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1 Introduction

Brain imaging is an important tool in the diagnosis and treatment of neu-
rological ailments. Neuroscientists employ scanners to build a picture of the
“activity” within a patient’s brain. These images can then be used to de-
termine the functions of various regions of the brain, or detect the presence
of abnormalities (such as cancerous cells). In this section, we would like to
highlight the workings of functional magnetic resonance imaging (fMRI) and
electro-encephalography (EEG) and discuss their limitations.

1.1 fMRI

fMRI detects activation in brain regions using the different magnetic prop-
erties of protons in oxygenated and deoxygenated haemoglobin, to analyse
blood flow and oxgenation levels in regions of the brain. The MRI ma-
chine emits an energy pulse inside a magentic field. Protons in Hameoglobin
molecules will then abosrb energy corresponding to a particular frequency,
which will change its spin and orientation in the external magnetic field –
In deoxygenated haemoglobin, protons will want to align themselves to an
external magnetic field, wherease in oxygenated haemoglobin, protons are
more likely to go against the field. A short time afterwards, the pulse is
switched off and these protons will then emit a photon signal corresponding
to the energy absorbed earlier. These signals are measured simultaneously
and their spatial coordinates are sorted based on their frequency. Volume
elements on the image, called voxels, are then highlighted corresponding to
the intensity of the photons detected at that point, which is itself linked to
the levels of oxygenated and deoxygenated blood present there. A voxel that
is comparatively brighter would indicate more oxygenated blood in that re-
gion of the brain, indicating comparatively more activity in that region [1].

fMRI experiments work by first taking a control scan, where the patient
is at rest, and then taking another scan while the patient responds to a par-
ticular stimulus or stimuli. For example, the patient may be asked to press
a button when they see a particular image on a screen inside the scanner.
The scans are then subtracted from one another, in order to determine the
regions of the brain most prominent in responding to the stimulus within the
test scan.
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1.2 EEG

EEG measures brain activity through the monitoring of neural electrical
signals generated by brain cells whilst the patient is performing tasks in
response to a stimulus. Numerous electrodes are placed on the scalp of the
patient, each of which detects neural activity through the gain or loss of
electrons. This electron flow is caused by the movement of ions along the
axons of nerve cells in the brain, corresponding to brain activity. Voltages
between electrodes can then be used to determine the areas with most neural
activity [2].

1.3 Limitations

There are several limitations which need to be addresed.

• fMRI measures only the changes in magnetic field, indirectly measuring
levels of oxygenated /deoxygenated blood – no direct detection of brain
activity is made [1]. EEG is comparatively better in this respect as it
is designed to detect neural activity directly.

• EEG lacks spatial resolution – that is, there is no clear method to
precisely pinpoint the location of neural activity. Even with a setup of
64 – 128 electrodes on the patient’s scalp, the technicians cannot infer
the location of a signal’s source.

• In fMRI, it is hard for the subject to stay perfectly still during the scan
and a control experiment is difficult to implement as the brain is never
completely at rest [3].

• Detector noise always features in fMRI and EEG scans. The latter
also suffers from bias, caused by the muscles in the head region have a
higher amplitude than the EEG signal [4]. In extreme cases the EEG
signal might be lost in the noise generated by other electrical activity
from other parts of the body [2].

• There is an implicit delay of several seconds with signals detected using
fMRI due to coupling with blood flow. This can result in a spatial
spread of millimeters [3].
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2 Research proposal

Given the technical difficulties with fMRI and EEG, we propose to look at a
sequence of brain images taken in time to trace the brain activity linked to
a response to some fixed stimulus: the first objective would be to filter out
the noise from the image taken at the first time-point. Once this is done, on
the assumption that the activity traces a path in the brain over time, the
denoised data can be used to evolve the observed signal in time and thus
determine the path. We propose that these steps can be implemented using
mathematical and statistical tools.

2.1 Model

The original data is composed of noisy surfaces defined on the square domain
[−1, 1] × [−1, 1]. The toy model considers a 2D function with rotational
symmetry, given by

φ(x, y) = exp(−β((x− c1)2 + (y − c2)2)) (2.1)

where β is some strictly positive parameter. A plot of this function for β = 20
and c = (0, 0) is shown in Figure 1, which has been generated using MAT-
LAB.

Figure 1: Plot of φ for β = 20 and c = (0, 0).

We now add noise to this function by drawing independent samples from
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a normal distribution with mean 0 and variance small enough that the noise
isn’t of the same order as the signal itself, and adding it to (2.1). Figure 2
shows the plot of this noisy function for the same parameters as before.

Figure 2: Plot of noisy signal for β = 20 and c = (0, 0).

We improve our model further by making the parameters β and c of (2.1)
noisy. The parameter β regulates the signal in a non-trivial way: clearly the
value of β that we chose in the previous plot (β = 20) makes the signal stand
out from the noise, but choosing much larger values of β would result in the
signal being indistinguishable from the noise.

