Minimisation

The method of least squares minimisation is a well studied and well used one. It is a
technique that originates with Gauss [4] and Legendre [8]. It consists of the following
method.

Given N pairs of data (xi, yi) ∈ Rd×Rd and a chosen function space W , one finds the
function f in W with f : Rd → Rd which minimises:

S =

N∑
i=1

|fk(xi)− yik|2 (3.1)

for k = 1, . . . , d. This is of particular interest and of use when one has error with the
values yi, as then one does not try to perfectly fit the information given, as in section 2.

By considering the error in observing yi, we find ourselves within a probabilistic set-
ting. Suppose the function f can be described by choosing some parameters β which are
viewed as random, then since yi is considered to be a Gaussian random sample drawn
from a distribution centred at the true state of the system ỹi, we have the following
relationship:

yik − fk
(
xi|β

)
∼ N (0, P i).

where the P i are the covariances in the outputs, as defined in section 1.2. Thus

yik − fk(xi|β) ∝ e−|fk(xi|β)−yik|
2

.
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The probabilistic approach to decide which estimate of the parameters β should pro-
vide the most accurate function f , is to find the estimate that maximises the likelihood
function. Finding the maximum-likelihood estimator then corresponds to maximising

L
(
x1, . . . , xN

)
=

N∏
i=1

fk(x
i|β) ∝ e−

∑N
i=1|fk(xi|β)−yik|

2

and the maximum of this coincides with the minimum least squares distance of fk(x
i|β)

with yik for all i which coincides exactly with the approach we are taking.
The following is similar to the book [11] or [12] and is stated in [7], though this goes

above and beyond the level of detail we need. In some senses this technique is the most
basic, although a more sophisticated constrained minimisation is considered later, this is
not implemented, and these two are by no means the only methods that can be considered
here. The references are highlighted to demonstrate this.

The minimisation problem in (3.1) of finding a function f : Rd → Rd is actually d
minimisation problems of finding fk : Rd → R where {fk}dk=1 are the d components of
f . To implement on a computer, one must parameterise a projection of the function
space onto each of its components by finitely many parameters. In other words, a basis
{φj : Rd → Rd}Kj=1 of W is chosen and then projected onto each of the coordinate axes of

Rd. Then, for each f in W and k = 1, . . . , d, one can write the functions fk by truncating
its expansion:

fk(x) = fk(x, βk) =
K∑
j=1

βj,kφj,k(x),

where φjk is clearly the projection of φj onto the kth coordinate. For the sake of brevity,
we will suppress the index k and treat f as a function from Rd to R. A minimiser, if one
exists, of the problem in (3.1) must have differential zero in β, namely

∇βS(β) = 0

and this is equivalent to

∂S(x, β)

∂βj
= 2

N∑
i=1

(f(xi, β)− yi) ∂

∂βj
(f(xi, β)) = 0 for j = 0, . . . , n (3.2)

and if we let

Xij =
∂

∂βj
(f(xi, β)) (3.3)

then the solution to the above problem is

β = (XTX)−1XT y

using the following theorem, which can be found in [10] or in [11, Theorem 3.1]:

Theorem 3.1 (Gauss-Markov) Suppose that XTX is invertible. Then among all un-
biased linear estimators K such that β = Ky the one that minimises the least squares
error is

K = (XTX)−1XT
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Proof Let β̃ = KDy be another linear estimator of β and let KD be given by

KD = (XTX)−1XT +D

where D is a k × n non-zero matrix. As we only consider unbiased estimators, minimum
mean squared error implies minimum variance. The goal is therefore to show that such
an estimator has a variance no smaller than that of the least squares estimator.

