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Abstract

In this dissertation, we study equivalent definitions of Besov spaces, a class of

function space which generalise many standard spaces used to study PDEs. The

most important definitions involve the Littlewood-Paley decomposition, the heat

kernel and real interpolation spaces.

For each definition we study both the non-homogeneous and homogeneous

type, the related properties, equivalences between the definitions and examples of

when these definitions are used to prove interesting results.

Of further interest, where we can, we define and study these spaces on

bounded domains as there are interesting problems solved on the whole space but

not on bounded domains.
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Chapter 1

Introduction

1.1 Motivation

In the study of existence, uniqueness and regularity of solutions to PDEs, functions

spaces are of key importance. Sobolev spaces are well known for use in PDEs as

they provide the necessary framework to define weak solutions properly. One may

wish to attain higher regularity and there are other important function spaces to

look for solutions, we consider for instance, Besov spaces. An example is given in

Chapter 4.

The study of Besov spaces is an active and growing area of research. Besov

space denoted Bs
p,q and Triebel-Lizorkin space denoted F sp,q for s ∈ R and 1 ≤ p, q,≤

∞ are useful as they are a generalisation of many standard spaces used to study

PDEs. For instance in Cannone et al. [2004] Lq = F 0
2,q, W

s
q = F s2,q and Cs = Bs

∞,∞

where W s
q is the Sobolev-s space in Lq and Cs is the Hölder-s space. With these

generalisations we can further prove properties like embedding theorems in higher

generality than before. These embedding theorems can be applied to more problems.

Of further interest is the difficulties of generalising the definition of Besov

spaces to sub domains. This is due to the main definition of the space that is widely

used, the Littlewood-Paley definition. This is one of the most explicit definitions and

due to the decomposition of the function, we have powerful tools that can be used

with this definition for solving calculations. However there is no easy generalisation

of this definition to sub domains and thus further study into other definitions that

can be generalised is vital for the study of problems involving sub domains.
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1.2 Outline

We introduce first the classical definition of a Sobolev norm on a domain Ω and

observe the different spaces that can be generated from this norm. Further we study

generalisations to Sobolev spaces with differentiability in R. Finally we introduce

homogeneous Sobolev norms and the intrinsics of modifying the space so that we

obtain a norm. This chapter serves as a foundation so that future work in Besov

spaces is understandable.

In Chapter 3 we introduce the Littlewood-Paley decomposition of a function

and use this to define a Besov space on the whole space. We then study lemmas

and properties related to the Littlewood-Paley decomposition to see how useful this

definition is for calculations. Finally we apply all this to the Onsager conjecture,

a conjecture related to the incompressible Euler equations. It details the relation

between the space of initial conditions and the conservation of energy from the Euler

equations. We note that there is no easy way to generalise this definition to sub

domains.

In Chapter 4 we study the definition of a Besov space using the heat kernel.

Here we go over special bounds the heat kernel provides and prove the equivalence of

the heat kernel definition of a Besov space to the Littlewood-Paley definition. Then

we look at an example of applying our new theory to an example involving the

heat equation, and compare our bounds to those generated by conventional Sobolev

methods. Finally we generalise this definition to sub domains so in the future we

can study properties and problems on these sub domains.

In Chapter 5 we introduce interpolation theory and use this general theory

to present another definition of a Besov space that is easily generalisable to the sub

domains. From this definition we use the interpolation theory to develop properties

of Besov spaces.

In chapter 6 we introduce two more definitions of Besov spaces and see an-

other generalisation to sub domains. Here we investigate the links between these

definitions, the Littlewood-Paley definition and the interpolation definitions and use

this to give better understanding of how the different ways of defining a Besov space

interact.

2



Chapter 2

Sobolev Spaces

We start with an introduction of the classical Sobolev spaces and their properties.

Looking at these simpler, well known spaces, we shall introduce important properties

and concepts of Sobolev spaces. This will then give us inspiration about which

properties would be useful to study for the more general Besov spaces.

2.1 Sobolev Spaces with Integer Derivatives

The Sobolev norm, on a domain Ω ⊆ Rd, is defined as follows and is given in Chapter

7 of Adams and Fournier [2003].

For m positive integer and 1 ≤ p ≤ ∞,

‖u‖Xm
p

=

 ∑
0≤|α|≤m

‖Dαu‖pLp(Ω)

 1
p

, (2.1.1)

and for p =∞
‖u‖Xm

∞ = max
0≤|α|≤m

‖Dαu‖L∞(Ω).

This norm considers positive integer derivatives only.

From this norm we can state three natural definitions of a Sobolev space,

which are:

1. Hm
p (Ω) := the completion of {u ∈ Cm(Ω) : ‖u‖Xm

p (Ω) < ∞} with respect to

the norm ‖ · ‖Xm
p (Ω)

2. Wm
p (Ω) := {u ∈ Lp(Ω) : Dαu ∈ Lp(Ω) for 0 ≤ |α| ≤ m} Dα weak derivative.

3. Wm
p,0(Ω) := the closure of C∞0 (Ω) in the space Wm

p (Ω)

3



When considering the entire space Ω = Rd we find that these definitions are all

equivalent. However, interestingly, this does not hold when Ω is a strict subset of

the entire space. Therefore when we consider Besov spaces on strict subsets of Rd,
this complication will have to be considered.

In fact, as explained in full detail in Chapter 3 of Adams and Fournier [2003],

we discover that Hm
p (Ω) ⊆Wm

p (Ω) and that Hm
p (Ω) is equivalent to Wm

p (Ω) for any

domain as long as p 6= ∞. Further we discover for p 6= 1,∞ for m ≥ 1 and p ≥ 2

then Wm
p (Ω) is equivalent to Wm

p,0(Ω) if and only if Ωc is (m, p′)-polar (a condition

described in Chapter 3 of Adams and Fournier [2003]). To help understand this

condition, if Ωc has positive measure it cannot be (m, p′)-polar. This is a strong

condition on Ω and in most cases will not hold.

From this example we see that we must be careful when defining function

spaces on bounded domains, since these extra complications can occur.

2.2 Sobolev Spaces with Real Derivatives

In the previous section we discussed spaces with only integer differentiability. For

further generalisation of these spaces we would like to define Sobolev spaces for any

real valued differentiability.

There are two methods for this generalisation. The first, discussed in Peetre

[1976], involves using Fourier analysis to define the Sobolev space and so we can

only take Ω = Rd.
This generalisation involves defining the operator J = (1−∆)

1
2 . This can be

defined with use of the Fourier transform as Jf(ξ) = (1+|ξ|2)
1
2 f̂(ξ). Then fractional

powers can be easily defined by Jsf(ξ) = (1 + |ξ|2)
s
2 f̂(ξ) for f ∈ S ′, the space of

tempered distributions. Once this is done we define the Sobolev space for s ∈ R and

p ∈ [1,∞] by

W s
p (Rd) = {f ∈ S ′ : ‖Jsf‖Lp <∞}, (2.2.1)

with the norm ‖f‖W s
p

= ‖Jsf‖Lp .
The second generalisation involves interpolation spaces which will be defined

later and is explained in Peetre [1976] and Chapter 7 of Adams and Fournier [2003].

The fractional W s
p (Ω), for any Ω ⊆ Rd, is defined by interpolating between an Lp

space and a W a
p space for a an integer larger than s. This method of interpolation

can be used to define a Besov space for any Ω ⊆ Rd and is a useful definition for

looking at properties of these spaces.
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2.3 Homogeneous Sobolev Spaces

A further variant of Sobolev spaces, and later Besov spaces, comes from defining

these spaces so that the norm is homogeneous. An example of a homogeneous space

is the Lp(Ω) spaces since ‖f(λ·)‖Lp = λ
−n
p ‖f‖Lp . In general, for a homogeneous

space, if one scales the variable then the norm scales as well.

For scaling to occur for the integer derivative Sobolev space norm, as defined

in (2.1.1), we see that each different level of differentiation will give a different

scaling order. This is due to the chain rule as each differential gives an extra order

of the constant, D(f(λx)) = λD(f(x)). Thus a norm with a sum of mixed orders of

differentials will have a mixed order of scaling for each term and no overall scaling

for the sum. To correct this we shall remove the lower order differentials and just

leave the highest differentials remaining. Thus we modify the norm into,

‖u‖Ẋm
p

=

 ∑
|α|=m

‖Dαu‖pLp(Ω)

 1
p

if 1 ≤ p <∞, (2.3.1)

and

‖u‖Ẋm
∞

= max
|α|=m

‖Dαu‖L∞(Ω).

We notice that this now becomes a semi-norm. This is because any polynomial of

degree less than m has norm zero and in order to create a normed space we must

quotient out by the space of polynomial of degree m− 1 and less. This is a general

problem which we will correct for the Besov cases later with a similar method.

Considering again the generalised Sobolev norm defined earlier by (2.2.1),

we can define a homogeneous version of the norm by replacing the operator J by I,

where Is = (−∆)
s
2 . Again to define the homogeneous Sobolev space Ẇ s

p we must

quotient out by polynomials to define a norm. Thus we define for N > s − n
p the

space as,

Ẇ s
p = Ẇ s

p (Rd) = {f : f ∈ S ′/PN and ‖Isf‖Lp <∞}

with semi-norm

‖f‖Ṗ sp = ‖Isf‖Lp

To show that this is the homogeneous norm we see that in the non-homogeneous

case we can expand the operator Js = (1 − ∆)
s
2 in a series expansion of ∆ and

obtain terms involving derivatives of all orders. Thus removing these terms to leave

the highest derivative gives us the operator I.

5



Chapter 3

Littlewood-Paley Theory

The relation between Besov spaces and Sobolev spaces is an equivalence as follows:

Bs
2,2 = W s

2 . In general, Besov spaces are a generalisation of many spaces including

Sobolev spaces with the embedding

Bs
p,1 ↪→W s

p ↪→ Bs
p,∞ (3.0.1)

shown by the comparison theorem for interpolation spaces in the book Peetre [1976].

The equivalences between Besov spaces and other function spaces are in general non-

trivial to prove.

Besov spaces have many separate equivalent definitions on Rd. These have

varying forms and different definitions can be more useful in certain circumstances

than others. In this section we will look at the Littlewood-Paley definition and its

properties. We will investigate how useful this definition is, in particular for ease of

calculations.