Now we choose β to be a stochastic process taking two distinct values: one,
with low probability, which drowns the signal in the noise for a short period
of time and the other, with high probability, in which the signal can be, a pri-
ori, distinguished from the noise. Such a binary process incorporates some
key limitations of medical scanners discussed in the introduction, namely
the disappearance of the signal for a short period of time. Furthermore, we
choose c = (c1, c2) to follow a path of the form

c2 = c3
1 + u (2.2)

where c1 moves from −1 to 1 and u ∼ Unif([−0.1, 0.1]). The reason for
choosing such an expression is to try and capture the non-linear structure
of brain processes. Typically, regions of the brain activated by a stimulus
need not lie on a path with simple geometry. Whilst equation (2.2) does not
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fully reflect the complexity of such structures, it still provides a model that
captures some of the non-linearity.

A more realistic model for the signal evolution would be to consider the
motion of the signal as a random walk. That is, treating c as a pair of
Markov random variables, as we believe that the location of the signal at a
future time would only depend on its current location.

2.2 Proposed Method of Noise Removal

One of the issues with data from fMRI is the noise that is inherent within the
images obtained. Whilst there are many methods outlined in the literature
about ways to filter out this noise, we would like to focus on a method based
upon Bayesian methodology - that of approximate Bayes factors. The aim is
to apply an image segmentation technique to reduce the number of colours
(or shades of grey) used in the image, where a Bayes factor approximation
called PLIC will determine this number. The result should be an image with
cleanly defined boundaries, making it easier to distinguish between various
structures.

The idea behind Bayes factors is that, unlike in frequentist hypothesis test-
ing, you can compare the weight of evidence for a hypothesis or model as
well as that against it [5]. The factors are calculated as ratios between the
conditional probability distributions of the observed data, D, i.e.

Bi,j =
P(D|Hi)

P(D|Hj)
(2.3)

is the Bayes factor comparing Hi and Hj, where

P(D|Hk) =

∫
P(D|θk, Hk)π(θk|Hk)dθk (2.4)

with θk the parameter under Hk with prior distribution π(θk|Hk). With a
few exceptions, this integral cannot be calculated explicitly. So we need to
appeal to approximations to Bayes factors instead. In the case of [6], they use
a crtierion called the Penalised Pseudolikelihood Criterion as the approxima-
tion – more details of how this criterion is derived are given in the appendices.

In [6], an example using a PET (Positron Emission Tomography) scan of
a dog’s lung is used as the test image. The hypotheses being tested are mod-
els corresponding to the number of shades of grey (i.e. the greyscale) to use
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in the final image. Some preliminary image segmentation techniques (such
as the Iterated Conditional Modes algorithm to establish initial parameter
estimates) need to be implemented before the PLIC can be calculated. Only
models with between 2 and 6 image segments (colours or grey shades) are
considered, as we only want a few colours to be used. The model with the
highest PLIC value is chosen, and the final image developed using the se-
lected number of segments.

A word of warning : This concept of “removing noise” might appear to be
somewhat of a miracle! It is important to remember that there is always some
form of stochastic error inherent in this process – we aren’t regenerating the
true data without the noise; we are only finding an estimate of the true data.
Naturally, the variation in the result depends upon the model being used and
the data being analysed. An interesting problem would be to characterise
this variation mathematically, but this shall be left as a potential extension
of the problem being set.

2.3 Proposed Method of Signal Tracking

We have already mentioned the problems of low spatial resolution in the data
obtained in EEG scans, and the sensitivity of EEG scanners to electrical ac-
tivity generated by other sources, such as external magnetic fields. [7] and
[8] describe methods of applying Kalman filters to reduce the effects of these
problems, and we will briefly sketch their ideas below.

In [8], Morbidi et al. propose a Kalman filter approach to remove artifacts
on an EEG trace. Specifically, they propose applying a Kalman filter to a
linear system arising from two models – one for the EEG signal and one for
artifact generation. The end result is the complete removal of the induced
artifacts in the EEG recording, whilst preserving the integrity of the EEG
signal.

While [8] uses the Kalman filter to remove artifacts on the EEG trace, [7]
uses the Kalman filter to enhance existing data spikes for epileptiform ac-
tivity in the EEG. Epileptic seizures are characterised by high amplitude
synchronised periodic waveforms that reflect abnormal discharge of a large
group of neurons [7]. On the EEG data, these seizures come in the form
of isolated spikes, sharp waves and spike-and-wave complexes that are dis-
tingushable from background activity. [7] aims to enhance any signal that
vaguely resembles a spike, and a Kalman filter is applied to cancel the back-
ground activity and noise from the EEG signal.
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We would also like to highlight a paper that utilise Kalman filters to de-
tect activation regions for fMRI data. In [9], the authors attempt to fit a
general linear model on the fMRI data using an extended Kalman filter 1.
We will sketch the main idea of the paper below.

