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Functional Magnetic Resonance Imaging (fMRI)

fMRI tries to assess ”Brain Activity” indirectly, through
measurements of the blood flow and oxygenation in the brain.

MRI machine sends out a radio frequency pulse which
generates a magnetic field.

The energy of the field is enough to cause the spin of protons
in blood Haemoglobin molecules to change.

Protons in oxygenated haemoglobin behave differently to
deoxygenated haemoglobin.

When the pulse is turned off, the energy absorbed by the
resonating protons is released.
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Electroencephalography (EEG)

EEG directly monitors electrical activity in the brain.

Numerous electrodes are placed on the scalp.

Each electrode detects a change in electrical potential at that
point on the scalp.

Voltages between electrodes can then be used to chart the
electrical activity inside the brain.
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Limitations

We would like to address the following issues:

Spatial Resolution - EEG can’t pinpoint the location of neural
activity.

Signal Noise - In both fMRI and EEG, there are issues of noise
introduced through the detection process. The signal can
even “disappear”!

External validity - There is a time delay issue with fMRI.
There are also problems in establishing a control reading to
begin with.
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The Task

Create a time-indexed series of noisy images which mimic the
motion of a signal

Apply a technique to help remove the noise from these images

Apply a technique to track the motion of the signal through
these images
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Model

Despite the technical difficulties with fMRI and EEG discussed
previously, we seek to infer properties of the noisy signal.

To do so, we look at sequence of brain images taken in time to
trace brain activity associated with stimulus. Two main objectives:

Filter the noise out from the image taken at first time-point.

The denoised data can be used to evolve the observed signal
in time.
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Original data is composed of noisy surfaces defined on the square
domain [−1, 1]× [−1, 1].

Model considers 2D function with rotational symmetry, given by

φ(x , y) = exp (−β((x − c1)2 + (y − c2)2))

where β controls how spiked the signal is and c = (c1, c2) the
location of the signal.
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Figure: Plot of φ for β = 20 and c = (0, 0)
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Add noise to the function by drawing independent samples from
normal distribution with mean 0 and small variance and adding it
to the function.

Figure: Plot of noisy signal for β = 20 and c = (0, 0)



Motivation Model Techniques Extension Topics Action Plan

Add noise to the function by drawing independent samples from
normal distribution with mean 0 and small variance and adding it
to the function.

Figure: Plot of noisy signal for β = 20 and c = (0, 0)



Motivation Model Techniques Extension Topics Action Plan

We further improve the model by making β and c noisy.

β is a binary process taking two distinct values:

One, with low probability, which drowns the signal in the noise
for a short period of time.

The other, with high probability, in which the signal can be
distinguished from the noise.

c follows a path of the form

c2 = c3
1 + u.

where c1 moves from −1 to 1 and u ∼ Unif([−0.1, 0.1]).
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Why have we chosen such models for these expressions?

For β, want to incorporate key limitation of medical scanners,
namely the disappearance of signal for short period of time.

For c, want to capture the non-linear structure of the brain in
order to characterise the signal more realistically. Regions of
the brain activated by a stimulus need not lie on a path with
simple geometry.

Whilst our models do not fully reflect the complexity of such
structures, it captures some of the non-linearity.



Motivation Model Techniques Extension Topics Action Plan

Why have we chosen such models for these expressions?

For β, want to incorporate key limitation of medical scanners,
namely the disappearance of signal for short period of time.

For c, want to capture the non-linear structure of the brain in
order to characterise the signal more realistically. Regions of
the brain activated by a stimulus need not lie on a path with
simple geometry.

Whilst our models do not fully reflect the complexity of such
structures, it captures some of the non-linearity.



Motivation Model Techniques Extension Topics Action Plan

Why have we chosen such models for these expressions?

For β, want to incorporate key limitation of medical scanners,
namely the disappearance of signal for short period of time.

For c, want to capture the non-linear structure of the brain in
order to characterise the signal more realistically.

Regions of
the brain activated by a stimulus need not lie on a path with
simple geometry.

Whilst our models do not fully reflect the complexity of such
structures, it captures some of the non-linearity.



