A higher order virtual element method for the Cahn-Hilliard equation

Alice Hodson, Andreas Dedner
Mathematics Institute, University of Warwick, Coventry, UK
alice-rachel.hodson@warwick.ac.uk

Cahn-Hilliard equation

Introduced by Cahn and Hilliard to model phase separation, the two dimensional Cahn-Hilliard equation is given as follows

$$
\begin{array}{ll}
\partial_{t} u-\Delta\left(\phi(u)-\varepsilon^{2} \Delta u\right)=0 & \text { in } \Omega \times(0, T] \tag{1a}\\
u(\cdot, 0)=u_{0}(\cdot) & \text { in } \Omega \\
\partial_{n} u=0, \partial_{n}\left(\phi(u)-\varepsilon^{2} \Delta u\right)=0 & \text { on } \partial \Omega \times(0, T]
\end{array}
$$

(1b)
(1c)
for time $T>0$. We define $\phi(x)=\psi^{\prime}(x)$, where the free energy $\psi: \mathbb{R} \rightarrow \mathbb{R}$ is given by

$$
\psi(x):=\frac{1}{4}\left(1-x^{2}\right)^{2}
$$

We study a nonconforming VEM spatial discretisation cf. [1]
We present the first higher order method without using a mixed formulation of equation (1)

Continuous and semi-discrete problems

Find $u(\cdot, t) \in V=H_{0}^{2}(\Omega)$ such that

$$
\begin{align*}
& \left(\partial_{t} u, v\right)+\varepsilon^{2}\left(D^{2} u, D^{2} v\right)+r(u ; u, v)=0 \quad \forall v \in V \\
& u(\cdot, 0)=u_{0}(\cdot) \in V \tag{2}
\end{align*}
$$

where the semilinear form $r(\cdot ; \cdot, \cdot)$ is defined as

$$
r(z ; v, w)=\int_{\Omega} \phi^{\prime}(z) D v \cdot D w \mathrm{~d} x \quad \forall z, v, w \in V
$$

Find $u_{h}(\cdot, t) \in V_{h, \ell}$ such that

$$
\begin{align*}
& m_{h}\left(\partial_{t} u_{h}, v_{h}\right)+\varepsilon^{2} a_{h}\left(u_{h}, v_{h}\right)+r_{h}\left(\Pi_{0}^{K}\left(u_{h}\right) ; u_{h}, v_{h}\right)=0 \quad \forall v_{h} \in V_{h, \ell} \tag{3}\\
& u_{h}(\cdot, 0)=u_{h, 0}(\cdot) \in V_{h, \ell}
\end{align*}
$$

Virtual element discretisation

- Using the VEM construction in [2] our local nonconforming virtual element space is constructed so that $V_{h, \ell}^{K} \subset \tilde{V}_{h, \ell}^{K}$ for some enlarged space $\tilde{V}_{h, \ell}^{K}$
- The discrete forms m_{h}, a_{h}, and r_{h} are built using the following computable projection operators

$$
\begin{aligned}
\text { Value projection: } & \Pi_{0}^{K}: \tilde{V}_{h, \ell}^{K} \rightarrow \mathbb{P}_{\ell}(K) \\
\text { Gradient projection: } & \Pi_{1}^{K}: \tilde{V}_{h, \ell}^{K} \rightarrow\left[\mathbb{P}_{\ell-1}(K)\right]^{2} \\
\text { Hessian projection: } & \Pi_{2}^{K}: \tilde{V}_{h, \ell}^{K} \rightarrow\left[\mathbb{P}_{\ell-2}(K)\right]^{2 \times 2}
\end{aligned}
$$

- Denoting the orthogonal $L^{2}(K)$-projection onto the polynomial space $\mathbb{P}_{k}(K)$ by \mathcal{P}_{k}^{K}, the projections satisfy the following crucial property

$$
\Pi_{s}^{K} w_{h}=\mathcal{P}_{\ell-s}^{K}\left(D^{s} w_{h}\right) \quad \forall w_{h} \in V_{h, \ell}^{K}, \quad \text { for } s=0,1,2
$$

- The local virtual element space $V_{h, \ell}^{K}$ is then defined using the projections and is characterised by the following set of unisolvent degrees of freedom

$\ell=2$

$\ell=3$

$\ell=4$

Figure 1: Degrees of freedom on triangles. Circles at vertices represent vertex evaluation, arrows represent edge normal moments, circles on edges represent edge value moments and squares represent inner moments

Main result: L^{2} convergence theorem

Assume that u is the solution to the continuous problem (2) and u_{h} is the solution to (3). Then, for all $t \in[0, T]$,
$\left\|u-u_{h}\right\|_{0, h} \lesssim h^{\ell}$

Test 1: Convergence to an exact solution

Table 1: We verify the convergence result (4) by setting the forcing so that the exact solution is given by $u(x, y, t)=\sin (2 \pi t) \cos (2 \pi x) \cos (2 \pi y)$. We present the L^{2} errors and eocs for the lowest order $(\ell=2)$ VEM discretisation coupled with a second order Runge-Kutta time stepping method

size	dofs	h	L^{2} error	L^{2} eoc
25	128	0.3288	$1.9833 \mathrm{e}-01$	-
100	503	0.1535	$4.6127 \mathrm{e}-02$	1.92
400	2003	0.0751	$1.0867 \mathrm{e}-02$	2.02
1600	8003	0.0402	$2.5869 \mathrm{e}-03$	2.29

Test 2: Evolution of a cross

- We monitor the evolution of initial data relating to a cross-shaped interface between phases
$u_{0}(x, y)= \begin{cases}0.95 & \text { if } \quad\left|\left(y-\frac{1}{2}\right)-\frac{2}{5}\left(x-\frac{1}{2}\right)\right|+\left|\frac{2}{5}\left(x-\frac{1}{2}\right)+\left(y-\frac{1}{2}\right)\right|<\frac{1}{5}, \\ 0.95 & \text { if }\left|\left(x-\frac{1}{2}\right)-\frac{2}{5}\left(y-\frac{1}{2}\right)\right|+\left|\frac{2}{5}\left(y-\frac{1}{2}\right)+\left(x-\frac{1}{2}\right)\right|<\frac{1}{5}, \\ -0.95 & \text { otherwise. }\end{cases}$

Figure 2: Snapshots of test 2 on a polygonal Voronoi grid at the time frames from left to right $(t=0,0.004,0.8)$

Test 3: Spinodal decomposition

- We monitor the evolution of initial data taken to be a random perturbation between -1 and 1 located in the centre of the domain

Figure 3: Snapshots of test 3 on a polygonal Voronoi grid at the time frames from left to right $(t=0.04,0.4,5)$

References

(1) A. Dedner and A. Hodson, arXiv preprint arXiv:2111.11408, 2021.
(2) A. Dedner and A. Hodson, IMA J. Numer. Anal., 2021, drab003, DOI: 10.1093/ imanum/drab003.