Let y = [y1, . . . ,yn]T denote the time course vector associated to a particu-
lar voxel in the fMRI image sequence, where 1, . . . , n denote the acquisition
times. The general linear model is

y = Xβ + ε, (2.5)

where the design matrix X = (xT
1 , . . . ,x

T
p ) is a (n × p) matrix with the

regressors x1, . . . , xp as columns. β is the unknown (p×1) vector of regression
coefficients and ε denotes the noise, assumed to be a autoregressive Gaussian
process

εt = aεt−1 + nt, (2.6)

where a is the autocorrelation parameter and nt is white noise.

Let b = (β, a) be the augmented state vector and St be the posterior
variance-covariance matrix of b given the information available at time t.
The Extended Kalman filter performs successive estimates (b̂,Σt) on the
pair (b,St) at each time step. To detect whether an effect is present, the
brain’s responses to different stimuli are compared and estimates for the vari-
ance, as well as the statistical significance of the effect, are calculated using
t-tests.

Let c denote a contrast vector of parameters that make up the desired effect.
For example, to test activation in the first condition versus a baseline, the
contrast vector is

c = (1, 0, 0, . . . 0). (2.7)

To compare the difference between the first and second conditions, the con-
trast vector is

c = (1,−1, 0, . . . 0). (2.8)

The effect is now defined via

cβ = β1 − β2 (2.9)

1See appendix for details on the Kalman Filter and Extended Kalman Filter.
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and the estimate of the variance of the effect is Var(cβ). Next, the following
T -statistic is used to test whether or not there is any evidence for the effect
being studied.

t =
β1 − β2√
V ar(cβ)

. (2.10)

The approach in [9] is similar – for a given contrast vector c, the main aim
is to identify the voxels that demonstrate a constrast effect cβ. The authors
considered the Mahalanobis transform 2 of the contrasted effect

Ti = (cΣic
T )−1/2cβ, (2.11)

and the probability that the contrasted effect is positive can be derived from
there.

2.4 Evaluation metrics

One of the key assumptions to apply the Kalman filter is that the noise is
Gaussian. However, this may not necessarily be the case. One important
thing to know is how this would affect the outcome of your analysis. For
example, if the real data is generated with noise that has a non-standard
distribution, and we apply the Kalman filter as if the noise was Gaussian,
would our analysis reflect closely what is going on? A simpler case would be
when the noise takes a standard distribution which is not Gaussian (such as
a Chi-squared distribution). Again, we would need to consider the validity
in applying our chosen techniques under this assumption.

In order to compare results derived from different models, we need a metric
to evaluate this difference. One possibility would be to consider the matrix
norm of the differences between the corresponding matrices derived from dif-
ferent models for the error. This would allow us to know how sensitive the
chosen techniques are to various error distributions.

Such an evaluation metric is easily computable, but does not take into ac-
count the inherent stochasticity of the denoised data matrices. An evaluation
metric that does so compared the resulting signal paths rather than the data
matrices. More precisely, we generate a number of signal trajectory paths
at every timepoint and take their average. This is done for each model we
choose for the error, and so the corresponding averaged paths can then be
compared statistically. Various statistical metrics that compare such paths
can be found in [10].

2The Mahalanobis transformation is used to decorrelate two random variables.
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2.5 Extensions

2.5.1 Multimodal data

The signal surface used in the toy model is a unimodal distribution that
evolves along a simple path. A more realistic model would be to have a mul-
timodal distribution for the signal surface – for example, cases where more
than one area of the brain is active in a response to a stimulus. Such a
model mirrors the situation where the true activation signal is hidden among
a number of false-positives (generated either by noise or by temporal delay).
However the complexity of the problem has increased, the signal surface has
become more rough and the path of the signal is harder to track.

Figure 3: An example of several false positives surrounding the true signal

A starting point to tackle this extension is to differentiate between the “true”
signal and false-positives that arise from the detection process. These sur-
faces bare some similarities to random fields, hinting at the use of random
field theory to analyse these images [11]. In random field theory, one assigns
a threshold to these surfaces and looks at the number of clusters that are
left after thresholding. From this, hypothesis testing may aid in locating the
true activation region.

2.5.2 Delayed detection region

We propose an extension problem involving delayed detection. For example
two brain regions might simultaneously activate in response to a stimulus,

11



but due to temporal bias, the detector might pick up one signal first and the
other signal might appear later in time. One issue would be to set a threshold
so that the delayed detected region does not get rejected as a false positive.
This setting is similar to the multimodal extension mentioned above, and so
random field theory could also be of use to solve this problem.