Supposing that one writes y = Xβ + ε for some ε, one has that the expectation of β̃
is:

E(KDy) = E
(

((XTX)−1XT +D)(Xβ + ε)
)

= ((XTX)−1XT +D)Xβ + ((XTX)−1XT +D)E(ε)

and E(ε) = 0 since the estimator is unbiased, and then one gets that

E(β̃) = (XTX)−1XTXβ +DXβ = (Ik +DX)β

and thus we have that β̃ is unbiased if and only if DX = 0. Now, supposing that the
variance of y is σ2, one calculates the variance of β̃. We have

Var(β̃) = Var(KDy) = KDVar(y)KT
D = σ2KDK

T
D

And then explicitly writing the formula for KD one obtains

σ2KDK
T
D = σ2((XTX)−1XT +D)(X(XTX)−1 +DT )

= σ2((XTX)−1XTX(XTX)−1 + (XTX)−1XTDT +DX(XTX)−1 +DDT )

= σ2(XTX)−1 + σ2(XTX)−1(DX)T + σ2DX(XTX)−1 + σ2DDT

= σ2(XTX)−1 + σ2DDT .

since we have from above that DX = 0.
Since DDT is a positive semi-definite matrix, we have that the variance of β̃ is larger

than the variance of Ky. As D was arbitrary, K must be the minimum. Q.E.D.

Observe that this method explicitly gives a unique solution to the above minimisation
problem if K ≤ N and so the method is suitable to be used.

We have thus proved the following, which is the form of this method that is used in
later sections.

Theorem 3.2 Let Ik be a closed and bounded interval in R for k = 1, . . . , d. Suppose
that xi, yi ∈ I1 × · · · × Id for i = 1, ..., N . Then, for each k the functional

f 7→
N∑
i=1

|f(xi)− yik|2

has a minimum in the class of functions

W =

{
f(x1, x2, . . . , xd) =

d∏
k=1

cos(ckxk)

∣∣∣∣∣ ck in R for each k

}

In addition, the functional has a minimum in the space of polynomials of degree at most
L which is unique if L ≤ N but not necessarily if L > N .

8 of 27



Model Based Emissions Control 3 LEAST SQUARES MINIMISATION

3.1 Constrained Minimisation

Furthermore, if it is physically relevant to consider some constraint in the situation, then
a constrained least squares minimisation will be more suitable. While no results are given
numerically later on this, it is still a useful consideration to make.

We now prove existence and uniqueness of the minimisation.

Minimise
N∑
i=1

|f(xi)− yik|2 in W subject to ‖∇f‖2L2 ≤ γ (3.4)

for some γ > 0.
This can be rewritten using a basis for the coefficients in the manner shown above,

and the constraint can also be rewritten in this form, since we have

‖∇f‖2L2 =

∥∥∥∥∥∥∇
 K∑
j=1

βjφj

∥∥∥∥∥∥
2

L2

≤
K∑
j=1

|β|2 ‖∇φj‖2L2 .

Thus the constrained minimisation can be written as

Minimise ‖Cβ − d‖22 in W subject to Aβ ≤ γ

and this is equivalent to

Minimise ‖Cβ − d‖22 + ‖Aβ‖22 in W . (3.5)

This equivalence can be seen by considering the minimisation problem

min
γ

(
min
‖Cβ‖≤γ

‖Aβ − d‖22 + γ2

)
.

This is the situation of Tikhonov regularisation:

Theorem 3.3 (Tikhonov Regularisation) Let A : H → K be a linear operator be-
tween Hilbert Spaces such that R(A) is a closed subspace of K. Let Q : H → H be self
adjoint and positive definite, and b ∈ K and x0 ∈ H be given as well. Then

x̂ ∈ argminx∈H

(
‖Ax− b‖2 + ‖x− x0‖2Q

)
⇐⇒ (A?A+Q)x̂ = A?b+Qx0

Proof We modify the problem by considering B : H → K⊗K defined by

Bx = Ax⊕ Lx

where Lx = x− x0. and by considering d = b⊕ 0. Then one gets that

‖Bx− d‖2K⊗K = ‖Ax− b‖2 + ‖x− x0‖2Q
Then considering the least squares minimisation in K ⊗K one finds that

(A?A+ L?L)x = A?b

Inserting the definition of L yields

(A?A+Q)x̂ = A?b+Qx0

as required. Q.E.D.