3.1 Littlewood-Paley Definition

The first definition of a Besov space is the Littlewood-Paley definition as described in

Cannone et al. [2004], Cannone [1995],Peetre [1976] and Bahouri et al. [2011]. This

is the most useful definition for calculations as it forms a systematic breakdown

of the space into dyadic blocks of the Fourier modes of the function. Once split

into these dyadic blocks, the decomposed function now satisfies nicer properties and

operators acting on the function are easier to bound. We then just deal with a

countable sum of these modes rather than dealing with one complicated norm. This

being said, the definition heavily relies on Fourier analysis tools and thus it is not

applicable if the domain is not Rd or if the domain is not periodic. Thus, we will

6



need to use different definitions to look at problems in bounded domains.

To understand how this decomposition of the function is achieved let us look

at a specific example in R3.

Firstly we take an arbitrary function Φ ∈ S such that;

0 ≤ Φ̂(z) ≤ 1, Φ̂(z) = 1 if |z| ≤ 3

4
, Φ̂(z) = 0 if |z| ≥ 3

2
,

and then for j ∈ Z let

φ(x) = 8Φ(2x)− Φ(x), Φj(x) = 23jΦ(2jx), φj(x) = 23jφ(2jx).

Then we further define ∗ to be the convolution operator and then define

Sj = Φj∗ and ∆j = φj∗. Since the Fourier transform of a convolution of functions

becomes the multiplication of the Fourier transforms. Thus by performing a convo-

lution here we perform multiplication in Fourier space. Because of the properties of

{φj} and {Φj}, we perform a nice cut off in Fourier modes that we wanted for our

decomposition. Finally the set {Sj ,∆j}j∈Z as the Littlewood-Paley decomposition,

so that

Id = S0 +
∑
j≥0

∆j .

The physical interpretation of suppf̂ consists of those frequencies which build

up f from linear combinations of eixξ. Thus with a nice support and the smooth

cut off that the decomposition gives us, we have a good control of the function

frequencies when trying to bound the function. With only certain wave frequencies

to worry about, the calculations become simplified and we have more tools at our

disposal.

We now define the general properties that are necessary to produce the de-

sired Littlewood-Paley decomposition of our function and throughout the rest of

this report we will hopefully see why these properties are chosen.

Let {φj}j∈Z sequence of test functions have the following properties as de-

scribed in Peetre [1976];

1 φj ∈ S

2 φ̂(ξ) 6= 0 iff ξ ∈ R◦j where Rj := {2j−1 ≤ |ξ| ≤ 2j+1}

3 |φ̂j(ξ)| ≥ Cε > 0 if ξ ∈ Rj,ε where Rj,ε := {(2− ε)−12j ≤ |ξ| ≤ (2− ε)2j}

4 |Dβφ̂j(ξ)| ≤ Cβ2−j|β| for every β

7



5 (Sometimes require)
∑∞

j=−∞ φ̂j(ξ) = 1 or
∑∞

j=−∞ φj(ξ) = δ(x).

Let Φ have the properties;

1. Φ ∈ S

2. Φ̂(ξ) 6= 0 iff ξ ∈ K◦ where K := {|ξ| ≤ 1}

3. |Φ̂(ξ)| ≥ Cε 6= 0 if ξ ∈ K◦ε where Kε = {|ξ| ≤ 1− ε}.

Then with any such set of functions {{φj}j∈Z,Φ} we can define the Littlewood-

Paley decomposition {Sj ,∆j}j∈Z analogously to before.

There are a few simplifications that can be made on this set of eight proper-

ties. Firstly, we see that if we have φ0 with the properties 1 to 3 then we can define

φj by φ̂j(ξ) = φ̂(ξ/2j). Further assuming that φ̂(ξ) ≥ 0 then we get 5 by replacing

φ̂j(ξ) by φ̂j(ξ)/
∑∞

j=−∞ φ̂j(ξ). Then in this case we can set Φ̂(ξ) =
∑−1

j=−∞ φ̂j(ξ).

With this cut off using elements of S, we can define the action on any element of S ′

and look at Lp norms of these decomposed functions. We can now define a Besov

space.

Definition 3.1.1 (Littlewood-Paley Besov space) Let s ∈ R, 1 ≤ p ≤ ∞, 0 <

q ≤ ∞. Then we set

Bs
p,q = Bs

p,q(Rd) =

f : f ∈ S ′ and ‖S0f‖Lp +

 ∞∑
j=0

(
2js‖∆jf‖Lp

)q 1
q

<∞

 .

(3.1.1)

With the norm of,

‖f‖Bsp,q = ‖S0f‖Lp +

 ∞∑
j=0

(
2js‖∆jf‖Lp

)q 1
q

.

The definition can be shown to be independent of the choice {φj}∞−∞ by

showing that this definition is equivalent to the interpolation space definition (5.1.3)

given later.

We now wish to define a homogeneous definition of a Besov space. To achieve

a homogeneous norm we must only care about the highest derivative and not any

fractions beneath as these will stop the scaling from working. Thus in the definition,

to keep it a normed space and not a semi-normed space, we remove lower degree

polynomials that only give an overall function shape structure and not the local

structure.

8



Definition 3.1.2 (Littlewood-Paley Homogeneous Besov space) Let s ∈ R,

1 ≤ p ≤ ∞, 0 < q ≤ ∞, N(s, d, p) > s − d
p or with q ≤ 1 N(s, d, p) ≥ s − d

p , PN
polynomials of degree N . Then we set

Ḃs
p,q = Ḃs

p,q(Rd) =

f : f ∈ S/P ′N and

 ∞∑
j=−∞

(
2js‖∆jf‖Lp

)q 1
q

<∞

 . (3.1.2)

With the semi-norm of,

‖f‖Ḃsp,q =

 ∞∑
j=−∞

(
2js‖∆jf‖Lp

)q 1
q

modulo polynomials of degree PN .

For the Homogeneous case, instead of taking f ∈ S/P ′N we can define distri-

butions vanishing at infinity. The space S ′0(Rn) is the space of distributions such that

limm→−∞ Smf = 0 in S ′. This definition removes the polynomials as supp p̂ = {0}
for p a polynomial, and also because p̂ is a constant of the delta distribution.

3.2 Littlewood-Paley Properties

The first and possibly the most useful lemmas are the Bernstein Lemmas.

Lemma 3.2.1 (Bernstein) For A an annulus and B a ball there exists a constant

C such that for k ∈ Z and 1 ≤ p, q ≤ ∞ with p ≤ q and for any function u ∈ Lp,
we have

Supp û ⊂ λB =⇒ ‖Dku‖Lq ≤ Ck+1λ
k+d( 1

p
− 1
q

)‖u‖Lp , (3.2.1)

Supp û ⊂ λA =⇒ C−k−1λk‖u‖Lp ≤ ‖Dku‖Lp ≤ Ck+1λk‖u‖Lp . (3.2.2)

As we see these give bounds, dependent on the support in Fourier space, for

the derivatives of a function. Therefore we see that the Littlewood-Paley decom-

position creates these nicely supported functions where we can apply the Bernstein

lemmas. These are useful to understand further properties and also used in showing

the equivalences of different definitions of Besov spaces.

Proof λ is just dilation so can assume λ = 1. For the first implication, let φ ∈ D
with value 1 over B. As we can write û(ξ) = φ(ξ)û(ξ) so we have u(x) = φ̌ ? u(x)

and thus ∂αu(x) = ∂αφ̌ ? u(x). We can then apply Young’s inequality to obtain

‖∂αφ̌ ? u‖Lq ≤ ‖∂αφ̌‖Lr‖u‖Lp ,

9



where 1
r = −1

p + 1
q + 1. To continue we must find a bound on the ‖∂αφ̌‖Lr term and

then we have the inequality we want. Notice that the use of Young’s inequality is

valid since we have p ≤ q. First we can state that

‖∂αφ̌‖Lr ≤ ‖∂αφ̌‖L∞ + ‖∂αφ̌‖L1 .

The sup-norm bounds the function over any compact set. The L1 bound is a tail

bound as functions with tails in L1 must decay faster than in any other Lp space.

We then want to collect the terms under one L∞ bound. This is done by multiplying

the function under the L1 bound by |x|
2d

|x|2d . Then we take the sup of ∂α|x|2d out for

a bound. This gives

≤ C‖
(
1 + | · |2

)d
∂αφ̌‖L∞ .

We then use that the Fourier transform maps L∞ to L1 and thus,

≤ C‖ (Id−∆)d ((·)α φ) ‖L1 ≤ Ck+1.

We then use the condition that φ ∈ D to get the bound we want.

Again we need to take a ψ ∈ D(Rd \ {0}) with value 1 in neighborhood of

A. This is similar to before but now as the point {0} is removed this works for the

annulus case and we get the upper bound in a similar argument to above.

For the lower bound we again write û(ξ) = ψ(ξ)û(ξ). We can then, for some

constants Cα, write this term as.

û(ξ) = ψ
∑
|α|=k

(iξ)αCα
(−iξ)α

|ξ|2d
û(ξ) =

∑
|α|=k

(iξ)αû(ξ)Cα
(−iξ)α

|ξ|2d
ψ

Then we can apply the inverse Fourier transform to both sides and we obtain

u(x) =
∑
|α|=k

(∂)αu(ξ) ? ψ̌α where ψ̌α = CαF−1

(
(−iξ)α

|ξ|2d
ψ

)
.

We can then apply Young’s inequality to both sides. To complete the proof

we need to bound ‖ψ̌α‖L1 . This is done similarly to before and so we get the lower

bound we want. �

One problem that needs to be considered is what to do when dealing with a

product of two functions when we are taking the Littlewood-Paley decomposition.

The method to deal with this is discussed in Bae [2009] and Bahouri et al. [2011].

For this explanation we shall absorb the S0 term into the ∆0 term and thus

can write the Littlewood-Paley decomposition of the function as
∑

j≥0 ∆ju. For a
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u and v in S ′ we then have that their product can be written as a Littlewood-Paley

decomposition by

uv =
∑
j,k

∆ju∆kv

where here j, k ∈ N.

This formula is a double sum over the product of all the combinations of the

decomposition. As this is complicated to deal with let us consider splitting the sum

up into three parts considering an arbitrary k and N0 dependent on the functions

used for the decomposition,

uv =
∑
j,k

∆ju∆kv =
∑

k≤j−N0−1

∆ju∆kv +
∑

k≥j+N0+1

∆ju∆kv +
∑

|k−j|≤N0

∆ju∆kv.

As the support of the Fourier transform of each element is finite and the

Littlewood-Paley decomposition was chosen so that each support only intersects

with a finite number of the other terms in the decomposition, we can simplify these

three separate terms.