Figure 4: An example of the delayed appearance of a smaller second region
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2.6 Action Plan

• Generate the noisy data using the MATLAB code provided in the Ap-
pendix. Perform multiple runs and experiment with different parameter
values to get a feel for how this toy model behaves. [1 week]

• Read up on the various mathematical and statistical tools discussed
in the report, namely approximate Bayes factors and Kalman filters,
as well as any other tools which you believe would be useful to re-
move noise and/or track the signal(s) in a sequence of time indexed
images generated by the aforementioned code. Make use of the various
resources mentioned in the bibliography. [3 weeks]

• Implement your chosen techniques and apply these on dummy data to
test them out. Once this is done, the implementation should be adapted
to work on the noisy data generated in the first step. [4 weeks]

• Analyse the resulting data to estimate the path of the signal, and com-
pare this with the actual data before noise was added to it, at each
time-step, to determine how successful your choice of techniques was.
You may also wish to consider applying different noise distributions to
your data, and applying evaluation metrics to assess the sensitivity of
your techniques to these models. [3 weeks]

• If you have time, consider applying the work you have done to the
extension problems.
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A Appendix - Model Implementation Details

A.1 MATLAB Code for Data Creation

%%%%%%%%%%%%%%%%%%%%%%Creates the noisy surface.%%%%%%%%%%%%%%%%%%%%%%%%%%

gridRes = 50; % Grid resolution.

timeRes = 20; % Time resolution.

x = linspace(-1,1,gridRes);

beta = zeros(1,timeRes);

y=x;

[X,Y] = meshgrid(x,y);

% Random walk for centre c.

c1 = linspace(-1,1,timeRes);

c2 = c1.^3 + unifrnd(-.1,.1,1,timeRes);

% Binary process for beta.

betaSwap = unifrnd(0,1,timeRes);

for i = 1:timeRes

if (betaSwap(i) < 0.1)

beta(i) = 10000;

else

beta(i) = 20;

end

end

for i = 1:timeRes

matrix = exp(-beta(i)*((X-c1(i)).^2 + (Y-c2(i)).^2)) + 0.1*randn(size(X));

surf(X,Y,matrix);

axis([-1 1 -1 1 -1 1])

% Uncomment the two lines below to see signal in action!

%drawnow

%pause(0.1)

end

%%%%%%Outputs values of matrix at last timestep in file data1.txt.%%%%%%%%%%

file = fopen(’data1.txt’,’w’);

for i=1:gridRes

for j=1:gridRes

fprintf(file,’%4.8f\t’,matrix(i,j));
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end

fprintf(file,’\n’);

end

fclose(file);

A.2 Noise Removal via Approximate Bayes Factors

A.2.1 Exact & Approximate Bayes Factors

In statistical inference, there are two major methodologies for analysis of
data - the frequentist approach and the Bayesian approach. The frequentist
(or classical) approach takes the parameter, θ say, to be established as a
fixed value, and the data that we gain from samples, D say, allows us to
make guesses of the value of θ. This is typically done in a hypothesis testing
framework. Suppose we have a null hypothesis,

H0 : θ ∈ Θ0 ⊂ Θ

which we want to test against an alternative hypothesis,

H1 : θ ∈ Θ\Θ0

where Θ is the parameter space. The usual method of hypothesis testing
involves a Likelihood Ratio Test Statistic, given by

SLR(D) =
supΘ0L(θ; D)

supΘL(θ; D)
(A.1)

We choose a significance level, or size, α for the hypothesis test, and deter-
mine a suitable critical region, C, for which P(SLR(D) ∈ C) = α.

The main problem with this approach is that, whilst it will update our knowl-
edge of θ when we get enough evidence to reject our null hypothesis, if we
are able to provide more data samples, then each hypothesis test ignores any
information that could have been gained from previous data sets tested. In
a similar vein, we would like to pool the data we have and determine the
strength of the evidence which supports the null hypothesis as well as that
against it [5]. Furthermore, if we have more than one hypothesis for the
value of θ, then this approach will be very difficult to implement. This is
where the Bayesian approach comes into play.
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In the Bayesian framework, we think of our parameter, θ as being a ran-
dom variable and our data D as being fixed, and we update our knowledge
of the probability distribution of θ via a likelihood based upon the D. When
we are testing hypotheses, rather than looking at parameters, we look at the
hypotheses themselves and the probabilities of each hypothesis being true
given the data at hand – i.e. P(Hk|D) for k = 0, 1 in the simple case. Now
observe that, by Bayes’ theorem

P(Hk|D) =
P(D|Hk)P(Hk)

P(D|H0)P(H0) + P(D|H1)P(H1)
(A.2)

with k = 0, 1. We then get

P(H0|D)

P(H1|D)
=

P(D|H0)

P(D|H1)

P(H0)

P(H1)
(A.3)

where

P(D|Hk) =

∫
P(D|θk, Hk)π(θk|Hk)dθk (A.4)

with θk the parameter under Hk with prior distribution π(θk|Hk). We define

B0,1 =
P(D|H0)

P(D|H1)
(A.5)

to be the Bayes factor comparing H0 and H1. The general case of the Bayes
factor comparing Hi and Hj is defined in the same way.

