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1. Introduction
In this project we consider the relatively new area of Phase Field Crystal (PFC) theory ini-
tially proposed in [3]. We provide a brief motivation for considering this theory and then
outline a derivation from the more widely studied Density Functional Theory (DFT). We then
proceed to outline some numerical approaches to simulating PFC and the results of some
simulations. Finally we outline some avenues for further possible work. This project is still
in an exploratory phase where we hope to gain insight into profitable research avenues in
PFC.

1.1 Motivation
The idea of PFC was first introduced in [3] as a method of producing crystalline structures.
It is shown in this paper that this model has the virtue of having an energy functional that
is minimised by three different states (or phases): a constant phase, a hexagonal lattice
and a striped phase, where different phases can be obtained by altering a parameter of the
functional and the total mass of the system (see figure 1(a) of [3] ). We can consider PFC
as a model for a physical situation where the constant phase represents a liquid and the
hexagonal lattice represents a crystalline solid. In a later paper [4] PFC is derived from the
older theory of density functional theory which adds to the interest of PFC as it may be able
to give insight into DFT. PFC has the advantage that the energy functional has a relatively
simple explicit form, this is not in general true of DFT which is extremely difficult to work with
directly. A review paper which also gives an insight into possible applications of PFC is found
in [2].

1.2 Mathematical Model
PFC is defined such that the energy of the system is given by the energy functional

(1) F [u] =

∫
Ω

u

2
(∆ + 1)2 u− δu

2

2
+
u4

4
dx

where u : Rn → R is a density perturbation (the exact relation to the density is considered in
the next section) so that its integral is constant,

uav =

∫
Ω

udx.

We are interested in the equilibrium state of our system which is obtained by minimising our
functional, whilst keeping the integral of u constant. The standard approach to this (i.e. the
approach considered in [3]) is to consider the H−1 gradient flow of the energy functional,i.e.

(2) ut = ∆
δF [u]

δu

which automatically enforces the conservation of u. This lead to the partial differential equa-
tion (known as the PFC equation)

(3)
∂u

∂t
= ∆

(
(∆ + 1)2 u− δu+ u3

)
.

As stated above and shown in figure 1(a) of [3] we can change the u that minimises the
functional from striped to hexagonal to constant by altering the values of uav and δ.
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2. Derivation of PFC from DFT
My MSc thesis [6] focused on DFT (see [7] for an introduction) specifically considering the
hard-core gas potential in a classical context. We develop a link between DFT and PFC
this was first shown in [4] and is also covered extensively in Section 2 of [2]. DFT can be
considered as a simplification of the grand canonical model of statistical mechanics (see
Section 4.1 of [9])- this link is explored in [8]. To see this we consider a system of N ∈ N
particles with positions xi confined to a d-dimensional box Λ ⊂ Rd. The Hamiltonian of the
system is then

HU1

ΛN (XN) =
N∑
i=1

U1(xi) +
∑

1≤i<j≤N

U2(|xi − xj|)

where XN = (x1, .., xN) ∈ ΛN and U1 : Rd → R is the external potential. U2 : Rd → R is
the interaction potential taken to be a pairwise potential that depends only on the distance
between particles.

The canonical Gibbs ensemble is characterised in the following way (compare page 20 of
[9]) where an N ! accounts for indistinguishability of particles ). Let ΓΛ =

(
Λ× Rd

)N and
equip it with the Borel σ-algebra BΛ on ΓΛ. Then the probability measure γβ,µΛ ∈ P(ΓΛ,BΛ)
with density

(4) ρ̂ΛN

β (XN) =
exp

[
−βHU1

ΛN (XN)
]

N !ZΛ(N, β)

is called the canonical ensemble.

The normalisation constant ZΛ(N, β) is called the partition function.

(5) ZΛ(N, β) =
1

N !

∫
ΛN

exp
[
−βHU1

ΛN (XN)
]

dXN

and
β =

1

kBT
,

is the inverse temperature, scaled by kB. Following page 23 of [9] we know that the (Helmholtz)
free energy can be written as

(6) FΛN

β [U1] = −β−1 ln[ZΛ(β,N)].

We now introduce the fundamental quantity of DFT, the density, giving three equivalent defi-
nitions

ρΛ
β,N(x) =

∫
ΛN

N∑
i=1

δ(x− xi)ρ̂ΛN

β (XN)dXN

= N

∫
Λ

. . .

∫
Λ

ρ̂ΛN

β (XN)dx2 . . . dxN

=
δFΛN

β [U1]

δU1(x)

where importantly

N =

∫
Λ

ρΛ
β,N(x)dx.