Looking at the first two terms, N0 is chosen so that the supports in Fourier

space no longer intersect. To make life easy with the specific example chosen earlier

we can choose N0 to be one. We can now simplify the first term by noticing that

as k is always less than j with independent support in Fourier space we can collect

the sum of these smaller terms into Sj−N0v. Similarly we can do this for the second

term.

We are now ready to define the paraproduct of v and u with the remainder

term as well as described in page nine of Danchin [2012].

Definition 3.2.2 (Paraproduct) The paraproduct of v by u is defined as.

Tuv :=
∑
j

Sj−N0u∆jv

The remainder of u and v is defined as.

R(u, v) :=
∑

|j−ν|≤N0

∆ju∆νv

Thus with the paraproduct defined we can write the Bony decomposition of the

product of two functions uv .

Definition 3.2.3 (Bony decomposition) For the product of two functions uv

11



with u, v ∈ S ′ we can write the Bony decomposition as.

uv := Tuv + Tvu+R(u, v)

This gives a way to decompose products of functions. All this above can be done

for the homogeneous case as discussed in Bahouri et al. [2011] where the terms are

all the same yet the homogeneous Littlewood-Paley decomposition is used instead.

This decomposition will be used later in the proof of Onsager’s conjecture

where we have to deal with a term of products of functions to find a bound. Further

this is useful to look at embeddings of products of functions and there properties.

3.3 Littlewood-Paley Applications

Here we shall try to give some examples of applications where the Littlewood-Paley

definiton of a Besov space can be used to prove results for Besov spaces that other

spaces, such as Lp spaces or W s
p spaces, do not necessarily satisfies.

3.4 Embeddings

One case of this is the embedding of H1(R2) into BMO but not into L∞ which

would be useful in many theorems. However what can be shown is the embedding

of B1
2,1 into L∞ which works as B1

2,1 is a slightly smaller space than H1 “yet is very

similar in size as H1 = B1
2,2”.

Example 3.4.1 B1
2,1(R2) embeds into L∞(R2)

Proof We know that from equation (3.0.1) B0
∞,1 continuously embeds into L∞ so

want to show the embedding into B0
∞,1 then we are done. Thus for a u ∈ B0

∞,1 it

has norm ‖S0u‖L∞ +
∑

j∈N(‖∆ju‖L∞). Then we can multiply by 2j

2j
and this gives.

‖S0u‖L∞ +
∑
j∈N

2j

2j
(‖∆ju‖L∞) = ‖S0u‖L∞ +

∑
j∈N

2j(
1

2j
‖∆ju‖L∞)

Thus all that is left to prove is that is that ( 1
2j
‖∆ju‖L∞) ≤ ‖∆ju‖L2). This

is done by the scaling part of the Bernstein lemma (3.2.1) which gives ‖∆j‖Lq ≤

λ
d
(

1
p
− 1
q

)
‖∆j‖Lp . Thus with λ = 2j , d = 2, p = 2 and q = ∞ we get the term 2j

out which cancels with the other 2j to give
∑

j∈N 2j‖∆ju‖L∞ which is bounded by

assumption.

12



To finish the proof we notice the same scaling applies to the term ‖S0u‖L∞
yet here λ = 1 and thus we have ‖S0u‖L∞ ≤ ‖S0u‖L2 trivially. �

This important example is a specific case of an embedding theorem, Propo-

sition 2.20 in Bahouri et al. [2011], which states:

Proposition 3.4.1 Let 1 ≤ p1 ≤ p2 ≤ ∞ and 1 ≤ r1 ≤ r2 ≤ ∞. Then for s ∈ R

Bs
p1,r1 is continuously embedded in B

s−d
(

1
p1
− 1
p2

)
p1,r1 .

Proof This proof is similar to the proof above using ‖∆ju‖Lq ≤ λ
d
(

1
p1
− 1
p2

)
‖∆j‖Lp

with λ = 2j . Then we just use the fact that lr1 is continuously embedded in lr2 , and

we are done. �

Further we find in Proposition 2.39 that in a homogeneous setting the pre-

vious embedding in fact embeds into the space C0 (continuous functions that decay

to 0 at infinity). We can show this by noting that S0 is dense in Ḃ
d
p

p,1 where in our

case is Ḃ1
2,1 as d = p = 2.

We see that this gives an interesting relation of the interplay between the

regularity and the integrability of functions in Besov spaces with more generality

than other embedding theorems.

3.5 Onsager’s Conjecture

3.5.1 Original Idea

Onsager’s conjecture considers the incompressible Euler equations given by the sys-

tem described in Shvydkoy [2010]

∂tu = (∇u)u−∇p Momentum balance (3.5.1)

∇ · u = 0 Incompressibility condition. (3.5.2)

Here u is a divergence-free velocity field, p is the internal pressure and consider the

entire space say R2 or R3 so we can use Fourier tools.

Here we care about the energy conservation of the system above. For an

initial condition u0 we obtain∫
Ω
|u(t)|2dx =

∫
Ω
|u0|2dx for all t ≥ 0.

We notice above that this condition holds if, once multiplying by a test

function u and integrating over time, the RHS of the equation (3.5.1) becomes

13



0. Now for smooth solutions with regular enough domains the RHS is zero and

conservation of energy holds. Assuming that we can perform integration by parts

with u|∂Ω = 0 and use the incompressibility condition then this term becomes 0.

The question is what is the minimal regularity needed for this conservation of energy

to hold.

Consider for instance that u is a distribution where we take u weakly con-

tinuous in time and L2 in space u ∈ L∞(0, t, L2) then this gives zero for the second

term on the RHS of (3.5.1). Thus to answer the question of minimal regularity,

our attention falls to the first term on the RHS of (3.5.1). Thus we care about the

total energy flux Π,

Π :=

∫
Ω

(∇u)u · udx.

Then using the identity ∇ · (u ⊗ u) = (∇u)u + (∇ · u)u from Gonzalez and Stuart

[2008],

Π :=

∫
Ω
∇ · (u⊗ u) · u− (∇ · u)u · udx.

The condition u ∈ L∞(0, t, L2) does not allow us to integrate by parts here

and obtain that Π = 0. Here u ⊗ u is defined componentwise as the elements

uiuj for i, j = 1, . . . , d. We have seen that after performing a Littlewood-Paley

decomposition on a function, due to Bernstein lemmas, the derivative seems to act

like multiplication by constants and thus we could deduce that

Π ∼=
∫

Ω
(|∇|

1
3u)3dx.

So näıvely if u has Hölder continuity 1
3 then Π would make sense and any

better regularity would be sufficient for integration by parts and give Π = 0. This

is Onsager’s conjecture that:

• Every weak solution to the incompressible Euler equations with smoothness

h > 1
3 conserves energy.

• Conversely there exists a weak solution to the incompressible Euler equations

of smoothness exactly 1
3 that does not conserve energy.

Onsager’s original heuristic justification was based on laws of turbulence and

not the Littlewood-Paley decomposition.
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3.5.2 Critical Spaces and B
1
3
3,c0

To explain what we mean by critical spaces let h ∈ C0 be a scalar mollifier with

dilation hδ(x) = 1
δnh(xδ ). Then uδ(t, x) = u(t, ·) ?hδ(x) and for u ∈ L∞(0, t, L2) this

is well defined. Further, for δ > 0 uδ, is a smooth approximation of u and as δ → 0

we return u.

We can thus multiply (3.5.1) by (uδ)δ and integrate over space and time to

obtain∫ t

0

∫
Rd
∂tu · (uδ)δ dx ds+

∫ t

0

∫
Rd

(∇u)u · (uδ)δ dx ds =

∫ t

0

∫
Rd
−∇p · (uδ)δ dx ds.

We can push the second mollification onto the other terms and with this

smoothness integrate by parts so that using incompressibility the RHS term van-

ishes. For the far left term, we can use the identity ∂u · u = 1
2∂t(u

2) and integrate

over time. Finally for the remaining term we can use the identity ∇ · (u ⊗ u) =

(∇u)u+ (∇ · u)u and integrate by parts to obtain

1

2
(‖uδ(t)‖2L2

− ‖uδ(0)‖2L2
) =

∫ t

0

∫
Rn

(u⊗ u)δ : ∇uδ dx ds (3.5.3)

where A : B = Trace(AB). The RHS is the energy flux through different orders

scales δ. We notice that we have three u terms on the RHS. Thus for the optimal

function space we would want some bound in terms of ‖u‖3X in some function space

X involving time and space. Now with scale analysis we have these three outcomes:

• We have a one dimensional integral over time (T ), this will scale at rate T .

• We have three velocity terms, if we fix an average velocity (U) this will scale

at rate U3.

• We have one d-dimensional integral and one differential which together scale

with length(L) at a rate Ld−1.

Overall, this gives the formula to define an Onsager critical space as having

the scaling

(dim‖ · ‖X)3 = TU3Ld−1.

Some of these spaces in three dimensions are L3

(
0, t, L 9

2

)
and L3

(
0, t,H

5
6

)
when in

two dimensions we have L3(0, t, L6). Yet of particular interest are L3

(
0, t, B

d(3−p)+p
3p

p,r

)
and thus L3

(
0, t, B

1
3
3,l

)
for l ∈ [1,∞] are critical for any dimension. In fact, the
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proof will be done in the space L3

(
0, T, B

1
3
3,c0

)
where this is defined as follows

Bs
p,c0 :=

{
u ∈ Bs

p,∞ : lim
j→∞

2js‖∆ju‖Lp = 0

}
.

3.5.3 Proving Onsager’s Conjecture in B
1
3
3,c0

To prove this conjecture in the Besov space B
1
3
3,c0

we will need the definition of the

weak solution to the incompressible Euler equations. We will also need a lemma

from Shvydkoy [2010] that relates this definition to Littlewood-Paley theory.

Definition 3.5.1 (Weak solution to Euler equations) A weakly continuous vec-

tor field u from [0, T ] to L2 u ∈ Cw(0, T, L2), is a weak solution to the Euler equa-

tions with initial data in u0 ∈ L2 if for every compactly supported test function

φ ∈ C∞0 ([0, T ]× Rd) with ∇ · φ = 0 and for every t ∈ [0, T ] we have∫
Rd×t

u · φ dx−
∫
Rd×0

u · φ dx−
∫ t

0

∫
Rd
u · ∂sφ dx ds =

∫ t

0

∫
Rd

(u⊗ u) : ∇φ dx ds

(3.5.4)

and ∇u(t) = 0 in the sense of distributions.