The major problem in trying to calculate Bayes factors is calculating the
probabilities in the ratio using integral (A.4). There are some simple cases
where this integral is tractable, but more often, other methods need to be
sought. Details of various methods that could be used can be found in [5,
§4], including MCMC algorithms, such as a Metropolis-Hastings sampler to
simulate from the posterior, Monte Carlo methods, including importance
sampling, and asymptotic methods. We focus on the last of these, looking at
the such as Bayes Information Criterion which is based upon Schwarz crite-
rion [5, §4.1.3]. Of the methods described in the paper, the Schwarz criterion
method is depicted as being the easiest to apply. Indeed, in [6], this method
is used to clear up noise from a PET scan of a dog’s lung.

One of the issues with integral (A.4) is having to include prior densities
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π(θk|Hk). The Schwarz criterion, described in (A.6) below, provides a way
out of this problem.

S = log P(D|θ̂0, H0)− log P(D|θ̂1, H1)− 1

2
(d1 − d2)log (n) (A.6)

We have taken n to be the sample size of the data set D, dk as the dimension
of parameter θk (so, if θk = (µk, σ

2
k), then dk = 2), and θ̂k is the maximum

likelihood estimator under Hk. It can be shown that as n→∞

S − logB0,1

logB0,1

→ 0 (A.7)

even though the error of exp(S) as an approximation to B0,1 is of order O(1).
So whilst it might not be a particularly accurate approximation, for large
samples, it will give a good idea as to the relative strength of the hypotheses
based on the data given. Typically, a variant of the Schwarz criterion with
similar levels of performance, called the Bayes Information Criterion or BIC,
given below in (A.8), is used instead.

BIC = 2 log P(D|θ̂k, Hk)− dklog (n) (A.8)

In fact, as described in [5] and [6], BIC ≈ 2 log P(D|Hk).

A.2.2 Image Segmentation & Bayes Factor Approximations

The notes given here are a summary of the approach adopted in [6, §3], where
it used to clean up a PET scan of a dog’s lungs. There is also mention of the
method in [12, §5]

Take any position, i, on the image. Suppose that the pixel can take an
integer value, Yi, between 1 and K, representing the shade of grey displayed
at the point. Suppose also that the true state at position i is represented by
Xi and this determines the distribution of Yi. We look at the whole image
as being a hidden Markov random field, and apply the Potts model given in
[6, §2.1]. This gives rise to a conditional distribution, given by

P(Xi = m|N(Xi), φ) =
exp(φU(N(Xi),m))∑
k exp(φU(N(Xk),m))

(A.9)

where

• N(Xi) = Set of pixels neighbouring pixel i
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• U(N(xi), k) = Number of neighbouring pixels taking value k. Note, if
k is replaced with Xi, this becomes the number of neighbouring pixels
which take the same value as Xi does.

• φ represents how closely related values at neighbouring pixels are. This
is a fallout of the Potts model, given by

P(X) ∝ exp

(
φ
∑
i∼j

IXi,Xj

)
. (A.10)

Thus, if φ = 0, then the Xi are independent of one another, whereas
postive/negative values would mean that pixels would have similar/dissimilar
values of Xi to their neighbours.

Let MK represent the model which uses K different shades of grey – we
will treat these models as our hypotheses. This model will have parameter
set, θK , consisting of parameters for the conditional distribution of Yi given
Xi. We could try to use our Bayes Information Criterion method here to
determine which model (i.e. number of colours) is appropriate. However, to
calculate the BIC, we would need to calculate the P(D|θ̂k, Hk) term – here,
this is equivalent to calculating P(Y|MK), the likelihood, given by

P(Y|MK) =
∑
x

P(Y |X = x,MK)P(X = x|MK). (A.11)

This requires a summation over a huge number of different values, represent-
ing the different combination of values over the pixels. The sheer size of this
calculation means that a new approach is required. In [6, §3.3], the authors
propose a new criterion to approximate Bayes factors between two models,
called the Penalised Pseudolikelihood Criterion of PLIC.

In order to implement the PLIC, we first need to mention an algorithm
called Iterated Conditional Modes (ICM), described in [13, §2.5], which is
used in many image reconstruction techniques. This algorithm takes an ini-
tial estimate for Xi, which could be generated, as explained in [12], using an
Expectation-Maximisation (EM) algorithm, described in [14], or otherwise.
It then updates this value using the details of the image (specifically the im-
age excluding the pixel being studied) under the Markov random field model.
Specifically, the update maximises P(xi|Y,X \ {xi}). Let the estimate gen-
erated by this algorithm be denoted x̂i, and the corresponding collection of
all these estimates X̂. For notational simplicity, we define X−i := X \ {xi}.
The algorithm also provides estimates of the parameters for the distribution
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of P(Yi|Xi) and φ.