A process completely analogous to the one detailed for the grand canonical ensemble in
Section 2 of [10], detailed for the canonical ensemble in Section 4 of [11], shows the ex-
istence of a functional FHK (the Hohenberg-Kohn functional) minimised at the equilibrium
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density, such that at equilibrium

FΛN

β [U1] = inf
ρ̃(x)

[
FHK [ρ̃] +

∫
Λ

U1(x)ρ̃(x)dx
]

where the infimum is over the space of absolute continuously probability measures having
Lebesgue density. From equation 56 of [11]

ρ̃(x) =
1

N !

∫
Λ

. . .

∫
Λ

fN

N∑
i=1

δ(x− xi)dXN

where fN is an arbitrary N -body distribution satisfying

1

N !

∫
Λ

. . .

∫
Λ

fNdXN = 1.

Since we know that the free energy is minimised at equilibrium at constant temperature (see
Section 1.3 of [12]) at equilibrium

FΛN

β [U1] = FHK [ρΛ
β,eq,N ] +

∫
Λ

U1(x)ρΛ
β,eq,N(x)dx

where ρΛ
β,eq,N(x) is the one-particle density at equilibrium.

We obtain the free energy at equilibrium by minimising the Hohenberg-Kohn functional and
adding the integral product of the minimising density and the external potential. We will
therefore concentrate on calculating the Hohenberg-Kohn functional. For ease of calcula-
tion, we define a functional Fβ,exc[ρΛ

β,N ] so that we can split this functional into two

FHK [ρΛ
β,N ] = Fβ,id[ρΛ

β,N ] + Fβ,exc[ρΛ
β,N ],

where Fβ,id is the Hohenberg-Kohn functional associated with the ideal gas.

Following Section 2 of [2] we assume the existence of a constant reference density, this
is quite a restrictive assumption which is not strictly necessary for the expansion but is nor-
mally assumed we also consider this later, and perform a formal expansion of the excess
free energy around it

Fβ,exc[ρΛ
β,N ] ≈ F (0)

β,exc(ρref ) + β−1

∞∑
n=1

1

n!
F (n)
exc [ρ

Λ
β,N ]

where

(7) F (n)
exc [ρ

Λ
β,N ] = −

∫
. . .

∫
c(n)(x1, . . . , xn)

n∏
i=1

∆ρβ(xi)dx1 . . . dxn

with

c(n)(x1, . . . , xn) = −β
δnFβ,exc[ρΛ

β,N ]

δρΛ
β,N(x1) . . . δρΛ

β,N(xn)

∣∣∣∣∣
ρref

and ∆ρβ(x) = ρΛ
β,N(x)− ρref .

The first term is a constant independent of ρΛ
β,N(x) so can be safely ignored, this form was

also used in Section 6.2 of [10]. Consideration of translational and rotational symmetry gives
c(1)(x1) = 0.
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The simplest approximation of our functional (first seen in [13]) which has any contribution
from the density is therefore

(8) Fβ,exc[ρβ,µ] ≈ F (0)
β,exc(ρref )− 1

2
β−1

∫ ∫
c(2)(x1 − x2)∆ρβ,µ(x1)∆ρβ,µ(x2)dx1dx2.

We now consider the ideal gas contribution, here there is no internal interaction between
particles i.e. U2(x1, x2) = 0. Thus using the formula (6) for free energy and the partition
function (5) we have

FΛN

β [U1] = β−1

ln[N !]−N ln


∫

Λ

exp [−βU1(x)] dx︸ ︷︷ ︸
z(Λ)


 .(9)

Using the definition of the one-particle density as the functional derivative of the free energy
we have

(10) ρΛ
β,N(x) =

N exp [−βU1(x)]

z(Λ)
.

We want to re-arrange the free energy given by (9) to isolate the U1 dependent part. Re-
arranging (10) we have

ln[z(Λ)] = − ln

[
ρΛ
β,N(x)

N

]
− βU1(x)

using that the integral of ρΛ
β,N(x) is N we have from (9)

FΛN

β [U1] = β−1 (ln[N !]−N lnN) + β−1

∫
Λ

ρΛ
β,N(x) ln

[
ρ(1)(x)

]
dx+

∫
Λ

ρΛ
β,N(x)U1(x)dx.(11)

We have Stirling’s approximation (see [14])

ln[N !] = N lnN −N +O(lnN).

