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Model
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Set-up

We have a fixed number of particles N with positions xi ∈ Λ ⊂ Rd .
For convenience we define

XN = (x1, . . . , xN) ∈ ΛN

and

β =
1

kBT
.

with Hamiltonian

HU1

ΛN (XN) =
∑

1≤i<j≤N
U2(xi − xj)︸ ︷︷ ︸

inter-particle interaction U

+
N∑
i=1

U1(xi )︸ ︷︷ ︸
external potential

U1 : Rd → Rd is the external potential U2 : Rd × Rd → R is the
interaction potential between particles.
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Canonical Gibbs Ensemble

let ΓΛ =
(
Λ× Rd

)N
and equip it with the Borel σ -algebra on

ΓΛ.Then the probability measure γβΛ,N ∈ P(Λ,BΛ) with density

ρβΛ,N(XN) =
exp[−βHU1

ΛN (XN)]

N!ZΛ(β,N)

is called the canonical Gibbs ensemble.

Here ZΛ(β,N) is a normalisation factor known as the Partition
Function.

ZΛ(β,N) =
1

N!

∫
ΛN

N∏
i=1

exp[−βU1(xi )]
∏

1≤i<j≤N
exp[−βU2(xi − xj)]dXN .
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Free Energy
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Helmholtz Free Energy

Free energy is minimised at equilibrium if temperature is held
constant.
We can also show 2

FΛN

β [U1] = −β−1 ln[ZΛ(β,N)]

= −β−1 ln

 1

N!

∫
ΛN

N∏
i=1

exp[−βU1(xi )]
∏

1≤i<j≤N

exp[−βU2(xi − xj)]dXN

 .

2
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One-particle Density
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One-particle Density

Three ways of doing this
• Integrating out N − 1 Variables

ρ
(1)

ΛN (x) = N

∫
Λ
. . .

∫
Λ
ρβΛ,N(XN)dx2 . . . dxN

• Average over δ-functions

ρ
(1)

ΛN (x) =
1

N!ZΛ(β,N)

∫
ΛN

N∑
i=0

δ(x − xi ) exp
[
−βHU1

ΛN (XN)
]
dXN

• Functional Derivative

ρ
(1)

ΛN (x) =
δFΛN

β [U1]

δU1(x)
.

∫
Λ
ρ

(1)

ΛN (x)dx = N
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Introduction to Density Functional Theory
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Introduction to DFT

We want to express free energy as the sum of a functional of
one-particle density only and another term.

U1(x) is a conjugate variable to the one-particle density ρ
(1)

ΛN (x).
Since free energy is a functional of the external potential, we can
use a Legendre transform to re-write the free energy.

FΛN

β [U1] = inf
ρ̃(x)

[
FHK [ρ̃(x)] +

∫
Λ
U1(x)ρ̃(x)dx

]
FHK is known as the Hohnberg-Kohn functional and the infimum is
over the space of absolutely continuous probability measure having
Lebesgue density.
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Functional Taylor Expansion

We can split the Hohnberg-Kohn functional into two parts an ideal
gas part and an excess part

FΛN

β [ρ
(1)

ΛN ] = FΛN

β,id [ρ
(1)

ΛN ] + FΛN

β,exc [ρ
(1)

ΛN ]

We assume the existence of a reference density ρref and expand
the excess functional around this

FHK [ρ
(1)
ΛN ] = FΛN

β,exc [ρref ]

+
∞∑
n=1

1

n!

∫
Λ

. . .

∫
Λ

δnFΛN

β,exc [ρ
(1)
ΛN ]

δρΛN

β (x1) . . . δρΛN

β (xn)

∣∣∣∣∣
ρref

(x1, . . . xn)
n∏

i=1

∆ρ(xi )dxi

where
∆ρ(x) = ρΛN

β (x)− ρref

Simon Bignold Supervisor: Christoph Ortner



Ramakrishnan-Yussoff approximation

If the deviations from the reference density are small

∆ρ(x)� 1

we can curtail the Taylor series. We chose to ignore terms higher
then i = 2 the i = 1 term vanishes as our potential is symmetric.
Thus we have

FΛN

β,exc [ρ
(1)

ΛN ] = FΛN

β,exc [ρref ]−β−1

∫
Λ

∫
Λ
c(2)(x1, x2)∆ρ(x1)∆ρ(x2)dx1dx2

where

c(2)(x1, x2) = −β
δ2FΛN

β,exc [ρ
(1)

ΛN ]

δρΛN

β (x1)δρΛN

β (x2)

∣∣∣∣∣
ρref

(x1, x2)

3
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Simon Bignold Supervisor: Christoph Ortner



Ideal Gas

Simon Bignold Supervisor: Christoph Ortner



Ideal Gas

In this case the internal potential, U2, is zero

ZΛ(β,N) =
1

N!


∫

Λ
exp[−βV (x)]dx︸ ︷︷ ︸

z(Λ)


N

Thus the free energy can be written as

FΛN

β [U1] = β−1 (ln[N!]− N ln[z(Λ)]) .
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Density Functional Form

We seek to re-write the free energy in a density functional form.

Using the functional derivative of the free energy we can find the
one-particle density

ρ
(1)

ΛN (x) =
N exp[−βU1(x)]

z(Λ)
.

Re-arranging we can find an expression for the external potential

U1(x) = −β−1 ln

[
ρ

(1)

ΛN (x)z(Λ)

N

]
.
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DFT Free energy

We therefore find∫
Λ
ρ

(1)

ΛN (x)U1(x)dx = −β−1

∫
Λ
ρ

(1)

ΛN (x) ln
[
ρ

(1)

ΛN (x)
]
dx−β−1N ln

[
z(Λ)

N

]
.