A minor digression here motivates this in the Bayesian framework, which is consid-
ered in more detail in section 5. One can think of the constraint as some form of prior
distribution characterising the beliefs in the system, and one then considers the posterior
distribution calculated using squared loss on the information characterised by the relation
Ax = b.
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3.2 Choice of Basis for Minimisation Space

An important part of the least squares minimisation is the choice of the space W over
which one finds the minimum. In part this is decided by the data at hand, and the
following points must be considered:

1. How the data is spread about the domain upon which one considers the functions
to act upon,

2. The number of data points given.

The first is important due to the fact that if the data is clustered in a small region of
the domain, then a choice of basis such that each function has local support is not ideal,
since the coefficients of the basis functions cannot be produced accurately away from the
clusterings of the data.

On the other hand, if the data is well spread out throughout the domain, then a
choice of basis with local support is ideal, since then the coefficient matrix is sparse. This
reduces the computation required to find the least squares minimiser.

Furthermore, to ensure that the problem is well conditioned and that the approxima-
tion does not over fit the data, the dimension of the basis needs to be taken to be much
smaller than the number of data points given.

3.2.1 Principal Component Analysis

Over-fitting the data is a very dangerous situation to be found in. It will force the function
to fit too well to the noise associated to the specific data set it is found from and it
won’t generalise to other sets very well. Therefore, the performance of the approximating
function depends upon the number of basis elements used in its expansion, it is desirable
to have methods to determine a sensible dimensions of the basis. One such method can
be found in the study of principal component analysis (P.C.A.) [5].

P.C.A. is a statistical method that studies the modes of variation in the data. It
achieves this by performing a transformation on the data of variables that are potentially
highly correlated into a new coordinate system whose variables are now uncorrelated. The
advantage of P.C.A. is that information about which directions contain as much of the
data’s variability as possible is easily available.

To employ this technique, it is necessary to estimate the covariance matrix C for the
data. It is then possible to find the singular value decomposition of C. A study of the
singular values of C, in particular the largest singular values, then gives a good indication
of the number of basis elements that are needed to capture the behaviour of the function
without the risk of over-fitting the data.

Two different spaces are now considered, to show the difference between a locally
supported basis and a globally supported basis.

3.2.2 Schauder Type Finite Dimensional Subspace

We define WR as the space spanned by the following functions. We suppose that our
functions are defined on the space

∏d
k=1 Ik for Ik some closed and bounded intervals of

R.
For each interval Ik choose a discretisation of it into lk points, so that l1 . . . ld << N

for good conditioning.
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For each point z = (z1, . . . , zd) in this discretisation of
∏
k Ik we define the function ψz

to be the function that is 1 at the point z and linearly decays to zero at the neighbouring
points and is given by the formula:

ψz(w1, · · · , wd) =

0 if max
k=1,...,d

|wk−zk|
lk

≥ 1

1− max
k=1,...,d

|wk−zk|
lk

else
(3.6)

Observe that this is similar to Haar wavelets and Schauder functions and also that each
basis function is locally supported in the region[

z1 −
l1
|K1|

, z1 +
l1
|K1|

]
× · · · ×

[
zd −

ld
|Kd|

, zd +
ld
|Kd|

]
and also at any given point in

∏
Ki there are at most 2d non-zero basis functions.

Using this basis, our value to minimise then becomes

R∑
i=1

∣∣f(xi)− yik
∣∣2 =

∥∥∥Cα− y
k

∥∥∥2

2

where C =
(
ψj(x

i)
)
i,j

for i over the number of data points, and j over the number of

basis functions, and y
k
, α are the vectors of the yik and αj respectively. The matrix C

here has 4d non-zero elements in each row, since the function above has support on an
L∞ ball, and so if the dimension of the function space is much larger than this, one can
see that we have a sparse matrix.