The idea of PLIC is to avoid calculating the likelihood by proposing an
alternative pseudo-likelihood. This pseudo-likelihood is based upon configu-
rations which are close to the estimates generated by the ICM, so we are now
summing over a much smaller number of values. The single pixel likelihood
is given by

P(Yi|X̂−i, K) =
K∑
j=1

P(Yi|Xi = j)P(Xi = j|N(X̂i)) (A.12)

where the first term on the RHS is just the conditional distribution of Yi given
Xi, and the second term is caluclated using equation (A.9). Combining these
together gives an image pseudo-likelihood

PX̂(Y|K) =
∏
i

K∑
j=1

P(Yi|Xi = j)P(Xi = j|N(X̂i), φ̂) (A.13)

where φ̂ is the estimate of φ from the ICM algorithm. We can now derive
the PLIC by replacing the P(Y|MK) term in the BIC with PX̂(Y|K) to get

PLIC(K) = 2 log PX̂(Y|K)− dklog (n) (A.14)

Now, rather than calculating the PLIC for all values of K, we can start at
K = 1, and keep working until we hit a local maximum. The idea is that
we want to have a relatively low value for K but that it should be the best
small value of K.

There is an alternative criterion to the PLIC, called the Marginal Mixture
Information Criterion (MMIC ) which is much faster to compute than the
PLIC. However, this is seen as being a heuristic guideline rather than a good
indicator of the number of grey scales we would like to use. This is because
of the likelihood defined in the expression being dependent upon the inde-
pendence of the Yi, which doesn’t occur typically in images. Further details
on this can be found in [6, §3.3].

A.3 Signal Tracking

A.3.1 State space models

When we measure any sort of signal, it will typically be contaminated by
noise. So the actual observation is given by

observation = signal + noise. (A.15)
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We assume that the signal is a linear combination of a set of variables, called
state variables, which give rise to a state vector at time t. Denote the obser-
vation at time t by Xt and the state vector (of size m × 1) at time t by θt.
Then (A.15) becomes

Xt = hTt θt + nt (A.16)

where the (m × 1) column vector ht is assumed to be a known vector of
constants, and nt denotes the observation error. The state vector θt cannot
usually be observed directly. Thus we will typically want to use to observa-
tions on Xt to make inferences about θt.

Although θt may not be directly observable, it is often assumed that we
know how it changes through time - this behaviour is given by the updating
equation (A.17)

θt = Gtθt−1 + wt (A.17)

where the (m × m) matrix Gt is assumed to be known, and wt denotes a
(m × 1) vector of errors. The errors in both (A.16) & (A.17) are generally
assumed to be uncorrelated with each other at all time periods. We may
further assume that nt is N(0, σ2

n) while wt is a multivariate normal with
zero mean vector and a known variance-covariance matrix Q.

A.3.2 Kalman filter

We want to estimate the signal in the presence of noise – in other words,
we want to estimate the (m × 1) state vector θt, which usually cannot be
observed directly. The Kalman filter provides a general method for doing
this. It consists of a set of equations that allow us to update the estimate of
θt when a new observation becomes available.

Suppose we have observed a univariate time series up to time (t − 1), and
that θ̂t−1 is the ‘best’ estimator for θt−1 based on information up to this
time – here, ‘best’ is defined as the minimum mean square error estimator.
Furthermore, suppose that we can evaluate the (m× n) variance-covariance
matrix of θ̂t−1, which we denote by Pt−1.

The first stage – the prediction stage – forecasts θt using data up to time
(t− 1). We denote the resulting estimator by θ̂t|t−1. In this setting, consider
the equation (A.17) again. Since we do not know wt at time t− 1, our first
guess at an estimator for θt would be

θ̂t|t−1 = Gtθ̂t−1 (A.18)
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with variance-covariance matrix

Pt|t−1 = GtPt−1G
T
t +Q. (A.19)

When the new observation, Xt, at time t has been observed, the estimator
for θt can be modified to take into account this extra information. At time
(t−1), the best forecast of Xt is given by hTt θ̂t|t−1 so that the prediction error
is given by

et = Xt − hTt θ̂t|t−1. (A.20)

This quantity can be used to update the estimate of θt and of its variance-
covariance matrix. It can be shown (see [15] and [16]) that the best way to
do this is by means of the following equations:

θ̂t = θ̂t|t−1 +Ktet

Pt = Pt|t−1 −Kth
T
t Pt|t−1,

(A.21)

where Kt = Pt|t−1ht/[h
T
t Pt|t−1ht + σ2

n] is called the Kalman gain matrix.
(A.21) constitutes the second updating stage of the Kalman filter and are
called the updating equations.