Motivation Model Techniques Extension Topics Action Plan

Why have we chosen such models for these expressions?

For β, want to incorporate key limitation of medical scanners,
namely the disappearance of signal for short period of time.

For c, want to capture the non-linear structure of the brain in
order to characterise the signal more realistically. Regions of
the brain activated by a stimulus need not lie on a path with
simple geometry.

Whilst our models do not fully reflect the complexity of such
structures, it captures some of the non-linearity.



Motivation Model Techniques Extension Topics Action Plan

Why have we chosen such models for these expressions?

For β, want to incorporate key limitation of medical scanners,
namely the disappearance of signal for short period of time.

For c, want to capture the non-linear structure of the brain in
order to characterise the signal more realistically. Regions of
the brain activated by a stimulus need not lie on a path with
simple geometry.

Whilst our models do not fully reflect the complexity of such
structures, it captures some of the non-linearity.



Motivation Model Techniques Extension Topics Action Plan

Contents

1 Motivation

2 Model

3 Techniques
Approximate Bayes Factors
Kalman Filters
Evaluation Metrics

4 Extension Topics

5 Action Plan



Motivation Model Techniques Extension Topics Action Plan

Approximate Bayes Factors

Contents

1 Motivation

2 Model

3 Techniques
Approximate Bayes Factors
Kalman Filters
Evaluation Metrics

4 Extension Topics

5 Action Plan



Motivation Model Techniques Extension Topics Action Plan

Approximate Bayes Factors

What are Bayes Factors?

Suppose we have a null hypothesis

H0 : θ ∈ Θ0 ⊂ Θ

which we want to test against an alternative hypothesis

H1 : θ ∈ Θ\Θ0

where Θ is the parameter space.
The usual method of hypothesis testing involves a Likelihood Ratio
Test Statistic, given by

SLR(X) =
supΘ0L(θ;X)

supΘL(θ;X)
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Approximate Bayes Factors

Under the Bayesian paradigm, we would like to modify this method
to take into account our prior beliefs about the behaviour of the
model. This gives rise to Bayes factors [Jeffreys (1935)].

Bayes’ Theorem says

P(Hk |X) =
P(X|Hk)P(Hk)

P(X|H0)P(H0) + P(X|H1)P(H1)

with k = 0, 1.
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Approximate Bayes Factors

We then get

P(H0|X)

P(H1|X)
=

P(X|H0)

P(X|H1)

P(H0)

P(H1)

where

P(X|Hk) =

∫
P(X|θk ,Hk)π(θk |Hk)dθk

with θk the parameter under Hk with prior π(θk |Hk).
The highlighted term is the Bayes factor.
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Approximate Bayes Factors

Why Approximate Bayes Factors?

The problem...

P(X|Hk) =

∫
P(X|θk ,Hk)π(θk |Hk)dθk

Unless we’re lucky, we need to find ways of approximating this
integral. There are various methods of doing this [Kass & Raftery
(1995)]:

Asymptotic Approximation

Monte Carlo Methods

MCMC & Metropolis-Hastings
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Approximate Bayes Factors

Application - Image Segmentation

We would like to use approximate Bayes factors to determine
boundaries in a noisy image. In this particular example, we are
interested in determining the number of gray levels to be used in
an image.

Figure: PET image of a dog’s lung [Stanford & Raftery (2002)]
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Approximate Bayes Factors

We assume that the image has two “layers” (an actual image,
and the observed image), giving rise to a Markov random field
with the Potts Model.

We have a number of hypotheses, each representing a model
using a different number of shades of grey (segments).

We use a Bayes factor approximation called the Penalised
Pseudolikelihood Criterion, based upon maximum likelihood
estimators, to compare favourability of these models (NB -
Requires ICM first).

Start with the model which has one shade of grey. Calculate
the PLIC for that model, then move on to the next model.
Iterate. Look out for a local maximum.
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Approximate Bayes Factors

The result...

Figure: PET image of a dog’s lung after final segmentation [Stanford &
Raftery (2002)]



Motivation Model Techniques Extension Topics Action Plan

Approximate Bayes Factors

The result...