3.2.3 Fourier Space

We again suppose that the functions are defined on the space
∏d
k=1 Ik for Ik some closed

and bounded intervals of R. Indices i1, i2, . . . id are chosen so that ik = 1, . . . , lk, and such
that l1 . . . ld << N . Then one defines

γi1,...,id(x1, x2, . . . , xd) = cos

(
x1 −min I1

2π|I1|
i1

)
× · · · × cos

(
xd −min Id

2π|Id|
id

)
, (3.7)

This basis is an example of a globally supported basis, as, apart from finitely many points,
the basis is non-zero.

Furthermore the method above gives the same form of the minimisation problem,
except that the matrix C is no longer sparse, and one would expect each element of the
matrix to have a non-zero entry.

3.3 Other Minimisation Spaces

Two spaces for which minimisation has been implemented have been introduced, but
these are by no means the only spaces in which minimisation can occur. One can consider
spline functions as the basis to minimise, or radial functions instead. Furthermore, the
specific situation considered may well provide an insight into the choice of the space to
consider.

The example of a radial basis is particularly useful, although not implemented later,
which is described in [1]. One defines this as follows.

One has a set Ξ of “centres” which are points at which one wishes to approximate
at. In our case Ξ = (xi)Ni=1. Then one has the values f(xi) at these values, where one
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Model Based Emissions Control 4 KALMAN FILTERING

assumes that f is smooth. Then a radial basis function is the composition of a continuous
function φ : R+ → R with the Euclidean norm. One then writes a function s in this space
as

s(x) =
∑
ξ∈Ξ

λξφ (‖x− ξ‖2)

for some λξ. By construction, the approximation is equal to the function at these points.

Common uses of φ are Gaussian functions φ(r) = e−c
2r2 for some parameter c, or thin

plate splines φ(r) = r2 log r.
These are particularly good at approximating multivariate functions, especially when

there is an absence of grid data. One can also give explicit error bounds on the quality
of the approximation.

The method also allows efficient computation for large data sets, in particular, it is
easy to calculate the coefficients needed in the expansion.

4 Kalman Filtering

We employ applications of the Kalman filter in our attempt to approximate data of an
unknown function that describes some system. Kalman filtering is an algorithm that tries
to reconcile outputs from a mathematical model of a physical system and observations
of the same system. It combines these two in such a way as to smooth out noise coming
from inaccurate observations in an effort to more accurately estimate the true state of
the system at the present time. The original paper by Kalman is [6].

Consider the process x ∈ Rd given by the stochastic difference equation

xi = Axi−1 +Bui−1 + wi−1 (4.1)

with u the control variables, and consider also measurements

zi = Hxi + vi (4.2)

where w and v represent noise terms, and are assumed to be independent multivariate
normals with distributions

w ∼ MVN(0, Q) v ∼ MVN(0, R). (4.3)

It should be recognised that this is somewhat of a special case of the usual Kalman filter,
because one may well expect the noise to vary over time, and so then the above would be
indexed by i.

The algorithm is as follows

1. At time n, given the previous a posteriori estimates xn−1, ..., xn−l of the system, a
prediction x̂n|n−1 is made based upon the prior belief or physical dynamics of the
system at time n.

2. The system is observed at time n and this observation zn is used to correct the a
priori estimate x̂n|n−1 and produce an updated estimate x̂n|n.