Using this in (11) we have

FΛN

β [U1] = β−1

∫
Λ

ρΛ
β,N(x)

(
ln
[
ρ(1)(x)

]
− 1
)

dx+

∫
Λ

ρΛ
β,N(x)U1(x)dx+O(lnN).

It is postulated that all ensembles are equivalent in the thermodynamic limit |Λ|, N →∞ see
Section 5 of [9]. To do this we want to find the free energy per particle and give it in terms
of the one-particle density per particle and then in any system we re-scale by the number of
particles.

ρ1(x) =
ρΛ
β,N(x)

N
.

Then in a system of size N1 we want

ρN1(x) = N1ρ
1(x)

thus ∫
Λ

ρN1(x)dx = N1.

Since Fβ,exc is such that re-scaling the density and the functional by the same constant has
no effect we need only consider the ideal gas part. The free energy per particle is given as

FΛN

β [U1]

N
= β−1

∫
Λ

ρ(1)(x)
(
ln
[
N1ρ

(1)(x)
]
− 1
)

dx+

∫
Λ

ρ(1)(x)U1(x)dx+ β−1 ln

[
N

N1

]
+
O(lnN)

N
.
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Then we can take the thermodynamic limit (i.e. |Λ|, N → ∞) then the free energy for a
system of N1 particles is

F [ρN1 ] = β−1

∫
Λ

ρN1(x) (ln [ρN1(x)]− 1) dx+

∫
Λ

ρN1(x)U1(x)dx+ β−1N1 ln

[
N

N1

]
.

the final term, the N dependent term, is independent of ρ, all ρ that have integral N1 will have
this term, and since we are only interested in the difference between free energies we can
ignore the terms.

Thus the ideal gas part of our Hohenberg-Kohn functional is

(12) Fβ,id[ρN1 ] = β−1

∫
Λ

ρN1(x) (ln (ρN1(x))− 1)

which agrees with the same quantity in the grand canonical ensemble derived on page 4 of
[7] (up to a constant in the logarithmic term that arises from consideration of particles with
momentum and quantum considerations).

If we know the reference density is constant and the deviation from the density is small
we can re-write the density as

(13) ρN1 = ρref (1 + ψ(x))

As mentioned above the assumption that there is a constant reference density is a restrictive
requirement, physically this amounts to assuming that all the structures we are considering
are just deviations from a uniform body. Whilst unusual the Taylor expansion could still be
carried out with non-constant density however the logarithmic expansion for the ideal gas
below and the gradient expansion will both be problematic. This equation also implicitly
gives that ∫

Ω

ψdx = 0

which again restricts the structures, however the derivation of u below suggests that this
condition just enforces that the integral of u is constant which we already have, although the
constant is now constrained to some extent.

Inserting (13) into our ideal gas equation (12) we have

Fβ,id[ρN1 ] = β−1

∫
Ω

ρref (1 + ψ(x)) (ln[ρref (1 + ψ(x))]− 1) dx.

Using the Taylor expansion of the logarithm we have

Fβ,id[ρN1 ] = Fβ,id[ρref ] + β−1ρref

∫
Ω

a0ψ(x) +
ψ(x)2

2
− ψ(x)3

6
+
ψ(x)4

12
+O

(
ψ(x)5

)
dx(14)

where
a0 = ln [ρref ] .

If we use the same approximation for the density in our expression for the excess energy
(c.f. (8))

Fβ,exc[ρN1 ] = Fβ,exc[ρref ]−
ρ2
refβ

−1

2

∫
Ω

∫
Ω

c(2)(x1, x2)ψ(x1)ψ(x2)dx1dx2

where we have used that
∆ρ(xi) = ρrefψ(x).

where ψ(x) is translational invariant, this follows from the translation invariance of U2.
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Using the definition of a convolution and that the Fourier transform of a convolution is the
product of the Fourier transforms of the functions in the convolution

Fβ,exc[ρN1 ] = Fβ,exc[ρref ]−
ρ2
refβ

−1

2

∫
Ω

F−1
[
ĉ(2)(k)ψ̂(k)

]
ψ(x1)dx1.

We expand ĉ(2) as a Taylor series around k = 0 and use that odd terms vanish by symmetry
of ĉ(2)

Fβ,exc[ρN1 ] = Fβ,exc[ρref ]−
ρ2
refβ

−1

2

∫
Ω

F−1

[
∞∑
m=0

c2mk
2mψ̂(k)

]
ψ(x1)dx1.