In order to initialize the Kalman filter, we need estimates of θt and Pt at
the start of the time series. This can be done by a priori guesswork, relying
on the fact that the Kalman filter will rapidly update these quantities so
that the initial choices become dominated by the data. We will discuss the
derivation of the update equations later on, but we refer the reader to [15]
and [16] for a full analysis of these equations.

A.3.3 Extended Kalman Filter for non-linear problems

Suppose that the state space model is now non-linear:

θt = f(θt−1) + wt (A.22)

where f is the non-linear system transition function and wt is the zero mean
Gaussian process noise, wt ∼ N(0, Q). The observation at time t+ 1 is given
by

Xt = h(θt) + nt, (A.23)

where h is the observation function and nt is the zero mean Gaussian obser-
vation noise nt ∼ N(0, R).
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Suppose the initial state θ0 follows a known Gaussian distribution θ0 ∼
N(θ̂0, P0) and the distribution of the state at time t is

θt ∼ N(θ̂t, Pt), (A.24)

then θt+1 at time t+ 1 follows

θt+1 ∼ N(θ̂t+1, Pt+1) (A.25)

where θ̂t+1 and Pt+1 can be computed using the Extended Kalman Filter
formula [17], which is derived as follows.

Let ∇fθ be the Jacobian of the function f with respect to θ, and evaluated
at θ̂t. Then the predict process is

θ̂t+1|t = f(θ̂t)

Pt+1|t = ∇fθPt∇fTθ +Q
(A.26)

and the update process

θ̂t+1 = θ̂t+1|t +K(Xt+1 − h(θ̂t+1|t))

Pt+1 = Pt+1|t −K(∇hPt+1|t∇hT +R)KT

K = Pt+1|t∇hT (∇hPt+1|t∇hT +R)−1

(A.27)

where ∇h is the Jacobian of h evaluated at θ̂t+1|t.

A.3.4 Particle filters

Consider a model with a state equation

θt = ft(θt−1, wt) (A.28)

and an observation equation

Xt = ht(θt, nt) (A.29)

where θt is the state at time t, ft is a, potentially, non-linear function and wt
is noise. Similarly, ht could also be a non-linear function, taking the state θt
and observation noise nt at time t to generate the observation Xt.

If the data is modelled by a Gaussian state space model, then one can apply
the Kalman filter or the Extended Kalman filter to compute the evolution
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of the posterior distributions [18]. However, the Taylor expansions of non-
linear functions do not capture the dynamics of the non-linear models, hence
the filter can diverge. In addition, the Kalman filter relies on the assumption
that the noise is Gaussian, which can be too restrictive an assumption in
many instances.

We can use particle filters to estimate the state of a non-linear dynamic
system sequentially in time. Estimating from a multi-modal, multivariate,
non-Gaussian probability distribution, p, can be difficult. One could generate
samples from p using the importance sampling method. We replace p with
an importance function, f , which is easier to sample from and has greater
support than p. Then one could estimate the integral

I(g) =

∫
g(x)p(x)dx =

∫ g(x)p(x)
f(x)

f(x)dx∫ p(x)
f(x)

f(x)dx
(A.30)

with

IIS(g) =

1
N

∑N
i=1

p(xi)
f(xi)

g(xi)

1
N

∑N
i=1

p(xi)
f(xi)

=
N∑
i=1

g(xi)w(xi) (A.31)

where {xi}Ni=1 is a sample from f and {w(xi)}Ni=1 are the normalised weights.
The particle filter algorithm includes an extra step to discard the particles
with low importance weights, and multiply the particles having high impor-
tance weights [18]. After this step, all the weights are then renormalised and
we have a sample from the distribution p.

A.3.5 Derivation of the Kalman Filter

Recall the form of our observation:

Xt = HT θt + nt (A.32)

where

• Xt is the (n× 1) observation/measurement vector at time t

• H is the (n×m) noiseless connection matrix between the state vector
and the measurement vector, and is assumed to be stationary over time

• θt is the (m× 1) state vector

• nt is the (n × 1) associated measurement error which is assumed to
have known covariance.
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The overall objective is to estimate θt. The error is defined as the difference
between the estimate θ̂t and θt itself.

Assume that we want to know the value of a state variable within a pro-
cess of the form:

θt = Gθt−1 + wt (A.33)

where θt is the state vector at time t, G is the (m × m) state transition
matrix of the process from the state at time t− 1 to the state at time t, and
is assumed stationary over time, wt is the associated (m × 1) noise process
vector with known variance. This is assumed to have zero cross correlation
with nt.