3. Repeat for time n+ 1.
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4.1 The Extended Kalman Filter

The above algorithm handles the case that the update as linear. There is absolutely
no reason to expect this to be the case and the algorithm can be altered to allow for
non-linearities. In the non-linear case we must add a step in the procedure so that we
can make the linear Kalman filter applicable. This new procedure is called the extended
Kalman filter. The extended Kalman filter is discussed in detail in [3]. Here, instead of
having a relation as in equation (4.1) we have a relation

xi+1 = f(xi, ui) + wi (4.4)

where f is non-linear, and w is again the noise term, and we have measurements

zi = h(xi) + vi. (4.5)

Now we assume, if f, h ∈ C1, with derivatives F and H respectively, that the estimate is
given by

x̂i+1 ∼ N (Df(mi), Df(mi)TCiDf(mi))

for some mi and Ci to be determined and we have

x̂i+1|i = x̂i+1|yi ∼ N (x̂i+1|i,K(yi − h(x̂i+1|i)))

where K is the so-called Kalman gain matrix. Observe that this linearises the problem,
and we thus use the linear Kalman filter as above on this model. This however may be
poor if our function f is highly non-linear.

The main advantage of using the Kalman filter in practice is that it finds solutions to
an estimation problem sequentially and thus reduces the computational cost and time so
that it can be performed as and when an observation is made.

4.2 Other Filters

There exist several useful generalisations of the Kalman filter. Another very important
variant of the Kalman filter is the Kalman filter with fading memory. This has an im-
mense number of practical applications. It takes into account the fact that a system can
change dramatically so that the current state should depend more strongly on the recent
observations and in effect forgetting the error contributed by older observations. For ex-
ample, if you are interested in the current state of some system within the engine of a car
and that car has just pulled away after having come to a completing stop, then you would
probably not be so worried about the state of the engine before the stop. Including this
information at full weight might throw the estimation off. This version of the Kalman
filter is said to have “fading memory” and differs from the original by multiplying older
measurements by progressively higher powers of a constant λ ∈ (0, 1)

5 Bayesian Inverse Approach

An alternative clear choice of method is the approach of Bayesian inverse problems which
is discussed in detail in [13]. This is now briefly outlined.

The inverse problem approach for finding the update function for the Kalman filter
would take the following form. The object is to find an unknown function f in a Ba-
nach space W , possibly the space of continuous functions. A Gaussian prior distribution
N (m,C) where C : W → W is the covariance operator is a natural choice to model an
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unknown function due to their nice computational qualities as discussed in [2]. Bayes’
formula can then be used to calculate the posterior from which we aim to sample in order
to produce our guess for what the function should be.

Crucial to sampling from a distribution on a function space is the Karhunen-Loève
expansion of a random process in terms of the eigenfunctions of the covariance operator.
Suppose K ⊆ Rn is a compact domain in space and let (Ω,F , µ) be a probability space.

Theorem 5.1 (Karhunen-Loève) [9] Let U : K × Ω → R be a square integral mean-
zero stochastic process with continuous covariance function CU (x, y) = Eµ[U(x)U(y)]
satisfying the following: CU is continuous, symmetric and positive definite. Then U
can be decomposed as

U =
∑
n∈N

Znφn

where {φn}n∈N are the orthonormal eigenfunctions of the covariance operator and

Zn =

∫
K
U(x)φn(x)dx.

The convergence of U is uniform in x.

This theorem can be utilised to sample from a distribution on a function space as
follows. Take, for example, the Laplacian operator on [0, 1] and consider the covari-
ance operator given by (−∆)−1. Then a sample path, u from the normal distribution
N (0, (−∆)−1) on H = L2([0, 1]) can be expanded as

u(t) =

√
2

π

∞∑
k=1

ξk
k
sin(kπt)

where ξ1, ξ2, ... are independent and identically distributed according to the standard
Gaussian distribution N (0, 1) on the real line.