Using that
F−1

[
k2mψ̂(k)

]
= (−1)m∇2mψ(x)

we have

(15) Fβ,exc[ρN1 ] = Fβ,exc[ρref ]−
ρ2
refβ

−1

2

∫
Ω

ψ(x1)
∞∑
m=0

c2m (−1)m∇2mψ(x1)dx1.

We can re-combine our ideal gas functional (14) and our excess energy functional (15) to
give

FHK [ρN1 ] = FHK [ρref ]−
ρ2
refβ

−1

2

∫
Ω

ψ(x1)
∞∑
m=0

c2m (−1)m∇2mψ(x1)dx1

+ β−1ρref

∫
Ω

a0ψ(x) +
ψ(x)2

2
− ψ(x)3

6
+
ψ(x)4

12
+O

(
ψ(x)5

)
dx.

Following [4] we curtail at fourth order in both ψ and the gradient, it is claimed in [3] that
this order is the lowest order that enables the formation of stable crystalline phases. The
functional minus the part evaluated at the reference density is

∆FHK [ρN1 ] ≈ −
ρ2
refβ

−1

2

∫
Ω

ψ(x1)
2∑

m=0

c2m (−1)m∇2mψ(x1)dx1

+ β−1ρref

∫
Ω

a0ψ(x) +
ψ(x)2

2
− ψ(x)3

6
+
ψ(x)4

12
dx.

Since we Taylor expand ĉ(2)

ĉn =
1

n!

∂nĉ

∂kn
(0)

=

∫
(ix)nc(2)(x)

n!
dx

so the relevant coefficients in the gradient expansion alternate in sign.

Discarding the linear terms we have

∆FHK [ρN1 ] ≈ β−1ρref

∫
Ω

Aψ(x)2 +Bψ(x)∇2ψ(x) + Cψ(x)∇4ψ(x)− ψ(x)3

6
+
ψ(x)4

12
dx(16)

where
A =

1

2
(1 + |c0|ρref ) B =

1

2
|c2|ρref C =

1

2
|c4|ρref .

We would like to reformulate our functional difference to be of the form

(17) F̃ =

∫ (
ψ̃

2

(
−`+

(
k2

0 +∇2
)2
)
ψ̃ +

ψ̃4

4

)
dx̃.
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This is the form initially given for PFC theory in [3]. Substitution of ψ̃ = α(1 − 2ψ(x)) in
(17), neglecting constant contributions and terms linear in ψ and terms that vanish on the
boundary shows this is equivalent to (16) divided by 12ρrefβ

−1C2 (compare equations 42-44
[2]). Where

α =
1√
24C

k2
0 =

B

2C
` =

1

8C
− A

C
+

B2

4C2
.

Using the transform k0
2xi = x̃i, (17) can be re-written as

F̃ [ψ̃] = k0
−2d

∫
Ω

k0
4

2
ψ̃ (∆ + 1)2 ψ̃ − `

2
ψ̃2 +

1

4
ψ̃4dx̃

using ψ̃ = k0
2u we have

F̃ [u] = k0
8−2d

∫
Ω

u

2
(∆ + 1)2 u− `

2k0
4u

2 +
1

4
u4dx̃

which by relabelling the coefficient of the square gives a constant multiplying our original
functional (1).

3. Initial Numerical Approach

We now consider several methods of minimising the PFC functional (1). Initially we con-
sider a numerical approach to simulating the equation (3) following the techniques of [1].
Following [1] we consider our Ω to be a rectangle with periodic boundary conditions. The
principle behind [1] is to add and subtract a constant multiplying a stabilising term and split
the functional into a convex and a concave functional i.e.

F [u] = Fc[u]−Fe[u]

where

Fc[u] =

∫
Ω

u

2
(∆ + 1)2 u− δ

2
u2 +

C

2
|Lu|2dx

Fe[u] =

∫
Ω

C

2
|Lu|2 − 1

4
u4dx

where L = 1, L = ∇. For C > max(2, δ) the first functional is convex. However the second
functional is only convex if ‖u‖2

L∞ ≤ C
3

min(1, ν) (see page 5 [1]), where we need a bounded
domain for Poincaré’s inequality (which has constant ν) in the case L = ∇.

We then enforce time discretisation with Fc evaluated at un+1 and Fe evaluated at un. Then
using (2) we have

un+1 − un

τ
= ∆

(
(∆ + 1)2 un+1 − δun+1 + CLL∗un+1 − CLL∗un + (un)3)

where L∗L = 1 or L∗L = −∆ for L = 1, L = ∇ respectively.