With the next lemma one can pass from the weak formulation of the equation

to the mollified equation or to the integral equations. Then with the mollified

equation we can write this as a partial sum of the Littlewood-Paley decomposition

of the function u and then check the sum converges to 0.

Lemma 3.5.2 Let u be a weak solution to the incompressible Euler equations. Then

for each fixed δ > 0, uδ : [0, T ]→W s
q is absolutely continuous for all s > 0 and q ≥ 2

and moreover

∂tuδ = −∇ · (u⊗ u)δ −∇pδ. (3.5.5)

Furthermore, (3.5.4) is equivalent to the integral equation,

u(t) = u0 −
∫ t

0
[∇ · (u⊗ u) +∇p] ds

in the sense of distributions for all t ∈ [0, T ].

We will have to introduce some more notation. We know that for a Littlewood-

Paley decomposition {Sj ,∆j}j∈Z we get the identity operator by Id = S0+
∑

j≥0 ∆j .

Let us instead introduce the partial sum and define u≤q := (S0 +
∑q

j≥0 ∆j)(u). So
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this is only a partial Littlewood-Paley decomposition missing out the parts of u with

Fourier modes of the order 2k for k ∈ Z, k > q. We see that from the definition of

a mollifier that the process of mollification smooths out the modes of order 1
δ and

greater. Thus as δ → 0 it smooths out only the higher modes until δ = 0 and we get

the identity. Thus we see the relation, for δ there is a q where the partial sum up to

q is the same as the mollified uδ. Further we can denote ũq = (∆q−1 + ∆q + ∆q+1)u.

Finally we can define the Littlewood-Paley energy flux through wave number

2q by

Π≤q = −
∫
Rd

(u⊗ u)≤q : ∇u≤q dx. (3.5.6)

From the lemma above we know that if u(t) is a weak solution to the in-

compressible Euler equations then it satisfies (3.5.5). Thus from the discussion

above we can then write this mollifier equation in terms of partial Littlewood-Paley

decompositions as follows

∂tu≤q = −∇ · (u⊗ u)≤q −∇p≤q.

To this equation, we can multiply by u≤q and integrate over time and space.

Due to the absolute continuity of u≤q, as it is only a partial sum, we can follow the

same procedures as for equation (3.5.3) and obtain the equation.

1

2
(‖u≤q(t)‖2L2

− ‖u≤q(0)‖2L2
) = −

∫ t

0
Π≤q(s) ds (3.5.7)

Now we can define the following localization kernel K = limq→∞Kq which

we will use later to give an important bound on the flux for u ∈ B
1
3
3,∞. As described

in Shvydkoy [2010], the important feature of this bound is that it features a strongly

decreasing tail which greatly penalises far off interactions giving a quasi-local bound

on Π≤q.

Kq =

2q
2
3 if q ≤ 0

2−q
4
3 if q > 0.

With the following lemma we can easily prove the result. This interesting

bound to prove in Besov spaces for the operator Π≤q will finish off this proof.

Lemma 3.5.3 The energy flux of a divergence free vector field u ∈ B
1
3
3,∞ satisfies

the following estimate.

|Π≤q| ≤ C
∑
j≥1

Kq−j2
j‖∆ju‖3L3

(3.5.8)
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where C > 0 is an absolute constant.

Theorem 3.5.4 (Onsager in B
1
3
3,∞) Every weak solution u to the incompressible

Euler equations on a time interval [0, T ] that satisfies

lim
q→∞

∫ T

0
2q‖uq(t)‖3L3

dt = 0,

conserves energy on the entire interval [0, T ]. In particular, energy is conserved for

every solution in the class L3

(
0, T, B

1
3
3,c0

)
.

Proof Taking the modulus of both sides of (3.5.7) we get the following

1

2
(‖u≤q(t)‖2L2

− ‖u≤q(0)‖2L2
) ≤

∫ t

0
|Π≤q(s)|ds ≤ lim sup

q→∞

∫ t

0
|Π≤q(s)|ds.

Then we can apply the above lemma to obtain the inequality

≤ lim sup
q→∞

∫ t

0
C
∑
j≥1

Kq−j2
j‖∆ju‖3L3

ds ≤ C lim sup
q→∞

∫ t

0
2q‖∆qu‖3L3

ds = 0.

The last inequality holds as the sum of Kq is exponentially decreasing for all j except

j = q then the limit as q →∞ is bounded except for j = q and so this term remains.

�

Proof (Proof of 3.5.3) To prove this we need to split up (u ⊗ u)≤q which we can

see as a matrix of all the multiplications of the components of u and thus to split

up this double sum we need to use paradifferential calculus and obtain the Bony

decomposition of the product of the functions Bahouri et al. [2011].

This gives the following from Constantin et al. [1994] and Shvydkoy [2010]

(u⊗ u)≤q = r≤q(u, u)− u>q ⊗ u>q + u≤q ⊗ u≤q

where,

r≤q(u, u)(x) =

∫
Rd

Φ̌q(y)(u(x− u)− u(x))⊗ (u(x− u)− u(x)) dy.

Thus substituting into the definition of Π≤q gives the equation

|Π≤q| ≤
∫
Rd
|r≤q(u, u) : ∇u≤q|+ |u>q⊗u>q : ∇u≤q|+ |u≤q⊗u≤q : ∇u≤q| dx. (3.5.9)
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We now need to bound each term separately so for the first (1) term on the RHS of

(3.5.9) we use Hölders inequality to give,

(1)RHS ≤ ‖r≤q(u, u)‖L 2
3

‖∇u≤q‖L3

Where further as 0 ≤ Φ̌q ≤ 1 we obtain,

‖r≤q(u, u)‖L 2
3

≤
∫
Rd
|Φ̌q(y)|‖u(· − y)− u(·)‖2L3

dy.

Now we want to bound ‖u(· − y) − u(·)‖2L3
. First we multiply by |y|

|y| inside the

modulus and see that we have

|y|2
∥∥∥∥u(· − y)− u(·)

|y|

∥∥∥∥2

L3

.

The inside term looks like a differential. Due to the multiplication by the function

|Φ̌q(y)| we see that this differential term only gives weight to Fourier modes of order

less than or equal to q. We can split it into two sums one over ≤ q and one over

> q and using Bernstein’s lemma for the differential term we obtain

‖u(· − y)− u(·)‖2L3
≤
∑
p≤q
|y|222p‖∆pu‖2L3

+
∑
p>q

‖∆pu‖2L3
.

We want a bound with the term
(

2
p
3 ‖∆pu‖L3

)3
thus we multiply, inside the sum,

the first term by 2
4
3 (q−p)

2
4
3 (q−p)

and the second term by 2
2
3 (q−p)

2
2
3 (q−p)

and collect terms to give,

= |y|22q
4
3

∑
p≤q

2−
4
3

(q−p)(2
p
3 ‖∆pu‖L3)2 + 2−

2
3
q
∑
p>q

2
2
3

(q−p)(2
p
3 ‖∆pu‖)2

L3
.

We notice that these sums form a pattern of the K kernel introduced before and

thus we can simplify to,(
|y|22q

4
3 + 2−

2
3
q
)∑

p

Kq−p(2
p
3 ‖∆pu‖L3)2.
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Substituting this back and using Bernstein inequality on ‖∇u≤q‖L3 we get that

(1)RHS ≤
∫
Rd
|Φ̌q(y)|

(
|y|22q

4
3 + 2−

2
3
q
)∑

p

Kq−p(2
p
3 ‖∆pu‖L3)2 dy

∑
p≤q

22p‖∆pu‖2L3

 1
2

=
∑
p

Kq−p(2
p
3 ‖∆pu‖L3)2

(∫
Rd
|Φ̌q(y)||y|22q

4
3 dy + 2−

2
3
q

)∑
p≤q

2p
4
3

(
2
p
3 ‖∆pu‖L3

)2

 1
2

.

Now we need to calculate the integral. As |Φ̌q(y)| is supported only for |y| ≤ 2−q

we can pull the supremum out of the integral to obtain∫
Rd
|Φ̌q(y)||y|22q

4
3 dy ≤ 2−2q2q

4
3

∫
Rd
|Φ̌q(y)| dy ≤ C2−q

2
3 .

Substituting this back in we obtain

(1)RHS ≤
∑
p

Kq−p(2
p
3 ‖∆pu‖L3)2C2−q

2
3

∑
p≤q

2p
4
3

(
2
p
3 ‖∆pu‖L3

)2

 1
2

= C
∑
p

Kq−p(2
p
3 ‖∆pu‖L3)2

∑
p≤q

2−(q−p) 4
3

(
2
p
3 ‖∆pu‖L3

)2

 1
2

≤ C

(∑
p

Kq−p(2
p
3 ‖∆pu‖L3)2

) 3
2

.

Then bringing this power inside the sum as greater than one we get the final result

(1)RHS ≤ C
∑
p

Kq−p(2
p
3 ‖∆pu‖L3)3.

We now have to deal with the other two terms, these are simpler. For instance the

(2)RHS of (3.5.9), with use of Hölder’s inequality, similarly to before, we obtain

‖u>q‖2L3
‖∇u≤q‖L3 . Then we can bound these terms again using the same methods

as above. Thus we are done. �
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Chapter 4

The Heat Kernel

Further equivalent definitions for a Besov space can be defined with use of the

heat kernel. We will see that the heat kernel definition, in general, has a rather

complicated structure. Yet there are occasions when this definition is useful for

example considering problems when the domain is not the whole space. Further, it

is useful when dealing with a problem which one can write a solution in terms of

the heat kernel. For instance, this is found in Cannone et al. [2004].

4.1 Heat Kernel Definition

We have two definitions from Lemarié-Rieusset [2010] for Besov spaces associated

to the heat kernel, for the non-homogeneous and the homogeneous cases.

Definition 4.1.1 (Non-Homogeneous Heat Kernel) For s ∈ R, 1 ≤ q ≤ ∞,

t0 > 0, α ≥ 0 so that α > s and for f ∈ S ′(Rd). Then for all t > 0

Bs
p,q =

{
f : et∆f ∈ Lp and

(∫ t0

0

(
‖t−

s
2 (−t∆)

α
2 et∆f‖Lp

)q dt

t

) 1
q

<∞

}
(4.1.1)

With the equivalent norms,

‖f‖Bsp,q = ‖et0∆f‖Lp +

(∫ t0

0

(
‖t−

s
2 (−t∆)

α
2 et∆f‖Lp

)q dt

t

) 1
q

.

Note this norm is similar to norms defining Lorentz/interpolation spaces which we

will look at later.