With this tool in the arsenal, a standard approach to tackling inverse problems and
to sample from the posterior is to implement an Markov Chain Monte Carlo (M.C.M.C.)
algorithm, examples of which are outlined in [2]. The general idea behind M.C.M.C. is to
build a Markov chain whose equilibrium distribution is the distribution of the posterior
that is desired. The most standard example is a Random Walk or Metropolis-Hastings
M.C.M.C. in which a sample uk is drawn from the prior and used to propose a candidate
draw vk for the posterior by taking a random step (hence the name) which is accepted
with a certain probability. If the sample is accepted, the procedure is repeated after
setting uk+1 = vk. Otherwise, the procedure is repeated with uk+1 = uk.

This approach looked promising, and would have been implemented fully if time per-
mitted.

6 Numerical Data

If the reader is not so interested in the specifics of the data, then this section is self
contained and can be left out, barring figures 7 and 8 which are the important diagrams
to see.

The data used was supplied by an interested client, and describes the E.G.R. system
in a car, as shown in figure 2. The data consists of upstream pressure PU , downstream
pressure PD, mass flow through the system M and the area of a valve A. Henceforth
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these notations are sacred and used only to describe these values. The system that is to
be approximated is described in figure 3.

A brief analysis of the data is given before any attempts in section 7 to use it. The
data consists of a number of time series, with data indexed by the natural numbers from
1 to 28260, where we have a time step of 0.01s in between each natural number.

The figures 4, 5, 6a and 6b show time series of the data.

(a) Time Series of Engine RPM (b) Time Series of Engine Torque

Figure 4: Working Conditions of Engine

The working conditions of the engine describe a typical journey. The speed of the
engine (figure 4a) shows the engine starting up, with a period of constant motion, followed
by a sharp acceleration at the end. The force applied by the engine (figure 4b) shows
constantly changing torque applied as if the car were performing lots of little changes in
relative speed with the ground.

(a) Time Series of Downstream Pressures
(b) Time Series of Upstream Pressures. Input
blue output red

Figure 5: Time Series of Pressure data

As can be seen, the input and output pressures from the system are essentially the
identity, but the input and output areas and mass flow values are really noisy and vary
wildly.
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(a) Time Series of Mass Flows (b) Time Series of Valve Areas.

Figure 6: Mass flow and area input and output values

Figure 7: Coordinate Projections of Input Data

Figure 7 shows the relationships between the different data streams, and as one can
see, there is very little relationship between all of them, apart from between the two
pressure values, where there is roughly a linear relationship. One notes further that the
data seems to only cover subsections of the domain so there seems specific areas where
engine operations seem not to occur.

If our methods suggested below are to be any good, the minimum requirement is
that they produce a smaller error between the approximation and the estimate. As such,
logarithmic plots of the normalised difference between the input and output data are given
in figure 8. As one can see, there is zero difference between the downstream pressure input
and output values, and so one cannot expect to predict a better method here. The error
in the upstream pressure is 10−2 which is already good. The error in the mass flow is of
the order of 10−1 and the error in the valve area is 10−1/2 and one would expect to be
able to improve this.
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Figure 8: Log Normalised difference of Input and Output data streams

7 Numerical Results

The above methods are now applied to the data as explained in section 6.
The following statistics are used to describe time series throughout:

Definition 7.1 We define, for each coordinate direction k = 1, 2, ..., d of Rd, the following
values:

|bxkc|p =
1

N1/p

(
N∑
i=1

|xik|p
)1/p

(7.1)

|bxkc|∞ = sup
i=1,...,N

{|xik|} (7.2)

Observe that the scaling of these values is chosen so that if x were a collection of
points in Lp then this value would converge to the Lp norm as N →∞.

Definition 7.2 We define, for each coordinate direction, the total variation to be the
value

‖xk‖TV =
1

N − 1

N∑
i=1

∣∣xi+1
k − xik

∣∣
7.1 Linear Interpolation

We analyse the difference between two different time series by the values as given in
(7.1) and (7.2) so as the first value gives an estimation of the average difference between
two elements of RN and the second gives a difference of the maximum difference of two
elements of RN . In the former, larger values of p, (p > 1) give more weight to larger
differences between two values, and smaller values of p (p < 1) give less weight to larger
differences than smaller ones. This interpolation gives, as output, the following graphs:
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Figure 9: Upstream Pressure Linear interpolation on first 10000 data values

Figure 9 shows an interpolation where the authors have taken one in every 4 points
in the first 10000 data points and used this as an approximation for the rest of the data.
This produces a much more noisy collection of the data, but one can still see the general
trend of the data, except for the final 5000 data points.

