A higher order virtual element method for the Cahn-Hilliard equation

Alice Hodson, Andreas Dedner

Mathematics Institute, University of Warwick, Coventry, UK alice-rachel.hodson@warwick.ac.uk

Cahn-Hilliard equation

Introduced by Cahn and Hilliard to model phase separation, the two dimensional Cahn–Hilliard equation is given as follows

$$\partial_t u - \Delta(\phi(u) - \varepsilon^2 \Delta u) = 0$$

in
$$\Omega \times (0, T],$$
 (1a)

$$u(\cdot,0)=u_0(\cdot)$$

in
$$\Omega$$
, (1b)

$$\partial_n u = 0, \ \partial_n (\phi(u) - \varepsilon^2 \Delta u) = 0 \quad \text{on } \partial\Omega \times (0, T],$$

on
$$\partial\Omega \times (0,T]$$
, (1c)

for time T > 0. We define $\phi(x) = \psi'(x)$, where the free energy $\psi : \mathbb{R} \to \mathbb{R}$ is given by

$$\psi(x) := \frac{1}{4}(1 - x^2)^2$$

- ♦ We study a nonconforming VEM spatial discretisation cf. [1]
- ♦ We present the first higher order method without using a mixed formulation of equation (1)

Continuous and semi-discrete problems

Find $u(\cdot,t) \in V = H_0^2(\Omega)$ such that

$$(\partial_t u, v) + \varepsilon^2 (D^2 u, D^2 v) + r(u; u, v) = 0 \quad \forall v \in V$$

$$u(\cdot, 0) = u_0(\cdot) \in V$$
(2)

where the semilinear form $r(\cdot;\cdot,\cdot)$ is defined as

$$r(z; v, w) = \int_{\Omega} \phi'(z) Dv \cdot Dw dx \quad \forall z, v, w \in V.$$

Find $u_h(\cdot,t) \in V_{h,\ell}$ such that

$$m_h(\partial_t u_h, v_h) + \varepsilon^2 a_h(u_h, v_h) + r_h(\Pi_0^K(u_h); u_h, v_h) = 0 \quad \forall v_h \in V_{h,\ell}$$

$$u_h(\cdot, 0) = u_{h,0}(\cdot) \in V_{h,\ell}$$
(3)

Virtual element discretisation

- Using the VEM construction in [2] our local nonconforming virtual element space is constructed so that $V_{h,\ell}^K \subset \tilde{V}_{h,\ell}^K$ for some enlarged space $V_{h,\ell}^K$
- The discrete forms m_h, a_h , and r_h are built using the following computable projection operators

Value projection: $\Pi_0^K : \tilde{V}_{h,\ell}^K \to \mathbb{P}_{\ell}(K)$

Gradient projection: $\Pi_1^K : \tilde{V}_{h,\ell}^K \to [\mathbb{P}_{\ell-1}(K)]^2$

Hessian projection: $\Pi_2^K : \tilde{V}_{h,\ell}^K \to [\mathbb{P}_{\ell-2}(K)]^{2\times 2}$

• Denoting the orthogonal $L^2(K)$ -projection onto the polynomial space $\mathbb{P}_k(K)$ by \mathcal{P}_k^K , the projections satisfy the following crucial property

$$\Pi_s^K w_h = \mathcal{P}_{\ell-s}^K (D^s w_h) \quad \forall w_h \in V_{h,\ell}^K, \quad \text{for } s = 0, 1, 2$$

• The local virtual element space $V_{h,\ell}^K$ is then defined using the projections and is characterised by the following set of unisolvent degrees of freedom

Figure 1: Degrees of freedom on triangles. Circles at vertices represent vertex evaluation, arrows represent edge normal moments, circles on edges represent edge value moments and squares represent inner moments

Main result: L^2 convergence theorem

Assume that u is the solution to the continuous problem (2) and u_h is the solution to (3). Then, for all $t \in [0, T]$,

$$||u - u_h||_{0,h} \lesssim h^{\ell} \tag{4}$$

Test 1: Convergence to an exact solution

Table 1: We verify the convergence result (4) by setting the forcing so that the exact solution is given by $u(x, y, t) = \sin(2\pi t)\cos(2\pi x)\cos(2\pi y)$. We present the L^2 errors and eocs for the lowest order ($\ell = 2$) VEM discretisation coupled with a second order Runge-Kutta time stepping method

size	dofs	h	L^2 error	L^2 eoc
25	128	0.3288	1.9833e-01	
100	503	0.1535	4.6127e-02	1.92
400	2003	0.0751	1.0867e-02	2.02
1600	8003	0.0402	2.5869e-03	2.29

Test 2: Evolution of a cross

• We monitor the evolution of initial data relating to a cross-shaped interface between phases

$$u_0(x,y) = \begin{cases} 0.95 & \text{if } |(y-\frac{1}{2}) - \frac{2}{5}(x-\frac{1}{2})| + |\frac{2}{5}(x-\frac{1}{2}) + (y-\frac{1}{2})| < \frac{1}{5}, \\ 0.95 & \text{if } |(x-\frac{1}{2}) - \frac{2}{5}(y-\frac{1}{2})| + |\frac{2}{5}(y-\frac{1}{2}) + (x-\frac{1}{2})| < \frac{1}{5}, \\ -0.95 & \text{otherwise.} \end{cases}$$

Figure 2: Snapshots of test 2 on a polygonal Voronoi grid at the time frames from left to right (t = 0, 0.004, 0.8)

Test 3: Spinodal decomposition

• We monitor the evolution of initial data taken to be a random perturbation between -1 and 1 located in the centre of the domain

Figure 3: Snapshots of test 3 on a polygonal Voronoi grid at the time frames from left to right (t = 0.04, 0.4, 5)

References

- A. Dedner and A. Hodson, arXiv preprint arXiv:2111.11408, 2021.
- A. Dedner and A. Hodson, IMA J. Numer. Anal., 2021, drab003, DOI: 10.1093/ imanum/drab003.