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Introduction

Magnetic fields

Charged particle motion



Introduction: Preamble

» Ideal if you know exterior calculus and Hamiltonian dynamics
» But I'll summarise essentials

P> Not necessary to know any physics



DT fusion

» from wikipedia
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2g D + 3g T per hour makes 470MW power.
» D from sea-water (1 in 5000 D:H). Breed T from Li blanket:

n+°Li — T+*He+4.8MeV, n+'Li+2.5MeV — T+*He+n.

Get Li from rocks or sea-water (95% ’Li).



Sustained fusion

» Requires Lawson product nT7g > 3 x 10 keV s m~3 for
T ~ 14keV(160MK), where n = electron number density,
T = ion temperature, T = energy confinement time (for
charged particles).
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» Unavoidable energy loss by EM radiation, but slow if no high
Z impurities.

» Most important to confine the charged particles, and after
that to reduce their transfer of kinetic energy.



Confinement schemes

» Various ideas, e.g.
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Magnetic confinement

» At the envisaged conditions, gases are fully ionised: a plasma
of ions (nuclei) & electrons.

» Aim to confine particles by magnetic field. Progress so far:
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> (@ is ratio of power-out to power-in. Ignition is @ = co.
» This module will be about mathematics of confinement of
charged particles by magnetic fields.

» Motion of charged particles creates magnetic fields, so in
principle have to solve confinement self-consistently, but will
largely restrict attention to given magnetic fields.



Magnetic fields: Different faces

» Three ways to view a magnetic field:

1. A volume-preserving 3D vector field B. Write Q for volume-
form, then B volume-preserving is Lg2 = 0, i.e. digQ2 =0. By
Stokes' theorem, if S is a closed surface bounding a volume
then fs ig€2 = 0. Require this also for closed surfaces S that
do not bound a volume, e.g. boundaries of T2 x /.

2. A closed 2-form 3 = igf, which gives the magnetic flux fsﬁ
through any surface S. Again, strengthen the definition from
closed (d8 = 0) to exact, i.e. 8 = da for some 1-form «.
Given a Riemannian metric g, can define a vector field A by
g(v,A) = i,« for all vectors v, called a vector potential for B.
Can write A= af or o = A°.

3. A 1-form B”, defined by i, B’ = g(v, B) for all vectors v. This
view relates B to electric current density J = curl B (in units
with po = 1): i,Q = dB".

» In coordinates x', B =", B0y, =7 Bldx) A dx* over cyclic
permutations of 123, where J = Q(0y1,0y2,0s3), B” = 3. Bidx’
and B; = g;;B/ where g;j = g(0,i,0,;). Components are called: B’
contravariant, B; covariant, B;) = B'|0yi| physical.



Crash course in exterior calculus

> Two views of a vector field on a smooth manifold:

1. Field of tangent vectors v, representing velocities of paramet-
rised curves. Induces a local flow ¢ by L ¢:(x) = v(¢(x)).

2. Linear operator L, on smooth functions f, satisfying Leibniz
rule L,(fg) = (L f)g + fL,g. Relation L,f(xo) = & f(x(t))}e=0
for smooth curves x with x(0) = xo, x(0) = v(xo).

» A differential k-form w is an antisymmetric k-linear map from
tangent space at each point to R. It can be integrated over a
smooth k-surface S to give a scalar fsw.

P For vector field X and k-form w, ixw is the (k — 1)-form given by
inserting X as the first argument.

» For function f, derivative Df is a 1-form df. Note L, f = i, df.

» For k-form w, dw is (k4 1)-form s.t. [, dw = [, w
V (k + 1)-volumes V. As 99V =0, d* = 0.

» Pushforward h,u of a vector u by a diffeo h is the derivative of h(x)
as x moves with velocity u, i.e. hyu = Dhu. Pullback of a k-form w
is h*w(vy,...vk) = w(heva,...hevk). Extend L, to k-forms w by
%d)fw‘tzo. On forms, L, = i,d + di,.

» RS MacKay, Differential forms for plasma physics, J Plasma
Phys 86 (2020) 925860101



Some more

>

>

A volume-form is a non-degenerate top-dimensional form €.
A form w is non-degenerate if j,w =0 — v =0.

A Riemannian metric is a positive-definite symmetric
covariant 2-tensor g. It induces a norm |v| = \/g(v,v) on
vectors v, and on covectors |A| = /g(\f, M¥). Also, for any
function f, g induces vector field Vf = (df)F.

Say Q is compatible with g if Q(v1, .., vn)? = det[g(v, vj)].
For k-form « and I-form B, a A B(v1, ... Vkt1) =

> resh(k,t) ExO(Va(1)--Var(k)) B(Va(k-+1)--Va(k+1)), Where Sh(k, )
(shuffles) is the set of permutations of {1,..k + /} such that
(1) < .. <m(k)and m(k+1) < ..<m(k +1).