One also observes in figure 9 that there are points that the interpolation predicts
excessively large values, uncharacteristic within what one can see to be the case. This is
due to the fact that we have noise in the system, so the interpolation is affected by this.

7.2 Least Squares Minimisation Method

7.2.1 Schauder Type finite dimensional subspace

As has been said above, a local basis would be a very poor choice of basis since the data
is clustered in the operating space, see figure 7. However, we feel it important to give
a definitive example to show just how poor this method is in such a case, and so first
approximate in this manner.

We ran the method as described in section 3.2.2 with 10 basis points in each direction,
as this was the limit of the computation power we had. Applying this method, one sees
figure 10 as the outputs.

It is clear to see that the approximated values are much worse than the true values. The
authors believe that this is due to the low number of basis elements that are being used,
and if many more (circa 100 in each direction) are used then a much better approximation
will be found. However, one is limited to the number of basis functions to use be the
amount of data given.

One has the error values as shown in table 2 and considering PD and PU take values
between 1000 and 2000 hPa, A has values between 0 and 1 and M has values between 0
and 80 these are huge errors, and so this low dimensional approximation is not good.
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(a) Downstream pressure approximation (b) Upstream pressure approximation

(c) Mass Flow approximation (d) Valve Area approximation

Figure 10: Approximation with Schauder type functions

The basis functions have bounded support and thus as data is only over a subsection
of the domain they cannot predict engine conditions in this area so if input values occur
out of the data set we expect failure of the system.

7.2.2 Fourier space

We instead take WR to be the space spanned by the functions

γi,j,k,l(x1, x2, x3, x4) = cos

(
x1 − 1000

2500π
i

)
cos

(
x2 − 1050

4600π
j

)
cos

(
x3 + 20

170π
k

)
cos
( x4

1.7π
l
)

defined on all of the space [1000, 2250] × [1050, 3350] × [−20, 65] × [0, 0.85] and we vary
i, j, k, l to be the frequencies in each direction. Taking the frequencies to be the values
1,2,3,4 we produce figure 11 as the approximation to the data. This approximation used
a space with dimension 44 = 256 to approximate the first 10000 data points, and then
approximated the final 18000 data points.

Table 3 shows the differences of values in various statistics between the approximation
and the data given by the client. Recall the norms used in equations (7.1),(7.2) and as
you can see this is a much better approximation than the Schauder type basis, see table
2.

We also varied the size of the dimension of the space for this prediction for various
differing values of R, with R = 44, 64, 84, 104 and we found that the error is more or less
constant for all these values, and so we chose the smallest dimension for our testing.
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Figure 11: Approximation of the data with Fourier space

Figure 12: Log Normalised error in data and Fourier approximation

Since figure 11 does not really show how good our approximation was, a log base
10 normalised error plot was produced and is shown in figure 12. This shows that the
normalised log error values are around 10−2 or smaller for the pressures and between 10−1

and 10−2 for the valve area and mass flow. As one can see, the approximation improves
significantly on the input data for the mass flow and valve area, but doesn’t improve on
the input for the upstream pressure.

Low dimensional slices of the response surface of this approximation are shown in
appendix B. It is useful to envisage this as one can easily see how the differing variables
are related. One can also gain an idea of how much spread there is in an output value
dependent on various inputs. For example, figure 17 shows the variation of mass flow
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with regards to input valve area and downstream pressure for constant input mass flow
of 40 kg/h. Thus one can see that the output varies from between 30 kg/h to 45 kg/h
due to different values of the downstream pressure and valve area.

