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Motivation Helmholtz Free Energy The ldeal Gas

We consider the ideal gas as a motivating example. This is the case where there
is no interaction between particles i.e. W = 0. Using (1) and that the spatial
integrals can be seperated out we have

Z,(3. N) = N!i\d’v \<//\ exp[-ﬁV(X)]dx.)/i

Density Functional Theory (DFT) is a widely used technique in both
chemistry and in physics. In my MSc thesis we start from the canonical
ensemble of statistical mechanics and use this as a motivation for the
formulation of DFT. We then give the free energy of the ideal gas as a
simple example of the DFT formalism.

The Helmholtz free energy is known to be minimised at equilibrium and can
be given by [1]

AN V] = =31 In[Zp(8, N)]. (2)

Using the definition of the partition function given above (1) we have

N
AN [V] =B (NdIn X+ In N! ~
Once the ideal gas formula has been achieved we hope to use similar b V=5 _ ( /\7 " _ z(M)N
metholodgy consider more complicated potentials, initially considering Using (2) we have that the free energy is
the hard-core potential. —1In /N HEXP[_BV(XI')] H exp[—BW(x; — x;)|dX N
AT 1<i<j<N | AL V] = B~ (I[N + Nd In[A] — Nn[z(A)]).

Statistical Mechanics Model Density Functional Form

One PartiC|e Density We want to re-write the free energy in a density functional form. We find the
one-particle density using (3)

We initially consider a statistical mechanical model in the canonical
ensemble. We have a constant number of particles N with positions

xi €N\ C RY and momentum p; € RY. For convience we define a vector
of particle positions and momenta

XNZ(Xl,...,XN) E/\N

The fundamental quantity of interest in density functional theory is the one
particle density. There are three ways of doing this:

(1), y _ Nexp[-pV(x)]
IO/\N(X) _ Z(/\) .

1. Integrating out the momentum variables and N — 1 spatial variables of the
Gibbs measure

(1)

AN(X) is N we have

Re-arranging to find z(A) and using that the integral of p

_ d
Pv=(pr-..pn) € B, 0, N s fyvrewe [=BHY X, Py)| dx. dxyd Py AN v =51 (ln[N!] — NIn[N] + / P ) I X6l dx)
Then the Hamiltonian of our system is given by IO/\N(X) = N1Z\(B, N) A
N N o2 2. Taking the canonical average of N 5-fur.1ct/i\ons7. centered at the positions of T / Pg\lA)/(X) V(x)dx.
H/\\/N(X’V’ Pn) = Z W(xi — x;) + Z Vixi) + Z L | each particle A

L<ii<N s P 2m P A generalisation of Stirling’s formula [2] allows us to re-write the free energy

= -~ ., Nl ~ / N—— e’ N

i o i ' ] lal  Kineti N — 1 1

inter-particle interaction — e€xternal potentia Inetic part fRd f/\N Z 5(x — x;) exp {_5H/\\/N(XN7 'DN)} dXydPy Ag V] = 8 1 //\IOE\/\)/(X) (ln [)‘dpg\l\)/(x)} B 1) dx
Canonical Ensemble p(l)(x) — =0

M NIZ\(5, N)

+ / DGV (x)dx + O(In N).

The canonical Gibbs ensemble is characterised by the probability A AN

3. Taking the functional derivative of the free energy

measure VﬁN e P(A, By) with density

; exp [~ BHY(Xn. Pr) _ | Outlook
/0/\7N(XN7 ’DN) — NIZ/\(B, N)
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with repect to the Lebesgue measure, where By is the Borel
o-algebra.[1]

The external potential V(x) is a conjugate variable to the one particle

Z)\(B, N) is a normalisation factor known as the partition function and _ _ _
density. We can use the Legendre transform to find a pure functional of

- L density (the Hohenberg-Kohn functional) > Numerics for PFC
kg T N
The partition function can be split into the product of an integral over Frk {pg\l,\),(X)} = inf {Ag [V] — / V(x)ps\ll\),(x)dx} : Acknowledgements
space variables and an integral over momentum variables . Since the Pf\l/z/(x) A

momentum integrals are all identically Gaussians they can be integrated
to give a constant A~1. We can thus write the partition function as
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Since the Hohenberg-Kohn functional is minimised at the equilibrium density
(1)

PAN eq(x), we can write the free energy at equilibrium as
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