We recall a generalisation of Stirling’s approximation 4

√
2πN

(
N

e

)N

exp

[
1

12N + 1

]
≤ N! ≤

√
2πN

(
N

e

)N

exp

[
1

12N

]
.

Using this and that
∫

Λ ρ
(1)

ΛN (x)dx = N we can re-write the free
energy as

FΛN

β [U1] = β−1

∫
Λ
ρ

(1)

ΛN (x)
(

ln[ρ
(1)

ΛN (x)]− 1
)
dx

+

∫
Λ
ρ

(1)

ΛN (x)U1(x)dx + O(lnN).

4Robbins, The American Mathematical Monthly 62:1, pages 26-29,1955
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The Small Deviations Regime

The part of the ideal gas functional not associated with the
external potential is

FΛN

β,id [ρ
(1)

ΛN ] = β−1

∫
Λ
ρ

(1)

ΛN (x)
(

ln[ρ
(1)

ΛN (x)]− 1
)
dx

If we know the reference density is constant and the deviation from
the density is small we can re-write the density as

ρΛN

β (x) = ρref (1 + ψ(x))

Inserting this into our ideal gas equation we have

FΛN

β,id [ρ
(1)

ΛN ] = β−1

∫
Λ
ρref (1 + ψ(x)) (ln[ρref (1 + ψ(x))]− 1)dx
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Taylor Approximating the Ideal Gas

Using the Taylor expansion of the logarithm is

FΛN

β,id [ρ
(1)

ΛN ] = FΛN

β,id [ρref ]

+ β−1ρref

∫
Λ
a0ψ(x) +

ψ(x)2

2
− ψ(x)3

6
+
ψ(x)4

12

+ O
(
ψ(x)5

)
dx

where
a0 = ln [ρref ]
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Gradient Expansion
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Small Deviation Regime

If we use the same approximation for the density in our expression
for the excess energy

FΛN

β,exc [ρ
(1)

ΛN ] = FΛN

β,exc [ρref ]−ρ2
ref β

−1

∫
Λ

∫
Λ
c(2)(x1, x2)ψ(x1)ψ(x2)dx1dx2

where we have used that

∆ρ(xi ) = ρref ψ(x)

Using the definition of a convolution we have

FΛN

β,exc [ρ
(1)

ΛN ] = FΛN

β,exc [ρref ]− ρ2
ref β

−1

∫
Λ

(
c(2) ∗ ψ

)
(x1)ψ(x1)dx1
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Fourier Expansion

Using that the fourier transform of a convolution is the product of
the fourier transforms of the functions in the convolution

FΛN

β,exc [ρ
(1)

ΛN ] = FΛN

β,exc [ρref ]−ρ2
ref β

−1

∫
Λ
F−1

[
ĉ(2)(k)ψ̂(k)

]
ψ(x1)dx1

we expand c(2) as a Taylor series around k = 0 and use that odd
terms vanish by symmetry of c(2)

FΛN

β,exc [U1] = FΛN

β,exc [ρref ]−ρ2
ref β

−1

∫
Λ
F−1

[ ∞∑
m=0

c2mk
2mψ̂(k)

]
ψ(x1)dx1

Using that

F−1
[
k2mψ̂(k)

]
= (−1)m∇2mψ(x)

we have

FΛN

β,exc [ρ
(1)

ΛN ] = FΛN

β,exc [ρref ]− ρ2
ref β

−1

∫
Λ
ψ(x1)

∞∑
m=0

c2m∇2mψ(x1)dx1
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PFC
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Approximate Functional

We can re-combine our ideal gas functional and our excess energy
functional to give

FHK [ρ
(1)

ΛN ] = FHK [ρref ]− ρ2
ref β

−1

∫
Λ
ψ(x1)

∞∑
m=0

c2m∇2mψ(x1)dx1

+ β−1ρref

∫
Λ
a0ψ(x) +

ψ(x)2

2
− ψ(x)3

6
+
ψ(x)4

12

+ O
(
ψ(x)5

)
dx

following 5 we curtail at fourth order in both ψ and the gradient.
The functional minus the part evaluated at the reference density is

∆FHK [ρ
(1)

ΛN ] ≈ −ρ2
ref β

−1

∫
Λ
ψ(x1)

2∑
m=0

c2m∇2mψ(x1)dx1

+ β−1ρref

∫
Λ
a0ψ(x) +

ψ(x)2

2
− ψ(x)3

6
+
ψ(x)4

12
dx

5Stefanovic, Grant and Elder, Physics Review B, 75, 064107, 2007
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PFC Functional and Equation

discarding the linear terms we have

∆FHK [ρ
(1)

ΛN ] ≈ β−1ρref

∫
Λ
A
ψ(x)2

2
+ Bψ(x)∇2ψ(x) + Cψ(x)∇4ψ(x)

− ψ(x)3

6
+
ψ(x)4

12
dx

The classical PFC functional is given by an appropriate choice of
constants and absorbing the cubic term as

FPFC [ψ̃] =

∫
Ω

ψ̃

2

(
∇2 + 1

)2
ψ̃ − δ ψ̃

2
+
ψ̃4

4
dx̃

The PFC Equation is given 6 by H−1 gradient flow

ψt = ∇2 δFPFC [ψ̃]

δψ̃(x)

= ∇2
((
∇2 + 1

)2
ψ̃ − δψ̃ + ψ̃3

)
6Wirth and Elsey, Pre-print, 2012
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Results

for the choice δ = 0.9 and ψ = 0.5 on a 6π × 4
√

3π domain with
periodic boundary conditions we obtain a hexagonal lattice

by altering the value of ψ we can obtain a constant density domain
(ψ > 0.5) or a striped pattern (ψ < 0.5).
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