7.3 Kalman Filtering

The authors implemented a four dimensional extended Kalman filter using the Fourier
approximation and figure 13 shows the output. As one can see, our approximation follows
the two pressures well, and the mass flow adequately. It keeps the shape of the valve area
but seems to have a downward shift. This is due to the fact that the input data is always
below the estimated value, and so which our Fourier approximation is faithful to the true
estimate, the data isn’t, and so this skews the combination of the two.

Figure 13: Approximation of the data with Extended Kalman Filter

Figure 14 shows the log of normalised error between the data from the engine and the
Kalman filter approximation. As one can see, the log error of 10−2 for both the pressure
values is no different from the accuracy of the input data, and a value of 10−1 is again no
different for the mass flow. However, the valve area approximation is a little better than
the input data here.

7.4 Comparison of Approximations

Figure 15 shows the superposition of the two log errors of the Fourier and Kalman approx-
imations. As one can see, for the upstream and downstream pressures, the Kalman filter
approach produced much better estimates, almost an order of magnitude better. How-
ever, the Fourier approximations produce an order of magnitude better than the Kalman
filter with the mass flow and valve area.
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Figure 14: Log Normalised error in data and Kalman filter approximation

The latter may well be due to particularly poor measurement data for these data
streams, or from the Kalman filter not being set correctly.

Numeric values comparing these methods are shown in tables in appendix A.

Figure 15: Shows the difference in log error of the Fourier and Kalman filter approximations

7.5 Conclusion

As one can see, methods have been given which produce good accuracy of estimation
of the engine sample data. However, the important values of mass flow and valve area
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still leave some improvement in the estimation, particularly with regards to the Kalman
filtering method. It is clear from the log plots that an approach that involved a Fourier
approximation method would be preferable to approximate the mass flow and effective
valve area, as the approximations here were significantly better than the Kalman filter
approximations, and were much better than the input data. It would be interesting to
see whether the other methods suggested, namely the Bayesian approach, or the use of
different spaces to minimise in, give a better approximation of the data.
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A Approximation Data Tables

We include for reference some analysis of the various approximations that were made.
Table 2 describes the Schauder approximation, table 3 the Fourier approximation, and
table 4 the extended Kalman filtered approximation with the Fourier approximation as
the prior.

|b·c|1 |b·c|2 |b·c|∞
PD (hPa) 307.2364 466.7144 9.0285× 103

PU (hPa) 259.6355 40.2119 8.7715× 103

M (kg/h) 3.7484 7.7528 321.3820

A (cm2) 0.0666 0.1218 4.1875

Table 2: Differences in various norms between Schauder approximation and engineers data

|b·c|1 |b·c|2 |b·c|∞
PD (hPa) 42.1523 55.7961 248.0025

PU (hPa) 30.8054 38.0617 176.9373

M (kg/h) 1.6553 2.4824 44.2158

A (cm2) 0.0432 0.0583 0.6852

Table 3: Differences in various norms between Fourier approximation and engineers data

|b·c|1 |b·c|2 |b·c|∞
PD (hPa) 17.7113 22.7266 94.6994

PU (hPa) 27.2795 33.5953 95.4926

M (kg/h) 3.6139 5.0557 43.5403

A(cm2) 0.0786 0.1065 0.3840

Table 4: Differences in various norms between Kalman filter approximation and engineers data
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B Slices of the Response Surface

We include as well for reference some images of the response surfaces. These are lower
dimensional slices of the

Figure 16: Response surface for m = 40kg/h and pU = 1500hPa with output valve area

Figure 17: Response surface for m = 40kg/h and pU = 1500hPa with output mass flow M
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Figure 18: Response surface for pU = 1500 and pD = 2000 with output downstream pressure
PD

Figure 19: Response surface for a = 0.4 and pU = 1500 with output valve area A
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