The periodic boundary conditions allow us to solve in Fourier space and use the fast Fourier
transform. This follows the method of [1] with minor adaptations to allow for rectangular
rather than square domains.

We re-arrange and discretise in space

(18)
(
1− τ∆h

[
(∆h + 1)2 − δ + CL∗L

])
Un+1
j = Un

j − τ∆h

[
CL∗LUn

j −
(
Un
j

)3
]
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where the discrete Laplacian is using the second difference

(19) ∆hUj
n =

d∑
i=1

Un
j+ei − 2Un

j + Un
j−ei

h2
i

.

We use the discrete Fourier transform, for simplicity we will work in two dimensions in an
m1 ×m2 grid . The discrete Fourier transform is then, see equation 2.5 of [5],

Ûn[k] =

m1∑
j1=1

m2∑
j2=1

Un
j1,j2 exp

[
−2πi

(
k1j1

m1

+
k2j2

m2

)]
.

We need the Fourier transform of the discrete Laplacian (19). Using the linearity of the
Fourier transform, after some changes of variables, our discrete Laplacian becomes

∆̂hUj
n =

d∑
i=1

1

h2
i

(
exp

[
2πiki
mi

]
− 2 + exp

[
−2πiki

mi

])
Ûn[k]

=
d∑
i=1

2

h2
i

(
cos

[
2πki
mi

]
− 1

)
Ûn[k]

where in the second line we have used the formulation of cos in terms of exponentials (this
should be easy to extend to higher dimensional domains of the form of cuboids or hyper-
rectangles). Writing

F [k] =
d∑
i=1

2

h2
i

(
cos

[
2πki
mi

]
− 1

)
we have

(20) ∆̂hUj
n = F [k]Ûn[k]

and we see that in k-space the action of the operator ∆h becomes multiplication by F [k].
Now we can transform (18) into Fourier space to obtain(
1− τF [k]

[
(F [k] + 1)2 − δ + C (−F [k])ω

])
Ûn+1[k] = Ûn[k]+τF [k]

[
̂(Un[k])3 − C (−F [k])ω Ûn[k]

]
where

ω =

{
0 if L = 1

1 if L = ∇

re-arranging for an iterative process we have

Ûn+1[k] =

Ûn[k] + τF [k]

[
̂(Un[k])3 − C (−F [k])ω Ûn[k]

]
(
1− τF [k]

[
(F [k] + 1)2 − δ + C (−F [k])ω

]) .
We now implement this in Matlab using a similar code to page 12 of [1]. With ω = 0 and
parameters τ = 1, δ = 0.9 , C = 100, m1 = m2 = 512 and u = 0.5 on a 2D domain 4π × 2π
starting with random initial conditions we can generate a unit cell for the hexagonal phase
after approximately 8000 time steps (shown below). u is the average value of u

u =
1

|Ω|

∫
Ω

udx
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The lack of six fold symmetry is an unresolved numerical issue. We show below the graph of
the error against the time step on a log-log scale, where the error is given as the maximum
difference between successive time steps, normalised by the norm of the current time step
(we set the first two errors to 0 so the graph is well-scaled )

(21) en+1 =
‖un+1 − un‖L∞

‖un+1‖L∞

4. Further Numerical Approaches
As noted above there appears to be slight numerical issues with the unit cell produced using
the PFC equation. Different approaches to simulating the PFC equation have been consid-
ered in [15] and [16]. However we note that the PFC equation is high order in its derivatives
and therefore is stiff. In general we are only interested in the equilibrium of the system, as
stated above this is obtained by minimising the functional (1). Although this is done by equa-
tion (3), which also conserves the integral of u, it may not be the most efficient method of
minimising the functional (1). We are interested in the most efficient descent method, how-
ever formulating this is a long term aim which may prove difficult. Here we will concentrate
on constructing a steepest descent method where we can prove the convergence of the
method. Once we obtain such a method we hope to be able to analyse the size of domains
on which such a method would converge and the constraints on the discretisation imposed
by such a method. We note that in the method above the value of C is highly dependent on
domain see [1].

Initially we consider a problem such that if we choose the correct search direction our energy
functional is reduced.

First we define a quadratic functional

(22) Φ(v, u) =
1

2
‖∆v + v‖2

L2 − 〈l(u), v〉+
γ

2
‖v‖2

L2 .

where

〈l(u), v〉 = −δF(u, v).(23)
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We also define the inner product

(24) 〈Mγv, v〉 = ‖∆v + v‖2
L2 + γ‖v‖2

L2

where we have a norm
|‖v‖|2 = 〈M1v, v〉

and the dual norm

(25) |‖δF(u)‖|∗ = sup
|‖ϕ‖|=1

〈l(u), ϕ〉.