We notice that the parameter j ∈ Z seems to have been replaced by the

conditions parameter 0 < t < ∞ as the countable sum is replaced by the integral
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weighted by 1
t . This weighted integral and sum perform the same measurement

on the function. This will be more obvious when we prove the equivalence of the

Littlewood-Paley definition and the heat kernel definition later.

The definition of the homogeneous case which is defined in Lemarié-Rieusset

[2010] and Bahouri et al. [2011] is introduced below.

Definition 4.1.2 (Homogeneous Heat Kernel) Let s < 0, 1 ≤ q ≤ ∞, f ∈
S ′(Rd). Then for all t > 0

Ḃs
p,q ∩ S ′0 =

{
f : et∆f ∈ Lp and

(∫ ∞
0

(
‖t−

s
2 et∆f‖Lp

)q dt

t

) 1
q

<∞

}
(4.1.2)

With the equivalent norms,

‖f‖Bsp,q =

(∫ ∞
0

(
‖t−

s
2 et∆f‖Lp

)q dt

t

) 1
q

We work in S ′0(Rn) as we again want to work modulo polynomials to allow us to

have a norm and not a semi-norm. As we know supp p̂ = {0} for p a polynomial we

have to work in a space with these elements are removed.

We will show the equivalences between the Littlewood-Paley definitions and

the heat kernel definitions later after seeing bounds on the heat kernel for functions

f with suppf̂ in some annulus.

4.2 Heat Kernel Properties

A useful bound given below describes the action of the heat kernel on functions whose

support in Fourier space is on an annulus. This is very useful for applications to look

at solutions to the heat equation. Further for showing properties of Besov spaces

and the equivalences in definitions using Littlewood-Paley and the heat kernel. The

next lemma is stated in Bahouri et al. [2011] and though it is stated on an annulus

it can further be shown to hold on a ball around 0 though c a constant in the lemma

is 0.

Lemma 4.2.1 (Heat Kernel Bound) For any annulus A there exists positive

constants c and C such that for any p ∈ [1,∞] and any pair of positive real numbers

(t, λ) we have

Supp û ⊂ λA =⇒ ‖et∆u‖Lp ≤ Ce−ctλ
2‖u‖Lp . (4.2.1)
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Proof As we are dealing with a function supported on an annulus A we again need

a function φ ∈ D(Rd \ {0}) which is identically 1 near A to use in the proof. We

will force all the calculations on to it and with its nicer properties calculations will

be easier. Again we can let λ = 1, as this is just a dilation.

We multiply by φ which does not change the action of the heat kernel on A

as it has value one. As the Fourier transform of the heat kernel is e−t|ξ|
2

we obtain

et∆u = F−1
(
φ(ξ)e−t|ξ|

2
û(ξ)

)
=

1

(2π)d

∫
Rd
eix·ξφ(ξ)e−t|ξ|

2
dξ ? u.

Applying Young’s inequality to both sides gives the desired result provided we show

for c, C real positive constants and for all t > 0∥∥∥∥ 1

(2π)d

∫
Rd
eix·ξφ(ξ)e−t|ξ|

2
dξ

∥∥∥∥
L1

:= ‖f(t, ·)‖L1
≤ Ce−ct.

To bound f in L1, the idea is to pull out a 1

(1+|x|2)d
as this is bounded in L1 and

then try to eliminate the
(
1 + |x|2

)d
we created. So first we multiply by 1 in the

correct manner

f(t, x) =
1

(1 + |x|2)d

∫
Rd

(
1 + |x|2

)d
eix·ξφ(ξ)e−t|ξ|

2
dξ.

Now we use the properties of the Fourier transform and integration by parts as φ(ξ)

compactly supported and thus we obtain

1

(1 + |x|2)d

∫
Rd

(
(Id−∆ξ)

d eix·ξ
)
φ(ξ)e−t|ξ|

2
dξ =

=
1

(1 + |x|2)d

∫
Rd
eix·ξ (Id−∆ξ)

d φ(ξ)e−t|ξ|
2
dξ.

We then have to use Faa di Bruno’s formula, an algebraic identity, which

gives in our case for some constants Cαβ

(Id−∆ξ)
d φ(ξ)e−t|ξ|

2
=

∑
β≤α,|α|≤2d

Cαβ

(
∂(α−β)φ(ξ)

)(
∂βe−t|ξ|

2
)
.

Now as the support of φ is in an annulus we can find a couple of bounds. With c the

square of the lower bound of the support of φ and C being a function of the upper

bound of the support of φ. Also we notice that as φ ∈ D,
∣∣∂(α−β)φ

∣∣ is bounded.

Further each ∂e−t|ξ|
2

will drop down a constant of t and ξ yet the ξ can be bounded
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by C so we have ∣∣∣(∂(α−β)φ(ξ)
)(

∂βe−t|ξ|
2
)∣∣∣ ≤ C(1 + t)|β|e−t|ξ|

2
.

Then using the lower bound c we obtain

≤ C(1 + t)|β|e−ct.

Thus

‖f(t, ·)‖L1
≤
∫
Rd

∣∣∣∣∣ 1

(1 + |x|2)d

∫
Rd
eix·ξ (Id−∆ξ)

d φ(ξ)e−t|ξ|
2
dξ

∣∣∣∣∣ dx
≤
∫
Rd

1

(1 + |x|2)d

∫
Rd
eix·ξ

∣∣∣(Id−∆ξ)
d φ(ξ)e−t|ξ|

2
∣∣∣ dξ dx

≤
∑

β≤α,|α|≤2d

CαβC(1 + t)|β|e−ct
∫
Rd

1

(1 + |x|2)d
dx

∫
Rd
eix·ξ dξ

≤ Ce−ct
∫
Rd

1

(1 + |x|2)d
dx

≤ Ce−ct.

This gives us the bound we needed. If we are dealing with a ball rather than the

annulus then the lower bound c = 0. �

There is a corollary in Bahouri et al. [2011] that describes the behaviour of

the solution to the heat equation for initial conditions whose Fourier transform is

supported in an annulus. This behaviour relates the integrability over time to the

initial condition.

Corollary 4.2.2 Let A be an annulus and λ a positive real number. Let initial

condition u0 and forcing f(t, x) have its Fourier transform supported in λA for all

t ∈ [0, T ]. Consider the solution u(t) to the heat equation

∂tu− ν∆u = 0 and u(0, ·) = u0(·).

Consider v a solution of forced heat equation

∂tv − ν∆v = f and v(0, ·) = 0.

Then there exist positive constant C depending only on A such that for 1 ≤ a ≤ b ≤
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∞ and 1 ≤ p ≤ q ≤ ∞ we have

‖u‖Lq(0,T,Lb) ≤ C(νλ2)
− 1
q λn(

1
a
− 1
b )‖u0‖La ,

‖v‖Lq(0,T,Lb) ≤ C(νλ2)
−1+

(
1
p
− 1
q

)
λn(

1
a
− 1
b )‖f‖Lp(0,T,La).

Proof For a u(t) satisfying the heat equation we can use the heat kernel to to

write u(t) = eνt∆u0. Then we start with the definition of ‖u‖Lq(0,T,Lb) and use the

lemma above (4.2.1) this gives

(∫ T

0

(∥∥eνt∆u0

∥∥
Lb

)q
dt

) 1
q

≤
(∫ T

0

(
Ce−ctνλ

2 ‖u0‖Lb
)q

dt

) 1
q

.

We can then use Bernstein’s Lemma to get a bound from La to Lb and rearrange

(∫ T

0

(
Ce−ctνλ

2
λd(

1
a
− 1
b ) ‖u0‖La

)q
dt

) 1
q

≤ Cλd(
1
a
− 1
b ) ‖u0‖La

(∫ T

0
e−ctνλ

2q dt

) 1
q

.

We can then integrate out to obtain

C ‖u0‖La λ
d( 1
a
− 1
b )
(

1

cνλ2q

) 1
q (

1− e−cTνλ2q
) 1
q
.

Thus as cTνλ2q > 0 we have e−cTνλ
2q ∈ (0, 1) and we can bound

(
1− e−cTνλ2q

) 1
q ≤

1. Then absorbing constants gives the desired result.

For the second part we similarly start with v(t) =
∫ t

0 e
ν(t−τ)∆f(τ) dτ and

the proof follows in a similar fashion. �

As mentioned earlier we want to show the equivalence between the Littlewood-

Paley definition of a Besov space and the heat kernel definition. So far with the heat

kernel bound and the Bernstein’s lemmas we now have enough to prove the equiv-

alence of these two definitions. The proof will have inspiration from Bahouri et al.

[2011] yet here the proof is only for the homogeneous case where s < 0 and we look

at the non-homogeneous case for all s ∈ R. This is further mentioned in Lemarié-

Rieusset [2010].

Theorem 4.2.3 (Littlewood-Paley and heat kernel equivalence) The Littlewood-

Paley definition of a Besov space and the heat kernel definition are equivalent.
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Proof First we want to look at the heat kernel integrand and using the heat kernel

bound above and the Bernstein lemma for the operator Iα = (−∆)
α
2 we have

‖t−
s
2 ∆j(−t∆)

α
2 et∆u‖Lp ≤ Ct

α−s
2 2jαe−ct2

2j‖∆ju‖Lp .

Then by multiplication by 2js

2js
we can pull the lower term with the 2jα term and take

the remaining term to create a Littlewood-Paley Besov norm after being summed

like so

‖t−
s
2 (−t∆)

α
2 et∆u‖Lp =

∑
j∈Z
‖t−

s
2 ∆j(−t∆)

α
2 et∆u‖Lp ≤

≤ C
∑
j∈Z

t
α−s
2 2j(α−s)e−ct2

2j
2js‖∆ju‖Lp ≤ C‖u‖Bsp,q

∑
j∈Z

t
α−s
2 2j(α−s)e−ct2

2j
cq,j .

Where cq,j is a generic element of the unit ball in lq(Z). This last inequality comes

from using Hölder’s inequality to bound the last two terms on the left hand side in

lq and get the Littlewood-Paley Besov norm from the 2js‖∆ju‖Lp term. We get left

with a term in lq′ , for q′ the conjugate of q. Then we can use the duality definition

for an element in an lr space. (For an element in lr we know
∑

j xryr′ < ∞ for all

xr ∈ lr and yr′ any element in the unit ball of lr′ .) We use this definition, of an

element in lq′ , for the rest.

For the rest of this proof we need something to deal with the spare term and

we need a lemma in Bahouri et al. [2011] which helps bound this term as we chose

α− s > 0.

