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Introduction and Project Goals

Our project investigates the mechanisms by which a neutrophil (white blood cell) chases
a bacterium by means of chemotaxis — the response of cells to chemical changes in
their surroundings.

This project aims:-
I To simplify and adapt the model of Neilson et al. to use a mean curvature flow model

for the movement of the neutrophil membrane, and propose a numerical simulation for
this new model using finite element methods.

I To assess the probability of a nearby bacterium escaping a neutrophil in various
situations using diffusion processes.

I To compare the results of our simulations with those of an empirical model by Li,
Nørrelykke and Cox.

The Model of Neilson et al.

The chemotaxis model of Neilson, Mackenzie, Insall and Webb [2] is our starting point.
The reaction-diffusion equations for this model are

∂•t a + a∇Γ(t) · v = Da∆Γ(t)a + f (a, b, c)− raa,

∂•t b + b∇Γ(t) · v = Db∆Γ(t)b− rbb + rb

 
Γ(t)

a dx,

∂•t c + c∇Γ(t) · v = Dc∆Γ(t)c− rcc + bca

where
I v is the normal velocity of the neutrophil membrane Γ(t).
I Da, Db, Dc, ra, rb and rc are diffusion coefficients and decay rate constants for the

chemoattractants.
I bc determines the growth of c in the presence of a
I f is a non-linear stochastic term which incorporates the effect of the external signal

and random fluctuations.
These are coupled to a PDE modelling the movement of the neutrophil membrane. This
PDE is given by

ut · ν = Vf − λκ

where
I u · ν represents the outward normal movement of the cell membrane.
I Vf represents the velocity contribution influenced by the presence of chemoattractant
a, and stimulates protrusions in the direction of the bacterium’s location.

I λκ regulates the cell movement so that the cell area does not increase, and the
membrane does not bend too much. Smoother configurations have lower energy and
are more preferable, so the motion of the membrane will resist increasing curvature.

Simplifying the Chemotaxis Model

Under suitable conditions, the equations for b and c can be normalised and reduced
down to

b =

 
Γ(t)

a dx and c =
b̃c
r̃c
a ≈ 0.385a

These results are backed up by simulation data in the paper of Neilson et al. We are
therefore left with just one equation governing the dynamics of the chemoattractant
concentrations.

Neutrophil Membrane Movement - New Approach

The main issue with the Neilson et al. model is finding values of λ, which have to satisfy
a non-linear ODE. We therefore propose an alternative model based upon mean
curvature flow, given by the equation

Vf(x) = −εH(x) + δa(x) + λ̄.

where ε, δ are small, positive constants, λ̄ is a Lagrange multiplier which constraints the
area of the cell to remain constant and H(x) is the mean curvature at point x.

Model Numerics

Curve approximation setup
I The smooth evolving surface Γ(t) is approximated by a polyhedral surface Γh(t),

whose vertices are taken to sit on Γ(t) so that it is an interpolation.
I Γh(t) is parametrised by a smooth mapping Xh : R× [0, T ]→ R2 with periodicity

condition Xh(p, t) = Xh(p + 1, t), 0 ≤ t ≤ T,∀p ∈ R.

Finite element approximation
I Let pj = jh, with j = 0, . . . , N , be a uniform grid, and define the piecewise linear finite

element space

Vh = {φ ∈ C0([0, 1];R) : φ|[pj−1,pj] ∈ P1, j = 1, . . . , N ;φ(0) = φ(1)}.

I Find ah(·, t) ∈ Vh such that for almost every t ∈ (0, T ),

d
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for every φ(·, t) ∈ Vh.
I Given ah(·, t) ∈ Vh, find Xh ∈ Vh such that for almost every t ∈ (0, T ),
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for every ϕ(·, t) ∈ Vh, subject to the area of the cell remaining constant, where λ̄h is a
discretised form of λ̄.

Simulation Results

Figure: Curve Evolution under (1) and (2) with ∆t = O(h2), ε = 10−6 and final time T = 10, with the unit
circle as the initial curve. The model constants are as in [2]

This figure illustrates the progression of the neutrophil membrane under the numerical
method developed above.
I The initial condition a0 = 20 exp

(
−(p−0.5)2

0.0002

)
represents the presence of a bacterium on

the left hand side.
I The result is the formation of a protrusion towards the bacterium, driving the

neutrophil to move in the same direction.

The Chase - When Does a Bacterium Escape?

I Given the movement of the neutrophil, what is the probability that a nearby bacterium
escapes?

I The first figure shows the probability of escape in a capillary with reflective
boundaries; the second figure is the same setting with an added obstacle.

I This is a function of the starting position of the bacterium relative to the neutrophil at
the centre of the figure.

(a) Without obstacle (b) With obstacle

I Chemotaxis is a process based upon concentrations of amino acids in a fluid and the
diffusions of these concentrations

I The effects of this process decay exponentially with distance.
I The bacterium thus significantly increases its chances of escaping by starting only a

relatively small distance further from the neutrophil.

Comparison with an Empirical Model

Experimental data from Li et al. [1] suggests that neutrophils move in a rough zig-zag
manner.
I The cell moves in a straight line for a random distance modelled by an Exp(5× 10−6)

(metres) distribution before turning.
I It remembers the direction (left or right) it last turned and turns the opposite way

approximately 2/3 of the time.
I The turn angle is distributed according to an Exp(0.67) (radians) distribution.

The graphs give details of a simulated cell movement in the plane, starting at the origin.

(c) (d)

I The theory suggests that a new pseudopod is most likely to form in the gap between
the two most recent formations, which accounts for the zig-zag motion.

I The model of Nielson et al., backs up these conclusions.
I The normalised reaction-diffusion model does not currently predict this long-term

pseudopod behaviour (the choice of numerical scheme may also be a factor).
I There is scope to develop the model to better reflect the empirical data.
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