Lemma 1 (Stability)
We know

∃!v = argminΦ(v, u).

Then in 2 dimensions, for sufficiently large γ(‖u‖L∞ , |‖δF(u)‖|∗). If ‖u‖L∞ , |‖δF (u)‖|∗ <∞
F(u+ v) ≤ F(u)− β〈Mγv, v〉

.
Proof
First consider the difference in the functional

F(u+ v)−F(u) =

∫
1

2
(∆v + v)2 − δuv − δv2

2
+ (∆v + v)(∆u+ u) + u3v +

3

2
u2v2 + uv3 +

v4

4
.

Then we can re-write using (23)

F(u+ v)−F(u) =
1

2
‖∆v + v‖2

L2 − 〈l(u), v〉+
3

2

∫
u2v2 +

∫
uv3 +

1

4
‖v‖4

L4 −
δ

2
‖v‖2

L2 .

Using (22) we have

F(u+ v)−F(u) = Φ(u, v)− γ

2
‖v‖2

L2 −
δ

2
‖v‖2

L2 +
3

2

∫
u2v2 +

∫
uv3 +

1

4
‖v‖4

L4

≤ Φ(u, v)−
(
γ

2
+
δ

2
− 3

2
‖u‖2

L∞

)
‖v‖2

L2 + ‖u‖L∞‖v‖3
L3 +

1

4
‖v‖4

L4 .(26)

By an interpolation of Hölder’s inequality we have

(27) ‖v‖3
L3 ≤ ‖v‖L2‖v‖2

L4 .

As we are in 2 dimensions, we also have a version of Ladyzhenskaya’s inequality (see
equation 5.7 of [20] for v : T2 → R , and Theorem 9.3 of [19] for v : R2 → R)

(28) ‖v‖L4 ≤ ‖v‖
1
2

L2‖v‖
1
2

H1 .

We can show

(29) ‖v‖2
H1 ≤ K(‖v‖2

L2 + ‖∆v + v‖2
L2).

‖∇v‖2
L2 ≤

∫ ∣∣v(∆v + v)− v2
∣∣

≤
∫
|v(∆v + v)|+

∫
v2

≤ ‖v‖L2‖∆v + v‖L2 + ‖v‖2
L2 by Cauchy-Schwarz

≤ ‖v‖2
L2

(
1

2ε
+ 1

)
+
ε

2
‖∆v + v‖2

L2

where we use Young’s inequality with ε. If
ε

2
=

1

2ε
+ 1
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then
‖∇v‖2

L2 ≤
ε

2

(
‖v‖2

L2 + ‖∇v + v‖2
L2

)
where ε is just a constant number independent of Ω etc. In fact ε = 1 +

√
2. Adding the L2

norm of v to both sides and taking K as 1 + ε
2

gives (29).

From (22) using (24) we have

Φ =
1

2
〈Mγv, v〉 − 〈l(u), v〉.

We can show that minimising this functional is equivalent to solving the problem

(30) 〈l(u), w〉 = 〈Mγv, w〉 ∀w ∈ H
where H is the Hilbert space H2 with

∫
v = 0. (30) has a unique solution since the left-hand

side is bounded and the right-hand side is bounded and coercive.

Thus we have using (24) and the associated norm

Φ(v, u) = −1

2
|‖v‖|2 − (γ − 1)

2
‖v‖2

L2 .

Using this and (27) in (26) we have

F(u+ v)−F(u) ≤ −
(

(2γ − 1)

2
+
δ

2
− 3

2
‖u‖L∞

)
‖v‖2

L2 −
1

2
|‖v‖|2 +

(
‖u‖L∞‖v‖L2 + ‖v‖2

L4

)
‖v‖2

L4

≤ −
(

(2γ − 1)

2
+
δ

2
− 3

2
‖u‖L∞

)
‖v‖2

L2 −
1

2
|‖v‖|2

+ (‖u‖L∞‖v‖L2 + ‖v‖L2‖v‖H1) ‖v‖L2‖v‖H1 using (28).