In 3D, cross-product u x v of vectors is defined by

(ux v)b = i,iyQ. For compatible Q, iyx,Q = v’ A V.
Commutator [u, v] of vector fields is defined by

Liyv = Luly — Ly L. Equivalently, [u, v] = Lyv = L ¢¥*v,—o.
R.S.MacKay, Use of Stokes' theorem for plasma confinement,
Phil Trans Roy Soc A 378 (2020) 20190519



Charged particle motion

» Treat classically: Lorentz force F = ev X B on charge e with
velocity v. Momentum p = mv”, Newton's law dp =P

» In constant field B = |B|z:

1. vZ = cst, ¢*(t) = ¢7(0) + v*t.

, mv¥ = —ev*|B], so horizontal velocity rotates,
v(t) = Rarv(0), with “gyrofrequency” Q = —e|B|/m.

3. Then position g(t) = Q(t) + p(t), with Q(t) = Q(0) + vZ2t
(“guiding centre”), p(t) = Raep(0), p = Y52 (“gyroradius
vector"), where b = %.

» In general field, define p = "éb, R=qg-—p v =v- b and
seek evolution of Q, p, v




Hamiltonian formulation

» In canonical coordinates (q', p;), ¢' = g—g,p,- = —gg.

» For one particle in magnetic field, choose a vector potential A,
and let p = mg’ + eA’(q), H(q,p) = 5 |p — eA’(q)|.

> Better to use symplectic formulation. A Hamiltonian system is
a vector field X on a manifold M such that ixw = dH for
some function H : M — R and symplectic form w on M

» A symplectic form is a non-degenerate closed 2-form; implies
dim M = 2n even, n is called number of degrees of freedom

(DoF).



Example

> M = T*Q, the cotangent bundle of a manifold Q. Can write
a cotangent as (g, p) where g € Q and p is a covector at g,
i.e. alinear map T,Q — R.

» Let m: T*Q — @ be the natural map.

» T*Q has a natural 1-form « defined by a(v) = p(m.v). So it
has a natural symplectic form w = —da.

» In any local coordinate system g’ for @, can choose
associated coordinates for p so that p(q) = >_; pig'. Then
a=>Y,pidq and w =", dq" A dp;.

» A simple mechanical system on T*Q is defined by this w and
H(q,p) = %|p|> + V(q) with respect to some Riemannian
metric on Q (which incorporates masses and moments of
inertia). Produces V¢ = —VV(q).



Charged particle Hamiltonian

» For one particle of charge e, mass m, in (Q3,g) with magnetic
flux form 3, take w = —dav — er*B on T*Q and H = 5= |p|°.
» Equations of motion are given by solving
w((g,P), (€q:&p)) = mimép forall € € T(T*Q).
» In Euclidean case and Cartesian coordinates, this gives
g =2 sop= mg’, and —p&, — eB(4,&,) = 0 for all &, so
using 5(4,&q) = (B, 4,&q)., we get p = e(q x BY’.



Advantages of symplectic formulation

> H is conserved along X: ixdH = ixixw = 0 by antisymmetry

> w is conserved along X: Lxw = ixdw + dixw = 0+ d°H = 0;
hence Poincaré invariant [, w is conserved for any disk D
flowing with X, which has many consequences (see later).

> and ...



Continuous symmetry leads to conservation & reduction

| 4

>

| 2

Say vector field v on M is a continuous symmetry of
Hamiltonian system (H,w) if L,H =0, L,w = 0.

Theorem [Noether|: If Hamiltonian system (H,w) has a
continuous symmetry u then it conserves a local function K.

Proof: dw =0 so diy,w = 0, so u is locally Hamiltonian,

i.e. iyw = dK for some local function K (Poincaré lemma).
ixdK = ixizw = —iy,dH = 0, so K is conserved by X. OJ
Often K is global, e.g. if H;(M) is spanned by closed trajectories v
of the set of vector fields of the form au + bX for functions a, b (or
by asymptotic cycles), because f iw = [ iyw(au+ bX) dt =

J w(u, au) +w(u bX)dt = [0 — bdH(u)dt =0. So can reduce to
level sets K~1(k).

Also, i,dK =0, and [u, X] = 0 because w non-degenerate and
iix,uw = ixLyw — Lyixw =0~ L,dH = dL,H = 0. So if orbit-space
of flow ¢“ on K~1(k) is a manifold then can quotient by ¢“ to
reduce the dynamics on K~1(k) by one more dimension.

The resulting vector field is Hamiltonian with respect to the
reductions of w and H.



Poincaré lemma

» Theorem: If a k-form (k > 1) (3 is closed on a contractible
open subset U of a manifold then 8 = da for some
(k —1)-form o on U.