Lemma 4.2.4 For any positive m, we have the bound

sup
t>0

∑
j∈Z

t
m
2 2mje−ct2

2j
<∞. (4.2.2)

From this lemma we first notice that for the case with q = ∞ we are done and

have the first inequality after taking the supremum over t > 0 of both sides of our

previous bound.

We now consider the case of q <∞. So we want to bound

∫ t0

0
‖t−

s
2 (−t∆)

α
2 et∆u‖qLp

dt

t
≤ C‖u‖qBsp,q

∫ t0

0

∑
j∈Z

t
α−s
2 2j(α−s)e−ct2

2j
cq,j

q

dt

t
.

(4.2.3)
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We can split the term inside the integral in preparation to use Hölder’s inequality

∑
j∈Z

t
α−s
2 2j(α−s)e−ct2

2j
cq,j =

∑
j∈Z

((
t
α−s
2 2j(α−s)e−ct2

2j
) 1
q
cq,j

)(
t
α−s
2 2j(α−s)e−ct2

2j
) q−1

q
.

We then use Hölder’s inequality with the first bracket term to the power of q and

the second q′ = q
q−1 . This then, after we cancel the powers gives,

≤ C‖u‖qBsp,q

∫ t0

0

∑
j∈Z

t
α−s
2 2j(α−s)e−ct2

2j

q−1∑
j∈Z

t
α−s
2 2j(α−s)e−ct2

2j
cqq,j

 dt

t
.

We take the supremum over time of the first term out and can bound by the previous

lemma. We only have to worry about the second term in the integral and we can

use Fubini’s theorem for this. To get the bound, we need to calculate the following

integral and show it is finite. To simplify, let k = α−s
2

∑
j∈Z

cqq,j

∫ t0

0
tk−12j2ke−ct2

2j
dt ≤

∑
j∈Z

cqq,j

∫ ∞
0

tk−12j2ke−ct2
2j
dt.

Then we observe by calculation that
∫∞

0 tk−1e−ct2
2j
dt = C

2j2k
Γ(k). Thus we find

that the whole term becomes

≤
∑
j∈Z

Ccqq,jΓ(k) ≤ CΓ(k).

We have the first inequality.

To prove the other direction, we use the fact that the last bound is of the

form of a gamma distribution to derive a useful identity

∆̂ju = 1 ? ∆̂ju =
1

Γ(k + 1)

∫ ∞
0

xke−x dx ? ∆̂ju.

Then use the substitution x = t|ξ|2 and the Fubini’s theorem, we obtain,

1

Γ(k + 1)

∫ ∞
0

tk|ξ|2(k+1)e−x|ξ|
2
dx ? ∆̂ju =

1

Γ(k + 1)

∫ ∞
0

tk|ξ|2(k+1)e−t|ξ|
2
? ∆̂ju dt.

Finally we can apply the inverse Fourier transform to both sides and we have,

∆ju =
1

Γ(k + 1)

∫ ∞
0

tk(−∆)k+1et∆∆ju dt. (4.2.4)
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Now let k = α−s
2 and split up et∆u = e

t
2

∆e
t
2

∆u. This lets us use the heat kernel

bound without losing the heat kernel properties for bounding the integral. After

performing these two substitutions we can bound the Lp norm with the usual use

of the Bernstein’s Lemmas and heat kernel bound

‖∆ju‖Lp ≤ C
∫ ∞

0
t
α−s
2 2j(−s+2)e−ct2

2j‖∆j(−∆)
α
2 e

t
2

∆u‖Lp dt

≤ C
∫ ∞

0
t
α−s
2 2j(−s+2)e−ct2

2j‖(−∆)
α
2 et∆u‖Lp dt.

Now we want to look at the two cases again q = ∞ and q < ∞. For the first case

we want to bound supj∈Z
(
2js‖∆ju‖Lp

)
. From the above we obtain,

sup
j∈Z

(
2js‖∆ju‖Lp

)
≤ C sup

j∈Z

(
2js
∫ ∞

0
t
α−s
2 2j(−s+2)e−ct2

2j‖(−∆)
α
2 et∆u‖Lp dt

)
.

Then we want to take the supremum over t out of the integral so that we obtain the

heat kernel definition and want the rest of the terms to be bounded

C sup
j∈Z

(
2js sup

t>0

(
t
α−s
2 ‖(−∆)

α
2 et∆u‖Lp

)∫ ∞
0

2j(−s+2)e−ct2
2j
dt

)
.

We now just have to calculate the integral and rearrange We discover that everything

cancels nicely,

C sup
j∈Z

(
2js2−js sup

t>0

(
t
α−s
2 ‖(−∆)

α
2 et∆u‖Lp

)
2j2
(
−c2−2je−ct2

2j
∣∣∣∞
0

))
=

= C sup
t>0

(
t
α−s
2 ‖(−∆)

α
2 et∆u‖Lp

)
.

We now have to look at the case of q < ∞. This is again going to use similar

methods to the q <∞ case before. We have to deal with the inequality below

∑
j∈Z

(
2js‖∆ju‖Lp

)q ≤ C∑
j∈Z

(
2js
∫ ∞

0
t
α−s
2 2j(−s+2)e−ct2

2j‖(−∆)
α
2 et∆u‖Lp dt

)q
.

We can split this up to prepare for Hölder’s inequality, used in the same way as

before,

C
∑
j∈Z

2jsq
(∫ ∞

0
e
−ct22j 1

q t
α−s
2 2j(−s+2)e

−ct22j q−1
q ‖(−∆)

α
2 et∆u‖Lp dt

)q
.
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Then we can apply Hölder’s inequality,

≤ C
∑
j∈Z

2jsq
(∫ ∞

0
e−ct2

2j
dt

)q−1(∫ ∞
0

tq
α−s
2 2qj(−s+2)e−ct2

2j‖(−∆)
α
2 et∆u‖qLp dt

)
.

Calculation of the first integral gives

C
∑
j∈Z

2jsq2−2j(q−1)

(∫ ∞
0

tq
α−s
2 2qj(−s+2)e−ct2

2j‖(−∆)
α
2 et∆u‖qLp dt

)
.

Now we can use Fubini’s theorem to switch the sum and integral and then we can

simplify, this gives,

= C

∫ ∞
0

∑
j∈Z

2j2tq
α−s
2 e−ct2

2j‖(−∆)
α
2 et∆u‖qLp dt.

Multiplying by t
t and rearranging gives us the measure we need for the integral in

the heat kernel definition of Besov space,

= C

∫ ∞
0

tq
α−s
2 ‖(−∆)

α
2 et∆u‖qLp

∑
j∈Z

(
t2j2e−ct2

2j
) dt

t
.

Then taking the supremum of the sum out of the integral and bounding by the

previous lemma, this rearranges to

≤ C
∫ ∞

0
‖t−

s
2 (−t∆)

α
2 et∆u‖qLp

dt

t
.

This is the bound we wanted and together we have both the lower and upper bounds

so the equivalence is proved. �

We have shown that the Littlewood-Paley definition and the heat kernel

definition are equivalent. This proves that the Littlewood-Paley definition must

be independent of the choice of functions used to create the decomposition. This

is because the heat kernel definition and the equivalence to the Littlewood-Paley

definiton is independent of the choice of functions used.

4.3 Heat Equation Applications

This application of Besov spaces relates the heat equation on R2 and the relations

between the initial conditions and the solution some time t later.

For the Sobolev case we discover that for u0 ∈ L2 we can achieve a bound

29



to show that at time t ∈ (0, T ], u(t) is in L1(0, T,H1) for any T . This calculation

will be given below and other simpler more general forms can be found in Evans

[1998]. We take the equation, multiply by u, and integrate over space and time then

perform integration by parts on the gradient term and use the identity utu = 1
2
d
dt |u|

2.

Switching integral over space and derivative gives

‖u(T )‖2L2
+ 2

∫ T

0
‖∇u‖2L2

dt = ‖u(0)‖2L2
.

This gives the desired bound for controling the gradient with the L2 norm of the

initial condition.

We were able to increase the regularity by a derivative for the Sobolev case

above yet now we will show that with a slightly smaller Besov space than L2 we can

achieve extra regularity of two derivatives.

Example 4.3.1 Let the initial condition to the heat equation on Rd be u(0) = u0 ∈
B0

2,1, then the solution at time t ∈ (0, T ] u(t) is in L1(0, T, B2
2,1) for any T .

This example shows how easy it is to use Besov spaces and specifically the

Littlewood-Paley definition for this calculation.

We see from (3.1.1) that for a function f ∈ B2
p,q that f ∈ S ′ as well which

will be useful as the heat kernel is in S and thus the integrals will make sense.

Further we see that the space norm is the sum of two separate norms and thus we

will consider each one separately.

Proof We can write for u ∈ S ′ u(t) = et∆u0 as this is just the action of the heat

kernel.

We then want to consider the Littlewood-Paley decomposition of u(t) so first

consider the decomposition into the annulus so φj ? u(t) which we can also write

∆ju(t) for j ∈ N. We can write this part of the norm of u(t) by

∫ T

0

∣∣∣∣∣∣
∞∑
j=0

2j2
∥∥et∆∆ju0

∥∥
L2

∣∣∣∣∣∣ dt.
Clearly the modulus can be ignored as the term inside is always positive. We

can now get the next inequality by the using the heat kernel estimate for a function

whose Fourier transform is supported in an annulus (4.2.1)∫ T

0

∞∑
j=0

2j2
∥∥et∆∆ju0

∥∥
L2

dt ≤
∫ T

0

∞∑
j=0

2j2Ce−ct2
2j ‖∆ju0‖L2

dt.
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We can now use Fubini’s theorem to switch sum and integral and obtain

∞∑
j=0

2j2 ‖∆ju0‖L2

∫ T

0
Ce−ct2

2j
dt ≤

∞∑
j=0

2j2 ‖∆ju0‖L2

1

c22j

(
1− e−cT22j

)
.

This simplifies to

∞∑
j=0

‖∆ju0‖L2

1

c

(
1− e−cT22j

)
.

We see that cT22j is always positive so (1− e−cT22j ) is always in the interval

(0, 1] and so u0 is in B0
2,1 so this is bounded.

The Φ0 ? u(t) term can also be written S0u(t). We just need to show that∫ T
0 ‖e

t∆∆ju0‖L2 is bounded. We can bound this by C
∫ T

0 e−ct2
0‖∆ju0‖L2 . As c = 0

we just get a bound of C
∫ T

0 ‖∆ju0‖L2 and we are done. �

We notice here that if instead of q = 1 we used q = 2 and were using as our

spaces u0 ∈ L2 and u(t) ∈ L1(0, T,H2) then this proof would fail. This is clear as

the cancellation would not be complete and we would be left with a 22j term in the

sum. This extra term comes from the square of 22j we get from the l2 norm.

