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Cahn—Hilliard equation

Introduced by Cahn and Hilliard to model phase separation, the two di-
mensional Cahn—Hilliard equation is given as follows

Oru — A(d(u) — e*Au) = 0 in 2 x (0,77, (1a)
u(-,0) = up(-) in €2, (1b)
Ont = 0, Op(d(u) — e Au) =0 on 082 x (0,71, (1c)

for time T" > 0. We define ¢(x) = ¢’'(z), where the free energy ¢ : R — R

is given by
1

() = 1(1 —z°)’

¢ We study a nonconforming VEM spatial discretisation cf. [1]

¢ We present the first higher order method without using a mixed for-
mulation of equation (1)

Continuous and semi-discrete problems

Find u(-,t) € V = HF () such that

(Opu,v) + e*(D?*u, D*v) + r(u;u,v) =0 VYo eV
u(-,0) =uo(-) €V

where the semilinear form r(-;-,-) is defined as
r(z;v,w) = / ¢ (2) Dv- Dwdx Vz,v,weV.
Q

Find up(-,t) € Vi ¢ such that

mp (Osup, vp) + 52ah(uh, Vn) + rh(H(I){(uh); up,vp) =0 Yon, € Vi
unr(+,0) =uno(:) € Ve

(3)

Virtual element discretisation

» Using the VEM construction in [2] our local nonconforming virtual
element space is constructed so that Vh,l,{e C Vh[,(é for some enlarged

space Vh{(e
e The discrete forms my,,ay, and rp are built using the following com-
putable projection operators

Value projection: II7* : Vh{% — Py(K)

Gradient projection: II7* : Vh{(g — [Pr—1(K)]?

Hessian projection: II5* : f/hf,(g — [Pr_o(K)]?*?

» Denoting the orthogonal L?(K)-projection onto the polynomial space
P, (K) by P;*, the projections satisfy the following crucial property

5wy, = P (D%wy) Ywy, € Vh{(g, for s =0,1,2

e 'Thelocal virtual element space Vh{(g is then defined using the projections
and is characterised by the following set of unisolvent degrees of freedom
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Figure 1: Degrees of freedom on triangles. Chircles at vertices represent
vertex evaluation, arrows represent edge normal moments, circles on edges
represent edge value moments and squares represent inner moments

Main result: L° convergence theorem

Assume that wu is the solution to the continuous problem (2) and uy, is the
solution to (3). Then, for all ¢t € [0, T,

lu — upllon S A (4)

Test 1: Convergence to an exact solution

Table 1: We verify the convergence result (4) by setting the forcing so that
the exact solution is given by u(x,y,t) = sin(2nt) cos(27wx) cos(2nwy). We
present the L? errors and eocs for the lowest order (¢ =2) VEM discreti-
sation coupled with a second order Runge-Kutta time stepping method

size  dofs h L? error L2 eoc

25 128 0.3288 | 1.9833e-01 —
100 503 0.1535 | 4.6127e-02 1.92
400 2003 0.0751 | 1.0867e-02 2.02

1600 8003 0.0402 | 2.5869¢-03 2.29

Test 2: Evolution of a cross

e We monitor the evolution of initial data relating to a cross-shaped
interface between phases

0.95 if (y — % %
up(z,y) = 4095 if |(z—3)—2
—0.95 otherwise.

Figure 2: Snapshots of test 2 on a polygonal Voronoi grid at the time
frames from left to right (t = 0,0.004, 0.8)
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e We monitor the evolution of initial data taken to be a random pertur-
bation between —1 and 1 located in the centre of the domain
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Figure 3: Snapshots of test 3 on a polygonal Voronoi grid at the time
frames from left to right (t = 0.04,0.4,5)
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