Figure: PET image of a dog’s lung after final segmentation [Stanford &
Raftery (2002)]



Motivation Model Techniques Extension Topics Action Plan

Kalman Filters

Contents

1 Motivation

2 Model

3 Techniques
Approximate Bayes Factors
Kalman Filters
Evaluation Metrics

4 Extension Topics

5 Action Plan



Motivation Model Techniques Extension Topics Action Plan

Kalman Filters

Short summary

A common tool for tracking problems/noise reduction is the
Kalman filter.

Given an observation Xt at time t, we want to infer on the
state variable θt of a system. The state variables are linked to
the observations via a matrix H.

Measurements are typically noisy, so we include a noise term
nt .

The Observation model is

Xt = Hθt + nt .

The state vector is updated by a transition matrix G with a
noise process wt ,

θt = Gθt−1 + wt .
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Kalman Filters

Short summary

We estimate θt with θ̂t . Assume wt and nt are uncorrelated,
with corresponding variance-covariance matrices Q and R.

The simplest update of our estimate θ̂t is

θ̂t+1 = G θ̂t .

Denote the error et = θt − θ̂t and its variance-covariance
matrix Pt .

Assume the prior estimate of θ̂t is θ̂t|t−1. The update
equation, combining the old estimate and measurement, is

θ̂t = θ̂t|t−1 + Kt(Xt − H θ̂t|t−1),

where the Kalman gain Kt is derived while minimising the
mean square error of the estimate.

There is a similar update equation for Pt .
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Kalman Filters

Applications

We highlight three uses of Kalman filter in the setting of medical
images.

EEG artifact removal

EEG spike enhancement

Detecting activation regions
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Kalman Filters

EEG artifact removal

Figure: EEG artifact removal [Morbidi et al. (2007)]



Motivation Model Techniques Extension Topics Action Plan

Kalman Filters

EEG spike enhancement

Figure: EEG spike enhancement [Oikonomou et al. (2006)]
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Kalman Filters

Detecting activation regions

Figure: Incremental activation detection [Roche et al. (2004)]
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Evaluation Metrics

Evaluation Metrics

One key assumption needed to apply Kalman filters is that the
noise is Gaussian. This may not necessarily be the case.

If we apply the Kalman filter as if noise was Gaussian, how
would this affect the outcome of our analysis?

We want to compare results that are derived from different
models. We need some metric to evaluate this difference.

We can use the matrix norm. But we want our metric to take
into account the inherent stochasticity of the denoised data
matrices.
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Evaluation Metrics

As an example, we use the discussed mathematical and
statistical tools to generate a number of signal trajectory
paths at every timepoint.

Then take the average of the computed paths and compare it
with the true path.

Figure: Example of a true path trajectory and the denoised +
averaged one

Various statistical metrics that compare such paths can be
found in [Needham & Boyle, 2003]
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Multiple signals

False positives arise from spatial delay or noise generated from
the scanning process.

There may also be spatial correlation among signals.

Generate multimodal signal surfaces.
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Delayed detection

Temporal bias arises from detection process.

What if a signal appears later in the time sequence?

Is this a delayed detection or just another false positive?

How would one set a threshold to decide that? – based on
how often this signal appears in the time seqeuence?

Signals sometimes vanish from the trace – how would that
change your threshold?
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Difficulties and possible starting points

Need to differentiate between the true signal and the false
positives.

Taking into account the correlation between signals.

The signal surface resembles a random field – a starting point
would be to look at Random Field Theory.

Apply thresholds to these surfaces and use hypothesis testing
to locate activation regions.
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Action Plan

Generate noisy data – experiment with different parameter
values to get a feel for how this toy model behaves. In
addition, consider applying different noise distributions to your
data. [1 day]

Read up on mathematical and statistical techniques which
could be used to remove noise / track signals. [3 weeks]

Implement your chosen techniques – Test on dummy data
before applying to the noisy data generated in the first step.
[4 weeks]
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Action Plan

Compare your estimate the path of the signal with the actual
data before noise was added to it. Furthermore, apply
evaluation metrics to establish how sensitive your chosen
techniques are to different noise distributions. [3 weeks]

If you have time, consider applying the work you have done to
the extension problems.
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