The covariances of the two noise models are assumed stationary over time
and are given by

Q = E [wtw
T
t ], R = E [ntn

T
t ] (A.34)

We will use the mean squared error (MSE) function ε(t) = E [e2
t ] with

Pt = E [ete
T
t ] (A.35)

as the error covariance matrix at time t. Then,

Pt = E [ete
T
t ] = E [(θt − θ̂t)(θt − θ̂t)T ] (A.36)

Assuming the prior estimate of θ̂t is θ̂t|t−1 it is possible to write an update
equation for the new estimate, combining the old estimate with measurement
data. We have

θ̂t = θ̂t|t−1 +Kt(Xt −Hθ̂t|t−1) (A.37)

where Kt is the Kalman gain, which will be derived below. The term
Xt − Hθ̂t|t−1 =: it is known as the innovation or measurement residual.
Substituting (A.32) gives

θ̂t = θ̂t|t−1 +Kt(Hθt + nt −Hθ̂t|t−1) (A.38)

Substituting this into (A.36) then yields

Pt = E (ΓΓT ) where Γ = (I −KtH)(θt − θ̂t|t−1)−Ktnt (A.39)
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Recall that θt − θ̂t|t−1 is the error of the prior estimate. This is uncorrelated
with the measurement noise and therefore the expectation may be re-written
as

Pt = (I −KtH)E([(θt − θ̂t|t−1)(θt − θ̂t|t−1)]T )(I −KtH)T

+KtE[ntn
T
t ]KT

t

(A.40)

Hence

Pt = (I −KtH)Pt|t−1(1−KtH)T +KtRK
T
t (A.41)

where Pt|t−1 is the prior estimate of Pt. The above equation is the error
covariance update equation. Recall that the main diagonal of the covariance
matrix is the variance of the errors, so the trace of Pt will give the sum of
the mean squared errors. We can thus minimise the mean squared error by
minimising the trace of Pt.

The trace of Pt is first differentiated with respect to Kt and the result set to
zero in order to find the conditions of this minimum. First let us expand Pt.

Pt = Pt|t−1 −KtHPt|t−1 − Pt|t−1H
TKT

t +Kt(HPt|t−1H
T +R)KT

t (A.42)

Let T [A] denote the trace of a matrix A. Recall that the trace of a matrix is
equal to the trace of its transpose, so we can write

T [Pt] = T [Pt|t−1]− 2T [KtHPt|t−1] + T [Kt(HPt|t−1H
T +R)KT

t ] (A.43)

Differentiating with respect to Kt gives

dT [Pt]

dKt

= −2(HPt|t−1)T + 2Kt(HPt|t−1H
T +R). (A.44)

So setting the above to zero and solving for Kt gives

Kt = Pt|t−1H
T (HPt|t−1H

T +R)−1 (A.45)

which is the Kalman gain equation. Substituting this into (A.42) yields

Pt = Pt|t−1 −KtHPt|t−1 − Pt|t−1H
TKT

t +Kt(HPt|t−1H
T +R)KT

t

= Pt|t−1 −KtHPt|t−1 + A
(A.46)

where
A = −Pt|t−1H

TKT
t +Kt(HPt|t−1H

T +R)KT
t

= −Pt|t−1H
T (Pt|t−1H

T (HPt|t−1H
T +R)−1)T

+ Pt|t−1H
T (HPt|t−1H

T +R)−1HPt|t−1

= 0

(A.47)
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So the update equation for the error covariance matrix is

Pt = (I −KtH)Pt|t−1 (A.48)

Collecting all of the equations for developing an estimate for θt, we have

Pt = (I −KtH)Pt|t−1 (A.49a)

Kt = Pt|t−1H
T (HPt|t−1H

T +R)−1 (A.49b)

θ̂t = θ̂t|t−1 +Kt(Xt −Hθ̂t|t−1). (A.49c)

The state projection is achieved using

θ̂t+1|t = Gθ̂t. (A.50)

To complete the recursion, it is necessary to find an equation which projects
the error covariance matrix into the next time interval t+1. This is achieved
by first forming an expression for the prior error.

et+1 = θt+1 − θ̂t+1|t

= (Gθt + wt)−Gtθ̂t

= Get + wt.

(A.51)

Then,

P−t+1 = E [e−t+1(e−t+1)T ] = E [(Gtet + wt)(Gtet + wt)
T ]. (A.52)

Note that et and wt have zero cross-correlation, because the noise wt actually
accumulates between t and t+ 1, whereas the error et is the error up to time
t. Therefore,

Pt+1|t = E [(Get + wt)(Get + wt)
T ]

= E [Get(Get)
T ] + E [wtw

T
t ]

= GPtG
T +Q,

(A.53)

which completes the recursive filter.

To summarise the updating equations are:

θ̂t+1|t = Gθ̂t

Pt+1|t = GPtG
T +Q

Pt = (I −KtH)Pt|t−1

Kt = Pt|t−1H
T (HPt|t−1H

T +R)−1

θ̂t = θ̂t|t−1 +Kt(Xt −Hθ̂t|t−1).

(A.54)
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