4.4 Heat Kernel on Sub Domains

There exists interesting problems that have been solved on the whole space but not

on bounded domains and therefore defining Besov spaces on these bounded domains

may help in solving some of these problems.

We have seen from the calculations that when working with problems on

the whole domain, the Littlewood-Paley definition seems to be the easiest to work

with. However, as seen before there is no analogous definition of the Littlewood-

Paley decomposition that can be defined on a bounded domain due to the innate

dependence on the Fourier transform.

We need to generalise the heat kernel definition to the domain Ω. For this

generalisation, one problem is the choice of boundary data for the Heat equation.

The choice of boundary data should depend on the values on the boundary that

one wants for elements of the Besov space. Therefore, if we are considering spaces

analogous to Wm
p,0 where we want the functions to go to zero on the boundary we
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would want to consider the heat equation with zero on the boundary condition.

d

dt
u = ∆u in Ω

u = 0 on ∂Ω

u0 = u(0, ·) = f(·).

Then we wish to consider the u that solves this set of equations with the initial

condition f .

Definition 4.4.1 (Non-Homogeneous Heat Kernel norm on domain) For u

the solution to the equation above with f the initial data. For s ∈ R, 1 ≤ q ≤ ∞,

t0 > 0, α ≥ 0 so that α > s, α even positive integer. Then for all t > 0

‖f‖Bsp,q,0 = ‖u‖Lp +

(∫ t0

0

(
‖t−

s
2 (−t∆)

α
2 u‖Lp(Ω)

)q dt

t

) 1
q

Then to define the space it makes sense to have the value of the function

at the boundary to be zero. Thus taking inspiration from the Sobolev case we can

define, Bs
p,q,0(Ω) ≡ {f ∈ C∞0 (Ω) : ‖f‖Bsp,q,0(Ω) <∞}

Bsp,q,0(Ω)
.
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Chapter 5

Lorentz and Interpolation

Spaces

5.1 Background Theory

To define a real interpolation definition of a Besov space and, to give an initial idea

of how these definitions are all equivalent, Lorentz and interpolation spaces will

be introduced They are discussed in Peetre [1976] and Chapter 7 of Adams and

Fournier [2003]. These interpolation spaces are a useful building block for the Besov

spaces and useful in proofs of equivalence and properties of the Besov spaces.

These interpolation spaces and the associated Besov space definitions are

of importance though again not necessary easy to do calculations with. However

this definition is useful as it is more abstract so it can give general properties from

interpolation theory and is easier to generalise to other domains.

Definition 5.1.1 (Lorentz Space) Take a measure space (Ω,B(Ω), µ). If 0 <

p, q ≤ ∞ we define Lp,q the Lorentz space the space of j-measurable functions such

that

‖f‖Lp,q =

(∫ ∞
0

(
t
1
p f∗(t)

)q dt

t

) 1
q

,

‖f‖Lp,∞ = sup
t>0

(t
1
p f∗(t))

and by convention L∞,∞ = L∞, where f∗ is the decreasing rearrangement of |f |

f∗(t) = inf{s : j{|f | > s} ≤ t}.
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Also Lp,∞ is the weak Lebesgue space. Furthermore L′p,q ≈ Lp′,q′ if 1 < p < ∞,1 ≤
q <∞ or p = q = 1 here 1

p + 1
p′ = 1.

These spaces then lead on to interpolation spaces which can be used to

generalise and treat many families of function spaces with the same approach.

Definition 5.1.2 (Banach couple) For two Banach spaces B0 and B1 and a Haus-

droff topological vector space B with B0 and B1 continuously embedded in B then we

define B̄ = B0, B1 the Banach couple.

We now want to define an F that for the Banach couple B̄ gives a Banach

space F (B̄) that is continuously embedded in B. This F (B̄) in an interpolation

space. It acts on the couple to take certain combinations of the elements of each

couple and creates a space out of this.

Real interpolation spaces have two equivalent definitions involving the differ-

ing functionals J and K described in Adams and Fournier [2003],Lemarié-Rieusset

[2010] and Peetre [1976]. Though, in Adams and Fournier [2003] and Lemarié-

Rieusset [2010] the definitions are formed where we first split the function in the

interpolation space into a diadic series first and then apply the J or K functional

to the series and check it is bounded. Here the definition given will be from Peetre

[1976].

Definition 5.1.3 (Lions and Gagliardo Real interpolation spaces) For the

Banach situation we introduce two auxiliary functionals K and J. For 0 < t < ∞,

b ∈ B0 +B1 we let

K(t, b; B̄) = K(t, b;B0, B1) = inf
b=b0+b1

(‖b0‖B0 + t‖b1‖B1)

If 0 < t <∞, b ∈ B0 ∩B1 we let

J(t, b; B̄) = J(t, b, B0, B1) = max (‖b‖B0 , t‖b‖B1)

Then let 0 < θ < 1, 0 < q ≤ ∞. Then we define the interpolation space (B̄)θ,q by

b ∈ (B̄)θ,q = (B0, B1)θ,q

⇐⇒
(∫ ∞

0

(
K(t, b)

tθ

)q dt

t

) 1
q

<∞
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⇐⇒ there exists u = u(t) (0 < t <∞) such that

(∫ ∞
0

(
J(t, u(t))

tθ

)q dt

t

) 1
q

<∞ and b =

∫ ∞
0

u(t)
dt

t

⇐⇒ u = umu j ∈ Z such that

∞∑
j=−∞

J(2j , uj)

2jθ
<∞ and b =

∞∑
j=−∞

uj

Here (B̄)θ,q has norm

‖b‖(B̄)θ,q
=

(∫ ∞
0

(
K(t, b)

tθ

)q dt

t

) 1
q

≈ inf
u

(∫ ∞
0

(
J(t, u(t))

tθ

)q dt

t

) 1
q

≈ inf
u

 ∞∑
j=−∞

(
J(2j , uj)

2jθ

)q 1
q

This dyadic decomposition interpolation definition is like the Littlewood-

Paley decomposition of a function mentioned earlier. This gives more understanding

of the relations between interpolation and the definitions involving integrals and

using the Littlewood-Paley definition where the integral is replaced by this countable

sum. We can use this definition to perform interpolation on the Littlewood-Paley

definition for calculation purposes.

Theorem 5.1.4 (Equivalence) In the definition above, the different sub defini-

tions are equivalent.

Proof (Sketch) First we notice that the first two norms are of the form

(∫ ∞
0

(
V

tθ

)q dt

t

) 1
q

for some V and thus we only have to worry about V for the equivalences to hold.

For b ∈ (B̄)θ,q with the K functional definition we have infb=b0+b1(‖b0‖B0

+t‖b1‖B1). Thus if we then define b0/1 =
∫∞

0 u0/1(t) dt
t we have

inf
b=
∫∞
0 u0(t) dt

t
+
∫∞
0 u1(t) dt

t

(∥∥∥∥∫ ∞
0

u0(t)
dt

t

∥∥∥∥
B0

+ t

∥∥∥∥∫ ∞
0

u1(t)
dt

t

∥∥∥∥
B1

)
, (5.1.1)
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and by simple rearrangement of integrals we achieve

inf
b=
∫∞
0 u0(t) dt

t
+
∫∞
0 u1(t) dt

t

(∫ ∞
0
‖u0(t)‖B0

dt

t
+ t

∫ ∞
0
‖u1(t)‖B1

dt

t

)
. (5.1.2)

We know that (5.1.2) is bounded it implies that ‖u0(t)‖B0 and ‖u1(t)‖B1 are

bounded so the functional J = infu(max(‖u0(t)‖B0 , t‖u1(t)‖B1)) is bounded by a

constant of the K functional. Further, if (5.1.1) is bounded it implies b =
∫∞

0 u(t) dt
t

for some u.

For the other bound it is easy to see from (5.1.2) that if b =
∫∞

0 u(t) dt
t exists

and if J = infu(max(‖u0(t)‖B0 , t‖u1(t)‖B1)) is bounded then twice the maximum

will bound a linear combination of u0/1 and thus the K functional is bounded by a

constant of the J functional.

The proof for discrete K and J functionals is in Lemarié-Rieusset [2010] and

Adams and Fournier [2003] . Were we split the intergral into dyadic parts and prove

bounds Bernstein like bounds for each dyadic part. �

One reason to look at these interpolation spaces is that the Lorentz spaces are

a specific class of interpolation spaces with the correctly chosen functional. Notice

Lp,q = [L1, L∞] 1
p
,q

More importantly the definitions of Besov spaces are defined so that we see

the norms are of the form of the interpolation spaces. We can, in fact, define the

Besov space via an interpolation of Sobolev spaces and then use theorems on the

properties of interpolation spaces to understand the properties of Besov spaces. For

instance the duality and reiteration theorems.

From the equivalence between this definition and the others we again show

that the Littlewood-Paley definition is independent on the choice of function used

in the decomposition. Further using embedding theorems for interpolation spaces

we can straight away get embedding theorems for Besov spaces for instance from

the comparison theorem in Peetre [1976] tells us that Bs
p,1 ↪→W s

p ↪→ Bs
p,∞. Further

from the duality theorems we attain (Bs
p,q)
′ ∼= B−sp′,q′ as one would expect.

5.1.1 Real Interpolation Definition

Definition 5.1.5 (Real Interpolation Besov space) From Peetre [1976]. For

real interpolation, s real. We have for s = (1− θ)s0 + θs1 (0 < θ < 1)

(
W s0
p ,W

s1
p

)
θ,q

= Bs
p,q.
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Further this can be written

Bs
p,q =

{
f :

(∫ ∞
0

(
K(t, f)

ts

)q dt

t

) 1
q

<∞

}
, (5.1.3)

With

K(t, f) = K(t, f ;W s0
p ,W

s1
p ) = inf

f=f0+f1

(
‖f0‖W s0

p
+ t‖f1‖W s1

p

)
.

Interestingly one sees that from the interpolation definition of a Besov space,

we have to interpolate across two Sobolev spaces in the same Lp space but with

different derivative exponent. A function in the new space is bounded by the com-

bination s0θ + (1− θs1) with different outer Lq(
dt
t ) norms.

Therefore consider a function in a Besov space. We can bound this function

by taking a weighted sum of the norms of Sobolev functions with differentiability

either side. By varying θ we get a different weighting of the norms varying convexly

with θ.