Using (29) we have

F(u+ v)−F(u) ≤ −
(

(2γ − 1)

2
+
δ

2
− 3

2
‖u‖L∞

)
‖v‖2

L2 −
1

2
|‖v‖|2

+ (‖u‖L∞‖v‖L2 + ‖v‖L2K|‖v‖|) ‖v‖L2K|‖v‖|.
Young’s inequality on the first term in the second bracket gives

‖u‖L∞‖v‖2
L2 |‖v‖| ≤

(‖u‖L∞‖v‖L2)2

2
+
|‖v‖|2‖v‖2

L2

2
.

Thus we have

F(u+ v)−F(u) ≤ −
(

(2γ − 1)

2
+
δ

2
− 3

2
‖u‖L∞ − K‖u‖2

L∞

2

)
‖v‖2

L2 −
1

2
|‖v‖|2

+
3

2
K‖v‖2

L2|‖v‖|2.(31)

(30) gives
|‖v‖|2 + (γ − 1)‖v‖2

L2 = 〈l(u), v〉.
Using (25)

|‖v‖|2 + (γ − 1)‖v‖2
L2 ≤ |‖v‖||‖δF(u)‖|∗

using Young’s inequality with ε = 2 we have

4(γ − 1)‖v‖2
L2 ≤ |‖δF(u)‖|2∗.

using this in (31) we have

F(u+ v)−F(u) ≤ −
(

(2γ − 1)

2
+
δ

2
− 3

2
‖u‖L∞ − K‖u‖2

L∞

2

)
‖v‖2

L2 −
(

1

2
− 3K|‖δF(u)‖|2∗

8(γ − 1)

)
|‖v‖|2.
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�
Remark
The previous Lemma should be easily applicable in 3D where the Ladyzhenskaya’s inequal-
ity becomes

‖u‖L4 ≤ ‖u‖
1
4

L2‖u‖
3
4

H1

this means that the proof will have to be adapted which we hope to achieve later.

Following Lemma 1 we can minimise the functional (1) by solving

〈Mγv, v〉 = −δF(u, v).

This is equivalent to (
∆2 + 2∆ + (1 + γ)

)
v = −(∆ + 1)2u+ δu− u3.

We know that Fourier transform of ∆h is F (20) thus the Fourier transformed equation after
re-arrangement and discretising in space is

V̂j = −
(F + 1)2Ûj − δÛj + Û3

j

(F 2 + 2F + (1 + γ))
.

We know un+1 = un + v. Thus

Ûn+1
j = Ûn

j −
(F + 1)2Ûn

j − δÛn
j + Ûn

j
3

(F 2 + 2F + (1 + γ))
.

Again using Matlab with the parameters δ = 0.9, γ = 2, m1 = m2 = 512 and u = 0.5 on a
2D domain 4π × 2π starting with random initial conditions we can generate a unit cell for the
hexagonal phase after approximately 200 time steps

Again there is a slight discrepancy from six-fold symmetry, this may be related to numerical
accuracy and not the optimisation since it does not appear to depend on the method, how-
ever the much shorter simulation time for this method seems optimistic. We have not yet
proved convergence, obviously we need ‖u‖L∞ (and ‖|δE(u)‖|∗) bounded which we have not
yet shown, if we proved this we have stability of the scheme. The bound on ‖u‖L∞ is critical
as in general it may fail to be bounded. To prove convergence of this method we would also
need the method to be first order consistent.

We show below the graph of the error against the time step on a log-log scale where the
error is given as (21) (we set the first two errors to 0 so the graph is well-scaled).



13

In the scheme above we enforce conservation of u by setting the change between successive
time-steps of the first Fourier mode to zero.

ûn+1[0]− ûn[0] = 0

without this we are implementing a generalisation of the L2 flow of our functional (1). The
classic L2 flow of our functional is just the Swift-Hohenberg equation for which there is also
some mathematical literature e.g. [17]. There is a suggestion for implementing a L2 gradient
flow in [1].

5. Lattice Deformations

We now consider the simulation of lattices and in particular lattices with defects. Once
we have generated a unit cell we can build a lattice of arbitrary size (subject to memory
constraints) by placing unit cells next to each other. We can then consider various types of
deformations to the lattice.

5.1 Surface
If we consider a large domain then by reference to the physical intuition of [3] we hope to be
able to create a simulation of a surface by implanting a lattice created from a series of unit
cells into a domain with constant density (representing a liquid). The constant background is
initialised by setting u to a constant, the constant must be chosen with care, if it is too small
(close to the lattice u) the lattice will grow to cover the whole domain and if it is two large the
lattice structure dissolves, for convenience we suggest this value represents the vacuum.
The results below show a surface where the unit cell is generated using the H−1 gradient
flow numerical scheme on a domain 2.4π × 2

√
3π with u = 0.5 , the background u = 0.7 ,

the size of the lattice is 32 unit cells by 128 unit cells in total domain 4
√

3
3

32(1.2)× 128
√

3 and
C = 100, τ = 1 are used throughout, the x-axis of the total domain is given m = 512 and the
other axes are scaled appropriately. This image is zoomed in on the surface and taken 2000
time steps after the lattice has been initialised in the vacuum.