> Proof: U contractible implies there is a vector field X on U
with forward flow ¢ that maps U into itself and ¢;U contracts
to a point as t — oo. Define a = — fooo ixpi B dt. Then
da = — fooo dix¢ip dt = — fooo Lx@iB — ixdoi [ dt =
— [ OediB dt + [;° ix¢idS dt. The second integral is 0
because d3 = 0. The first is the change ¢55 — ¢ 8= 3. [

» Converse of Noether theorem: if Xy conserves a function K
(or ix, a0 = 0 for a closed 1-form «), then Xk is a cts
symmetry of (H,w).

» Proof: Xk is defined by ix,w = dK (or a). So
Lx, H = ix,dH = ix, ix,w = —ix, ix,w = —ix,dK = 0. And
LXKw = diXKw =ddK = 0. L]



Example: Charged particle in axisymmetric field

>

>

>

Let w = —da —eB, H=35-|p[>, D=R3\ {r =0} in cylindrical
coordinates (r, ¢, z), u lift to T*D of 9y = ro.

Choose coordinates (p;, py, p;) so that o = Y, pidg’. Then
Lya =0, and H = 5—(p? + r—2p3 + p2) so L,H = 0.
Say B is axisymmetric if L, = 0. Then L,w = 0 so Noether gives a

conserved quantity.

First, L, =0 = di,8 =0, so i,8 = di for some local function
1 on D. D contains a closed orbit of u so ¥ is global. i,diy = 0 so
1 independent of ¢. Q(9,,0y,0,) = r and i,igQ = dyp imply

B = %azzz;, B* = 7%8,1/). Magnetic flux fs ig§2 through any
annulus S spanning two u-circles is 27[¢)], so 1 is called poloidal
flux function.

Note 3 = r(B®dz A dr + B'd¢ A dz + B#dr A d¢), so d3 =0
implies B? independent of ¢.

Then iyw = dpy — edyp = dL with L = py — et). So L is conserved.

Reduced system: H = 5L (p? + p2 + M)

r2

w = dr Adp, + dz A dp, + erB®dr A dz.
Note py = rp(¢), rB? = B(g)-



continued

» If ¢p/r grows with (r — rp, z) then get confinement by
|L + eyp| < v2mH r. Starting principle of “tokamak”.

> eg. ¥ = (r2 —1)2+ (3 + r?)z?; contours of
(Ltev)” — 0.05,0.1,0.2,0.4,0.8, 1.6 for £ = —0.6,0,+0.6:

g

P> But requires current density
Jpy =1 =102y + 9r(0,) = 2 4+ 9r in the plasma, which
needs driving and promotes instabilities.



Guiding-centre motion

>

>

Approximate symmetry of a Hamiltonian system leads to an
“adiabatic invariant” and approximate reduced system.

If B(x(t)) seen by the particle changes by a factor at most ¢
small during one gyroperiod T = %’T Q= —%) then have
approximate symmetry by rotation of the gyroradius vector

about guiding centre.

Verification: (i) Define Q, p, p from q,p by g = Q + p,
p-b=0,pt=eB(Q) x p+ pb(Q). This can be solved for
Q, p, p| if B changes slowly in distance |p||B|/e. Choose
slowly varying frame for p, b. Let u = (0,0,0, —p2, p1,0).
Then H = %(pﬁ + €?|B(Q)|?|p|?) is (exactly) w-invariant.



(i) Lyw

» For w = —da — ef3: write B for |B(Q)|.
a =Y, pidq = eB(p2(dQ1+dp1) — p1(dQ2+ dp2)) + p dQs.
» So da=eB(dpa ANdQ1 — dp1 A dQy — 2dp1 A dp) + C/p” N
dQs + edB A (pz(dQl + dpl) — ,01(sz + dpz)). Then
ivda = eB(p1dQ + p2d@ + d|p|?) + e|p|?dB. So
L,da = eB(dp1 ANdQr+ dpr A dQ2) +edB A (pldQl —I—pdez).
Second term is O(e).
» Or compute L, = eB(p1dQ1 + p2d@,) and take dL,a.
> B=|B(Q+ p)|d(Q1+ p1) A d(Q2+ p2). So
iuB = —|B(Q + p)|(p1dQ1 + p2dQ> + p1dp1 + p2dpz). Then
L,B=—|B(Q)|(dp1 A dQ1 + dpa A dQ2) + O(¢).
» So Lyw = O(e).



Adiabatic invariant

P Treating u as an approximate symmetry, get approximate
conserved quantity K from i,w =~ dK. From above,
iyw =~ —e|B|(p1dp1 + p2dp2) = —§|B|d|p|2, so take
K = —3[Bllpl*.
» Conventional to write K = — 7' with “magnetic moment”
mlv. |?

= £:1Bllpl? = Tra-.