Further the q determines the integrability we want for this weighting between

the norms and the measure dt
t acts as a limit of the sums of these weights as discussed

earlier. Overall we see that the combination of these three indices allows for a strong

control on what functions we have in a Besov space.

We can define the definition for homogeneous real interpolation Besov spaces

similarly to above but using the homogeneous definition of a Sobolev space as defined

earlier.

Definition 5.1.6 (Homogeneous Real Interpolation Besov space) Same as

definition above but replace the space W s0
p and W s1

p with Ẇ s0
p and Ẇ s1

p .

5.2 Interpolation on Sub Domains

Finally we see from the definition that we can generalise this definition to bounded

domains as we can use Sobolev spaces with integer derivative coefficients which we

can define on bounded domains and then interpolate between them. As mentioned

in Chapter 2 there are many ways to define a Sobolev space on a bounded domain

and this will give many ways to define the bounded domain Besov space.

5.2.1 Interpolation Bounded Domain Definition

This is taken from an analogy to the Sobolev case where we can use interpolation

to define Sobolev spaces for any m ∈ R+.
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Definition 5.2.1 (Real Interpolation Besov space bounded domain) For

Xm
p,i defined as one of Hm

p (Ω),Wm
p (Ω),Wm

p,0(Ω) for i respectively 1, 2, 3, m positive

integer. We have for s = (1− θ)m0 + θm1 (0 < θ < 1),(
Xm0
p,i , X

m1
p,i

)
θ,q

= Bs
p,q,i.

Further can be written,

Bs
p,q,i =

{
f :

(∫ ∞
0

(
Ki(t, f)

ts

)q dt

t

) 1
q

<∞

}
, (5.2.1)

with

Ki(t, f) = Ki(t, f ;Xm0
p , Xm1

p ) = inf
f=f0+f1

(
‖f0‖Xm0

p,i
+ t‖f1‖Xm1

p,i

)
.

We see here that we get three different definitions of a Besov space for each

different Sobolev space we interpolate over. The most useful for applications will

probably be the third where we use Wm
p,0 as this definition has functions going to

zero on the boundary. This is useful to have in most applications.

Also in Chapter 7 of Adams and Fournier [2003], it defines a definition of

the bounded domain Besov space as above but with m0 = 0 thus we interpolate

between an Lp space and the Sobolev space with derivative order m > s for integer

m.

The interpolation can be done with the K or J functionals and possibly of

more interest the discrete K or J functionals and thus form a norm with instead

of the outer integral we can get a countable sum. This norm would be similar

to the Littlewood-Paley definitions and we may be able to use this definition for

applications assuming we can prove useful bounds like the Bernstein lemmas.
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Chapter 6

Differential Difference and

Taibleson Poisson Integral

Definition

6.1 Differential Difference Definition

We have seen many different definitions so far for Besov spaces each with their own

uses. Here we shall introduce some more different equivalent definitions. These

definitions are again useful as there is no explicit use of the Fourier transform, so

generalisations to different domains can be done.

These definitions we initially defined for small ranges of s ∈ I ⊂ R, where

s is the differentiability of the space. Then we modified and generalised to include

any s ∈ R yet this causes the definitions to get more complicated.

These definitions can be formulated into a form similar to the interpola-

tion space definition yet with a different functional replacing K. Further there are

properties similar to the Littlewood-Paley definition when looking at the Fourier

transform of the functional.

In Peetre [1976] the Besov spaces can be defined under a generalisation of

the operator τhf(x) = f(x+ h)− f(x) and s ∈ (0, 1). This is

Bs
p,q =

{
f : f ∈ Lp and

(∫
Rd

(‖τhf‖Lp
|h|s

)q
dh

|h|d

) 1
q

<∞

}
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and in the case q =∞, one has

sup
‖τhf‖Lp
|h|s

<∞,

with the obvious norm.

We can see that inside the integral we have the form of a differential quotient

yet instead of bounding this under a supremum norm to get some Hölder spaces we

are looking at a more generalised Lp norm.

We can generalise this for larger s firstly by differentiating out and then

checking if the following derivative of the function is in the 0 < s < 1 case. For

example

Bs
p,q =

{
f : f ∈W k

p and Dαf ∈ Bs−k
p,q (|α| ≤ k)

}
or this can be generlised by defining the kth difference operator

τkhf(x) =

k∑
j=0

(−1)k
((

k

j

)
f(x+ hj)

)

so have the space for 0 < s < k as

Bs
p,q =

f : f ∈ Lp and

(∫
Rd

(
‖τkhf‖Lp
|h|s

)q
dh

|h|d

) 1
q

<∞

 .

This can be written in another way that will help us see the connection between

this definition and the interpolation spaces defined earlier.

Definition 6.1.1 (Difference Besov space) Where ej = (0, · · · , 1, ·, 0) the jth

basis vector. 0 < s < k

Bs
p,q =

f : f ∈ Lp and

(∫ ∞
0

(
‖τktejf‖Lp

ts

)q
dt

t

) 1
q

<∞ j = (1, · · · , n)


(6.1.1)

and in the case q =∞ one has the obvious L∞ modification.

6.2 Differential Difference in Sub Domain

6.2.1 Finite difference Bounded Domains Norm

For this norm on bounded domains, we are going to generalise the finite difference

Besov norm that we defined in the previous section.
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This generalisation has two quite natural options:

• Firstly we can just make sure the finite difference stays within the space. Thus

we give the finite difference a value of 0 if [x, x+hej 6∈ Ω] and then just restrict

our Lp norms in the definition to Ω.

• Secondly we can keep our finite difference as we have before but integrate in

Lp over Ωh were Ωh ⊂ Ω and Ωh = ∩[s]+1
j {x : x+ h ∈ Ω}.

As both generalisations give the same result here we will concentrate on the

first method of generalisation since it seems more natural to keep integrating over

the same domain when varying h.

We can generalise the kth difference operator by defining,

τkh,Ωf(x) =


∑k

j=0(−1)k
((

k
j

)
f(x+ hj)

)
[x, x+ kh] ⊆ Ω

0 Otherwise
.

Thus we have the norm for 0 < s < k as

‖ · ‖Bsp,q(Ω) = ‖f‖Lp +

(∫
Rd

(
‖τkh,Ωf‖Lp(Ω)

|h|s

)q
dh

|h|d

) 1
q

.

This then simplifies to:

Definition 6.2.1 (Difference Besov norm bounded domain) Where ej =

(0, · · · , 1, ·, 0) the jth basis vector. 0 < s < k, k integer and Ω ⊂ Rd.

‖ · ‖Bsp,q(Ω) = ‖f‖Lp(Ω) +

n∑
j=1

(∫ ∞
0

(
‖τktej ,Ωf‖Lp(Ω)

ts

)q
dt

t

) 1
q

(6.2.1)

and in the case q =∞ one has the obvious L∞ modification.

This norm is now the finite difference norm but restricted to the domain Ω.

We can now define Besov spaces with use of this norm similar to the Sobolev case

before in Chapter 2 and thus get three different associated spaces for this norm.

This definition and similar definitions of finite differences are used in Frehse

and Kassmann [2006], Kamiński [2011] and Buch [2006].

6.3 Taibleson Poisson Definition

This definition is interesting as it is derived from considering u(x, t) the (tempered)

solution to the PDE problem below. This again links the solution of PDEs to Besov
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spaces like the heat kernel does. Consider the wave equation

∂2u

∂t2
= −∆u if t > 0,

u = f if t = 0,

with solution given by the Poisson integral of f

u(x, t) =

∫
Rd

t

((x− y)2 + t2)
n+1
2

f(y) dy.

Then similarly to before for 0 < s < 1 we can define

Bs
p,q =

f : f ∈ Lp and

(∫ ∞
0

(
‖t∂u∂t ‖Lp

ts

)q
dt

t

) 1
q

<∞


and we can extend this definition like before.

Then for general positive real number s we obtain the following definition.

Definition 6.3.1 (Poisson Besov space) For 0 < s < k

Bs
p,q =

f : f ∈ Lp and

(∫ ∞
0

(
‖tk ∂ku

∂tk
‖Lp

ts

)q
dt

t

) 1
q

<∞

 (6.3.1)

and in the case q =∞ one has the obvious L∞ modification.

We could do a similar method to above but instead consider v = v(x, t) the

solution to the equation
∂2v

∂t2
= (1−∆)v if t > 0,

v = f if t = 0

instead and we get a similar definition of a Besov space to the one above.

We now want to look at the previous two examples and try to determine a

pattern in the definitions and see how this could link into earlier definitions. As

discussed in Peetre [1976], we notice the outer integrals are of the same form as

the interpolation space norm but with different integrands. So we just have to

worry about the integrands. We notice that they are of the form of a translation

invariant operator acting on f and therefore can be written as φt ? f where φt is

a test function depending on t of the form φt(x) = 1
tnφ

(
φ
t

)
. In terms of Fourier

transforms φ̂t(ξ) = φ̂(tξ). This links to the Littlewood-Paley decomposition test
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functions. In the cases above, the Fourier transform of the integrand becomes

τ̂tejf(ξ) = (eitξj − 1)f̂(ξ).

Further we have

t̂
∂u

∂t
(ξ) = t|ξ|e−t|ξ|f̂(ξ).

Thus we would want a generalised definition to be of the form

Bs
p,q =

f :
∑

finite no. φ

(∫ ∞
0

(
t−s‖φt ? f‖Lp

)q dt

t

) 1
q

<∞

 (6.3.2)

with possible restrictions on φ and s.

To have a look for restrictions on φ we will use the embedding Bs
p,1 ↪→W s

p ↪→
Bs
p,∞ from interpolation spaces. We find that φ̂ must vanish in a neighborhood of 0

and ∞. Thus we get the Tauberian character

{tξ : t > 0} ∩ {φ̂ 6= 0} 6= for each ξ 6= 0

or in a stronger form

supp φ̂ = {b−1 < |ξ| < b} with b > 1.

Usually b = 2 is chosen and we need a term ‖Φ ? f‖Lp where {Φ̂ 6= 0} = {|ξ| < 1}.
We notice that the φ̂t for the previous two definitions also share this property of

vanishing at zero and infinity. We also notice that they have values such that |φt| ≤ 1

and this is a further condition in the Littlewood-Paley decomposition so we see the

links between these definitions and the previous.

With stronger regularity conditions imposed this leads to the Littlewood-

Paley definition as we take {φj} ∈ S as well. As with this extra condition the

Fourier transform will make sense for all f ∈ S ′.
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