Now we have created a surface we can deform the surface in a small way by placing a single
unit cell on top of the surface. Below, using the same parameters as for the surface above,
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we show the initial condition of the lattice in the vacuum and the system after 10000 time
steps

For all the simulations above the H−1 gradient flow of Section 3 is used for the evolution of
the surface.

5.2 Lattice Dislocation
We now hope to be able to create a lattice dislocation. To do this we create a lattice made of
unit cells and remove some unit cells and set the value of u to the vacuum value in the hole
created. Below we show a lattice where the unit cell is generated using the H−1 gradient flow
numerical scheme on a domain 2.4π×2

√
3π with u = 0.5 , the background u = 0.7, the size of

the lattice is 32 unit cells by 48 unit cells in total domain C = 100, τ = 1 are used throughout,
the x-axis of the total domain is given m = 512 and the other axis is scaled appropriately.
The first image shows the results of removing a unit cell (this gives a site vacancy) after 5000
time steps and the second image shows the result of removing a strip 32 unit cells and 1 unit
cells wide running parallel to the y axis from the centre after approximately 300 time steps.
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For all the simulations above theH−1 gradient flow of Section 3 is used for the evolution of the
lattice. One would expect that the fracture in the lattice would disappear as it is energetically
unfavourable, this may be a long term phenomenon that is not seen due to the slow evolution
of the system. It is hoped that using more efficient methods including perhaps the method of
Section 4 will allow us to perform faster simulations which may give results that agree with
our intuition. A simulation using the method of Section 4 using the same parameters with
γ = 2 appears to show the gap closing, see the image below after 14000 time steps.

6. Further Work
As mentioned above this project is in the exploratory phase and thus there is a considerable
amount of further work to be done. At the moment our long-term ambition is to coarse-grain
the PFC model to obtain a continuum elasticity model. We will also consider a multi-scale
approach to be able to consider defects. To do this we will look at obtaining a refined optimi-
sation method. We also wish to consider elastic deformations by applying a "macroscopic"
external field.

6.1 Refinement of the optimisation method
As mentioned above we have implemented our minimisation procedure in two ways. How-
ever we have not yet assessed which is the best for our purposes. The method of [1] requires
a domain dependent stabilisation constant which we hope to avoid. The method of Section
4 looks more optimistic but needs greater consideration.

There are several internal refinement required for each method before it is optimal. Follow-
ing [3] we know there are several values of δ and u such that the function u that minimises
the functional (1) is the hexagonal lattice, currently we have chosen these arbitrarily however
it may prove that choosing these carefully will speed up our method. The stabilisation con-
stants C (for the method of [1]) and γ (for the method of Section 4) have also been chosen
without great care and it is likely that the correct choice of these constants would vastly im-
prove the speed of our method, in particular it may be possible to make γ iteration dependent
so that it is optimised at each time-step which should vastly increase calculation speed.

The method of Section 4 also need some specific refinements. In order to prove stabil-
ity of this method we will need to check ‖u‖L∞ (and‖|δF(u)‖|∗) is bounded, as mentioned
above this may not be generally true. Also we would like γ and the rate of convergence to
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be independent of the domain size and the discretisation parameter.

In the long term once we have refined the method of Section 4 we would like to be able
to explore whether analysis of this scheme allows us to say anything generally about the
PFC evolution equations. It would also be useful to compare our method to other methods
for simulating the PFC equation and possibly link to work simulating the Swift-Hohenberg
equation.

6.2 Elastic Deformation
A class of deformations that we have not yet considered but is important is the class of
elastic deformations. In this case we would create a lattice and apply a force-field, which
varies on a scale larger than the atom size, if the system returns to equilibrium after the
force-field has been removed we will have generated an elastic deformation. We will first
attempt this numerically and then see if we can obtain analytical results, we believe that
we may be able to consider this situation analytically by considering the outer variation of
crystalline and near-crystalline equilibrium states. In the case where we have a lattice with
a surface we would possibly obtain results that would be useful in the analysis of surface
Cauchy-Born methods which is an active area of research e.g. [18].
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