» This makes p an adiabatic invariant: Yk > 0 Je¢ > 0 such
that for € < g9 the change in y during any time-interval of
length < T /e is at most k.

» Theory of adiabatic invariants shows that for C" system, there
is an asymptotic series for a circle action u(e) (gyro-rotation
being the first term) and associated p(e) with first term p,
such that truncating at the r/ term, the errors are O(e").



Approximate reduced system
> H(Q,py) = 2mP”+M‘B( )|, and
w = —d(prb) —ef=b A dp — p”db — eigf. Let ¢ = curl b, so
icQ = db’, then w = b* A dpj — eigQ with B = B + ZLc.

» Equations of motion: I(Q»PH = dH says
i(Q’ﬁ”)(bb A dp) — eigQ) = %dpu + ud|B|. Apply to (0,0p):
Qi =py/m (1)
Apply to (£,0): e(B x Q)-&=¢&- (uV|B| + pyb), so
eB x Q = uV|B| + pyb. (2)

The case &€ = B gives (avoiding B - b = 0)
by — — B-v|B|
! B-b

Lastly, take bx(2) and use (1):

- p Pl 5
Q= (beV|B|+EB>. (4)

B-b
P (3,4): the (first-order) guiding-centre equations in Hamiltonian form.



Things to note

» If |B| has a well with minimax B,, then it confines particles
with H < uB,,; but does not help for small p.

» 1 is (up to a scaling) the Poincaré invariant of the disk
spanned by a gyro-orbit: [, w = —e|B|x|p|?.

» The parallel motion sees a force roughly —ub - V|B|.

» There are small perpendicular drifts roughly |B|b x V1|B|
and p”b x =, where K = Vb is the curvature vector of the

fieldline (from cin B and ¢, = b x k).

» Higher-order approximate symmetries produce higher-order
GC Hamiltonian systems.



GC motion in axisymmetric field

>
>

| 2

Recall FGCM H = 51-pt + 1| B(Q)|, w = —d(pyb’) — ef.
Recall B axisymmetric means L, = 0 for u = 9, in
cylindrical coordinates. Note this implies L,|B| = 0 and
L,b* = 0 too, because u is an isometry (L,g = 0).

Proof: First, L,Q2 =0 so i 2 = igL,2 — L,ig2 =0, so
[u, B] =0. Second, L,g =0 and B’ = igg imply

L,B" = L,igg = igl,g — iiB,u}& = 0 (identity is true even
though g is not antisymmetric). Then

2|B|Ly|B| = LyigB® = igL,B’ — ijg 4B =0, so L,|B| = 0.
Last, L,B" = L,(|B|p’) = (L,|B|)b’ + |B|L,b", so L,b* = 0.
Lift uto U = (04,0) on (Q,py). Thus LyH =0 and

Lyw = 0. So U is a continuous symmetry, iyw = dL for some
local function L, and L is conserved. Compute

iud(pb’) = Ly(pyb’) — d(pjiyb®). Use iyb® = by = rb).
Recall iy = di). So L = rbi4)p| — ey (not same as before).

A Hamiltonian system reducible to 1DoF is called integrable.



Reduced system
» Quotient by U to reduce to 1DoF in (r,z):

2
H = % (ﬁ;;(;") + p|Bl(r, z) and w = eB(gydr A dz.

» Can write |B| = \/r_2|V¢|2 + B(2¢) and b = B(¢)/|B\.

> If choose ¢ and B4 to make H have a local minimum for
each L and p then the corresponding particles are confined.
Full principle of tokamak. Confines more particles.

> Example: Solov'ev equilibrium B = I(3)/r, 12 = 1% — 2E%,
¢ =(Dr* — C)?+ 3(E+ (F—8D?*)r?)z?in 0 < ¢ < po/F,
with E,F, C,D, pg > 0, 2Epg < IZF (p = po — F).

» Contours of H for given L, u; note the banana orbit.




Currents

» Note rJ? = 0, (rB(¢)), rJT = —0,(rB(g)), so can achieve a
strong By) = 27” from external poloidal current /., making
small gyroradius for desired energies.

» But bounded contours of H require a local max or min for 1,
and so current Jig) = rJ® = 162@ZJ + O ( 0r1)) in the plasma.

» There are some natural currents in a plasma, in particular
“diamagnetic” current J, = B x Vp/|B|? to make MHS
J x B =Vp. It contributes little to Ji4), but in general is not
divergence-free: divJ, = —|B|~2J, - V|B|%.

> So it is accompanied by a parallel current J;b s.t.

B- V‘g‘ = —divJ, (a magnetic differential equation that

restricts B). Contributions include a “bootstrap” current,
driven by friction between circulating electrons and those on
bananas, which could provide much of the required J).

P But still need some current drive, and toroidal current
promotes dangerous instabilities.

» So can one do better than a tokamak?
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